- home
- Advanced Search
- Energy Research
- Restricted
- Energy Research
- Restricted
description Publicationkeyboard_double_arrow_right Article , Journal 2021 ArgentinaPublisher:Springer Science and Business Media LLC Marta Gladys Grech; Pablo A. Macchi; Núria Bonada; Miguel Cañedo-Argüelles; Virgilio Hermoso; M. Laura Miserendino; Luz Maria Manzo; Luis Beltran Epele; Luis Beltran Epele;handle: 11336/135944
Given the multiple stressors affecting freshwater ecosystems and the limited resources devoted to their management, effective conservation of freshwater biodiversity requires regional prioritization. Patagonian wetlands are essential for regional biodiversity and the economy, but they are still far from reaching global conservation targets and many of them could disappear due to climate change. Our study aimed at prioritizing wetlands based on aquatic and terrestrial biodiversity, their conservation status and vulnerability to climate change. First, we identified 43 priority wetlands containing all aquatic biodiversity collected in 82 Patagonian wetlands located over a 1500 km north–south gradient, by using the software Marxan. Then, we ranked within priority wetlands according to their conservation status (low priority if they were already protected; medium priority if not), importance for terrestrial biodiversity conservation (high priority) and vulnerability to climate change. Highly ranked priority wetlands in National Parks (low priority), contained diverse wetlands (57% aquatic taxon richness), including a large proportion of rare species (33%). High priority wetlands are oases of water in an arid and semiarid steppe, containing not only a large proportion of the aquatic biodiversity, but also acting as a refuge for terrestrial flora and fauna. Different management actions are proposed according to wetland priority level (e.g. fencing, creation of artificial ponds), and since 20% of medium priority and 36% of high priority wetlands are expected to disappear by 2050, their inclusion in conservation or restoration plans needs to be carefully evaluated.
CONICET Digital arrow_drop_down Biodiversity and ConservationArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10531-021-02146-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CONICET Digital arrow_drop_down Biodiversity and ConservationArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10531-021-02146-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 ArgentinaPublisher:Springer Science and Business Media LLC Marta Gladys Grech; Pablo A. Macchi; Núria Bonada; Miguel Cañedo-Argüelles; Virgilio Hermoso; M. Laura Miserendino; Luz Maria Manzo; Luis Beltran Epele; Luis Beltran Epele;handle: 11336/135944
Given the multiple stressors affecting freshwater ecosystems and the limited resources devoted to their management, effective conservation of freshwater biodiversity requires regional prioritization. Patagonian wetlands are essential for regional biodiversity and the economy, but they are still far from reaching global conservation targets and many of them could disappear due to climate change. Our study aimed at prioritizing wetlands based on aquatic and terrestrial biodiversity, their conservation status and vulnerability to climate change. First, we identified 43 priority wetlands containing all aquatic biodiversity collected in 82 Patagonian wetlands located over a 1500 km north–south gradient, by using the software Marxan. Then, we ranked within priority wetlands according to their conservation status (low priority if they were already protected; medium priority if not), importance for terrestrial biodiversity conservation (high priority) and vulnerability to climate change. Highly ranked priority wetlands in National Parks (low priority), contained diverse wetlands (57% aquatic taxon richness), including a large proportion of rare species (33%). High priority wetlands are oases of water in an arid and semiarid steppe, containing not only a large proportion of the aquatic biodiversity, but also acting as a refuge for terrestrial flora and fauna. Different management actions are proposed according to wetland priority level (e.g. fencing, creation of artificial ponds), and since 20% of medium priority and 36% of high priority wetlands are expected to disappear by 2050, their inclusion in conservation or restoration plans needs to be carefully evaluated.
CONICET Digital arrow_drop_down Biodiversity and ConservationArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10531-021-02146-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CONICET Digital arrow_drop_down Biodiversity and ConservationArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10531-021-02146-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu