- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Annual Reviews Tong Wu; Amir Jina; Juan Carlos Rocha; Juan Carlos Rocha; Kevin Berry; Matías Piaggio; Jiangxiao Qiu; Andrew R. Tilman; Alon Shepon; Tomas Chaigneau; Maike Hamann; Inge van den Bijgaart; Patrik J. G. Henriksson; Patrik J. G. Henriksson; Patrik J. G. Henriksson; Yolanda Lopez-Maldonado; Tracie Curry; Jonas Hentati-Sundberg; Caroline Schill; Caroline Schill; Emmi Nieminen; Emilie Lindkvist; Robert Heilmayr;handle: 10871/35756
Rising inequalities and accelerating global environmental change pose two of the most pressing challenges of the twenty-first century. To explore how these phenomena are linked, we apply a social-ecological systems perspective and review the literature to identify six different types of interactions (or “pathways”) between inequality and the biosphere. We find that most of the research so far has only considered one-directional effects of inequality on the biosphere, or vice versa. However, given the potential for complex dynamics between socioeconomic and environmental factors within social-ecological systems, we highlight examples from the literature that illustrate the importance of cross-scale interactions and feedback loops between inequality and the biosphere. This review draws on diverse disciplines to advance a systemic understanding of the linkages between inequality and the biosphere, specifically recognizing cross-scale feedbacks and the multidimensional nature of inequality.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1146/annurev-environ-102017-025949&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 106 citations 106 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1146/annurev-environ-102017-025949&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 AustriaPublisher:Public Library of Science (PLoS) Authors: Maggini, Ivan; Cardinale, Massimiliano; Sundberg, Jonas Hentati; Spina, Fernando; +1 AuthorsMaggini, Ivan; Cardinale, Massimiliano; Sundberg, Jonas Hentati; Spina, Fernando; Fusani, Leonida;Spring migration phenology is shifting towards earlier dates as a response to climate change in many bird species. However, the patterns of change might not be the same for all species, populations, sex and age classes. In particular, patterns of change could differ between species with different ecology. We analyzed 18 years of standardized bird capture data at a spring stopover site on the island of Ponza, Italy, to determine species-specific rates of phenological change for 30 species following the crossing of the Mediterranean Sea. The advancement of spring passage was more pronounced in species wintering in Northern Africa (i.e. short-distance migrants) and in the Sahel zone. Only males from species wintering further South in the forests of central Africa advanced their passage, with no effect on the overall peak date of passage of the species. The migration window on Ponza broadened in many species, suggesting that early migrants within a species are advancing their migration more than late migrants. These data suggest that the cues available to the birds to adjust departure might be changing at different rates depending on wintering location and habitat, or that early migrants of different species might be responding differently to changing conditions along the route. However, more data on departure time from the wintering areas are required to understand the mechanisms underlying such phenological changes.
PLoS ONE arrow_drop_down Permanent Hosting, Archiving and Indexing of Digital Resources and AssetsArticle . 2020License: CC BYadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0239489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down Permanent Hosting, Archiving and Indexing of Digital Resources and AssetsArticle . 2020License: CC BYadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0239489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 SwedenPublisher:Resilience Alliance, Inc. Authors: Hentati Sundberg, Jonas; Fryers Hellquist, Katharina; Duit, Andreas;Many natural resources have degraded and collapsed despite being managed under rigorous institutional frameworks set up to ensure rational exploitation. Path dependency of dysfunction institutions has been suggested as an explanation for such undesired outcomes. We explore the role of path dependency in natural resource management by studying a 100-year evolution of Swedish fisheries. We rely on three main types of original longitudinal data collected for the period 1914-2016: (A) policy documents, (B) government spending on management and subsidies, and (C) catch and fleet data. Our analysis contrasts the periods before and after the Swedish entrance into the European Union (1995) because this marks the year when fisheries policy became beyond the direct influence of the Swedish government. We uncover four pieces of evidence suggesting the existence of a path dependent dynamic in the pre-EU period: (1) despite increasing insights on the vulnerability of fish stocks to overexploitation, national policy goals in relation to fisheries continuously promoted incompatible goals of social and economic growth but without any reference to the sustainability of the biological resources; (2) the same policy instruments were used over long periods; (3) actor constellations within the fisheries policy subsystem were stable over time; (4) neither political regime nor macroeconomic variables and fisheries performance (industry production, oil price, landing values) could explain observed temporal variation in subsidies. We conclude that key policy actors in the pre-EU period formed an "iron triangle" and thereby prevented necessary policy changes. These national reinforcing feedbacks have been weakened since EU entrance, and the indicators for path dependency show broader involvement of stakeholders, a shift in spending, and policy goals that now explicitly address ecological sustainability.
SLU publication data... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-11259-240418&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert SLU publication data... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-11259-240418&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United Kingdom, Norway, United Kingdom, United Kingdom, France, United KingdomPublisher:Wiley Keogan, Katharine; Daunt, Francis; Wanless, Sarah; Phillips, Richard A.; Alvarez, David; Anker-Nilssen, Tycho; Barrett, Robert T.; Bech, Claus; Becker, Peter H.; Berglund, Per-Arvid; Bouwhuis, Sandra; Burr, Zofia M.; Chastel, Olivier; Christensen-Dalsgaard, Signe; Descamps, Sébastien; Diamond, Tony; Elliott, Kyle; Erikstad, Kjell Einar; Harris, Mike; Hentati-Sundberg, Jonas; Heubeck, Martin; Kress, Stephen W.; Langset, Magdalene; Lorensten, Svein-Håkon; Major, Heather L.; Whalley, Heather; Mallory, Mark; Mellor, Mick; Miles, Will T. S.; Moe, Børge; Mostello, Carolyn; Newell, Mark; Nisbet, Ian; Reiertsen, Tone Kirstin; Rock, Jennifer; Shannon, Paula; Varpe, Øystein; Lewis, Sue; Phillimore, Albert B.;AbstractTiming of breeding, an important driver of fitness in many populations, is widely studied in the context of global change, yet despite considerable efforts to identify environmental drivers of seabird nesting phenology, for most populations we lack evidence of strong drivers. Here we adopt an alternative approach, examining the degree to which different populations positively covary in their annual phenology to infer whether phenological responses to environmental drivers are likely to be (a) shared across species at a range of spatial scales, (b) shared across populations of a species or (c) idiosyncratic to populations.We combined 51 long‐term datasets on breeding phenology spanning 50 years from nine seabird species across 29 North Atlantic sites and examined the extent to which different populations share early versus late breeding seasons depending on a hierarchy of spatial scales comprising breeding site, small‐scale region, large‐scale region and the whole North Atlantic.In about a third of cases, we found laying dates of populations of different species sharing the same breeding site or small‐scale breeding region were positively correlated, which is consistent with the hypothesis that they share phenological responses to the same environmental conditions. In comparison, we found no evidence for positive phenological covariation among populations across species aggregated at larger spatial scales.In general, we found little evidence for positive phenological covariation between populations of a single species, and in many instances the inter‐year variation specific to a population was substantial, consistent with each population responding idiosyncratically to local environmental conditions. Black‐legged kittiwakeRissa tridactylawas the exception, with populations exhibiting positive covariation in laying dates that decayed with the distance between breeding sites, suggesting that populations may be responding to a similar driver.Our approach sheds light on the potential factors that may drive phenology in our study species, thus furthering our understanding of the scales at which different seabirds interact with interannual variation in their environment. We also identify additional systems and phenological questions to which our inferential approach could be applied.
Edinburgh Research E... arrow_drop_down St Andrews Research RepositoryArticle . 2022 . Peer-reviewedData sources: St Andrews Research RepositoryJournal of Animal EcologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13758&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Edinburgh Research E... arrow_drop_down St Andrews Research RepositoryArticle . 2022 . Peer-reviewedData sources: St Andrews Research RepositoryJournal of Animal EcologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13758&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Annual Reviews Tong Wu; Amir Jina; Juan Carlos Rocha; Juan Carlos Rocha; Kevin Berry; Matías Piaggio; Jiangxiao Qiu; Andrew R. Tilman; Alon Shepon; Tomas Chaigneau; Maike Hamann; Inge van den Bijgaart; Patrik J. G. Henriksson; Patrik J. G. Henriksson; Patrik J. G. Henriksson; Yolanda Lopez-Maldonado; Tracie Curry; Jonas Hentati-Sundberg; Caroline Schill; Caroline Schill; Emmi Nieminen; Emilie Lindkvist; Robert Heilmayr;handle: 10871/35756
Rising inequalities and accelerating global environmental change pose two of the most pressing challenges of the twenty-first century. To explore how these phenomena are linked, we apply a social-ecological systems perspective and review the literature to identify six different types of interactions (or “pathways”) between inequality and the biosphere. We find that most of the research so far has only considered one-directional effects of inequality on the biosphere, or vice versa. However, given the potential for complex dynamics between socioeconomic and environmental factors within social-ecological systems, we highlight examples from the literature that illustrate the importance of cross-scale interactions and feedback loops between inequality and the biosphere. This review draws on diverse disciplines to advance a systemic understanding of the linkages between inequality and the biosphere, specifically recognizing cross-scale feedbacks and the multidimensional nature of inequality.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1146/annurev-environ-102017-025949&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 106 citations 106 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1146/annurev-environ-102017-025949&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 AustriaPublisher:Public Library of Science (PLoS) Authors: Maggini, Ivan; Cardinale, Massimiliano; Sundberg, Jonas Hentati; Spina, Fernando; +1 AuthorsMaggini, Ivan; Cardinale, Massimiliano; Sundberg, Jonas Hentati; Spina, Fernando; Fusani, Leonida;Spring migration phenology is shifting towards earlier dates as a response to climate change in many bird species. However, the patterns of change might not be the same for all species, populations, sex and age classes. In particular, patterns of change could differ between species with different ecology. We analyzed 18 years of standardized bird capture data at a spring stopover site on the island of Ponza, Italy, to determine species-specific rates of phenological change for 30 species following the crossing of the Mediterranean Sea. The advancement of spring passage was more pronounced in species wintering in Northern Africa (i.e. short-distance migrants) and in the Sahel zone. Only males from species wintering further South in the forests of central Africa advanced their passage, with no effect on the overall peak date of passage of the species. The migration window on Ponza broadened in many species, suggesting that early migrants within a species are advancing their migration more than late migrants. These data suggest that the cues available to the birds to adjust departure might be changing at different rates depending on wintering location and habitat, or that early migrants of different species might be responding differently to changing conditions along the route. However, more data on departure time from the wintering areas are required to understand the mechanisms underlying such phenological changes.
PLoS ONE arrow_drop_down Permanent Hosting, Archiving and Indexing of Digital Resources and AssetsArticle . 2020License: CC BYadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0239489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down Permanent Hosting, Archiving and Indexing of Digital Resources and AssetsArticle . 2020License: CC BYadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0239489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 SwedenPublisher:Resilience Alliance, Inc. Authors: Hentati Sundberg, Jonas; Fryers Hellquist, Katharina; Duit, Andreas;Many natural resources have degraded and collapsed despite being managed under rigorous institutional frameworks set up to ensure rational exploitation. Path dependency of dysfunction institutions has been suggested as an explanation for such undesired outcomes. We explore the role of path dependency in natural resource management by studying a 100-year evolution of Swedish fisheries. We rely on three main types of original longitudinal data collected for the period 1914-2016: (A) policy documents, (B) government spending on management and subsidies, and (C) catch and fleet data. Our analysis contrasts the periods before and after the Swedish entrance into the European Union (1995) because this marks the year when fisheries policy became beyond the direct influence of the Swedish government. We uncover four pieces of evidence suggesting the existence of a path dependent dynamic in the pre-EU period: (1) despite increasing insights on the vulnerability of fish stocks to overexploitation, national policy goals in relation to fisheries continuously promoted incompatible goals of social and economic growth but without any reference to the sustainability of the biological resources; (2) the same policy instruments were used over long periods; (3) actor constellations within the fisheries policy subsystem were stable over time; (4) neither political regime nor macroeconomic variables and fisheries performance (industry production, oil price, landing values) could explain observed temporal variation in subsidies. We conclude that key policy actors in the pre-EU period formed an "iron triangle" and thereby prevented necessary policy changes. These national reinforcing feedbacks have been weakened since EU entrance, and the indicators for path dependency show broader involvement of stakeholders, a shift in spending, and policy goals that now explicitly address ecological sustainability.
SLU publication data... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-11259-240418&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert SLU publication data... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-11259-240418&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United Kingdom, Norway, United Kingdom, United Kingdom, France, United KingdomPublisher:Wiley Keogan, Katharine; Daunt, Francis; Wanless, Sarah; Phillips, Richard A.; Alvarez, David; Anker-Nilssen, Tycho; Barrett, Robert T.; Bech, Claus; Becker, Peter H.; Berglund, Per-Arvid; Bouwhuis, Sandra; Burr, Zofia M.; Chastel, Olivier; Christensen-Dalsgaard, Signe; Descamps, Sébastien; Diamond, Tony; Elliott, Kyle; Erikstad, Kjell Einar; Harris, Mike; Hentati-Sundberg, Jonas; Heubeck, Martin; Kress, Stephen W.; Langset, Magdalene; Lorensten, Svein-Håkon; Major, Heather L.; Whalley, Heather; Mallory, Mark; Mellor, Mick; Miles, Will T. S.; Moe, Børge; Mostello, Carolyn; Newell, Mark; Nisbet, Ian; Reiertsen, Tone Kirstin; Rock, Jennifer; Shannon, Paula; Varpe, Øystein; Lewis, Sue; Phillimore, Albert B.;AbstractTiming of breeding, an important driver of fitness in many populations, is widely studied in the context of global change, yet despite considerable efforts to identify environmental drivers of seabird nesting phenology, for most populations we lack evidence of strong drivers. Here we adopt an alternative approach, examining the degree to which different populations positively covary in their annual phenology to infer whether phenological responses to environmental drivers are likely to be (a) shared across species at a range of spatial scales, (b) shared across populations of a species or (c) idiosyncratic to populations.We combined 51 long‐term datasets on breeding phenology spanning 50 years from nine seabird species across 29 North Atlantic sites and examined the extent to which different populations share early versus late breeding seasons depending on a hierarchy of spatial scales comprising breeding site, small‐scale region, large‐scale region and the whole North Atlantic.In about a third of cases, we found laying dates of populations of different species sharing the same breeding site or small‐scale breeding region were positively correlated, which is consistent with the hypothesis that they share phenological responses to the same environmental conditions. In comparison, we found no evidence for positive phenological covariation among populations across species aggregated at larger spatial scales.In general, we found little evidence for positive phenological covariation between populations of a single species, and in many instances the inter‐year variation specific to a population was substantial, consistent with each population responding idiosyncratically to local environmental conditions. Black‐legged kittiwakeRissa tridactylawas the exception, with populations exhibiting positive covariation in laying dates that decayed with the distance between breeding sites, suggesting that populations may be responding to a similar driver.Our approach sheds light on the potential factors that may drive phenology in our study species, thus furthering our understanding of the scales at which different seabirds interact with interannual variation in their environment. We also identify additional systems and phenological questions to which our inferential approach could be applied.
Edinburgh Research E... arrow_drop_down St Andrews Research RepositoryArticle . 2022 . Peer-reviewedData sources: St Andrews Research RepositoryJournal of Animal EcologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13758&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Edinburgh Research E... arrow_drop_down St Andrews Research RepositoryArticle . 2022 . Peer-reviewedData sources: St Andrews Research RepositoryJournal of Animal EcologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13758&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu