Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Shahira Assem Abdel-Razek;
    Shahira Assem Abdel-Razek
    ORCID
    Harvested from ORCID Public Data File

    Shahira Assem Abdel-Razek in OpenAIRE
    orcid Hanaa Salem Marie;
    Hanaa Salem Marie
    ORCID
    Harvested from ORCID Public Data File

    Hanaa Salem Marie in OpenAIRE
    orcid Ali Alshehri;
    Ali Alshehri
    ORCID
    Harvested from ORCID Public Data File

    Ali Alshehri in OpenAIRE
    orcid Omar M. Elzeki;
    Omar M. Elzeki
    ORCID
    Harvested from ORCID Public Data File

    Omar M. Elzeki in OpenAIRE

    Room occupancy prediction based on indoor environmental quality may be the breakthrough to ensure energy efficiency and establish an interior ambience tailored to each user. Identifying whether temperature, humidity, lighting, and CO2 levels may be used as efficient predictors of room occupancy accuracy is needed to help designers better utilize the readings and data collected in order to improve interior design, in an effort to better suit users. It also aims to help in energy efficiency and saving in an ever-increasing energy crisis and dangerous levels of climate change. This paper evaluated the accuracy of room occupancy recognition using a dataset with diverse amounts of light, CO2, and humidity. As classification algorithms, K-nearest neighbors (KNN), hybrid Adam optimizer–artificial neural network–back-propagation network (AO–ANN (BP)), and decision trees (DT) were used. Furthermore, this research is based on machine learning interpretability methodologies. Shapley additive explanations (SHAP) improve interpretability by estimating the significance values for each feature for classifiers applied. The results indicate that the KNN performs better than the DT and AO-ANN (BP) classification models have 99.5%. Though the two classifiers are designed to evaluate variations in interpretations, we must ensure that they have accurate detection. The results show that SHAP provides successful implementation following these metrics, with differences detected amongst classifier models that support the assumption that model complexity plays a significant role when predictability is taken into account.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2022
    Data sources: DOAJ
    addClaim
    28
    citations28
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2022
      Data sources: DOAJ
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid bw Ali Alshehri;
    Ali Alshehri
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Ali Alshehri in OpenAIRE
    orcid Mahmoud M. Badr;
    Mahmoud M. Badr
    ORCID
    Harvested from ORCID Public Data File

    Mahmoud M. Badr in OpenAIRE
    orcid Mohamed Baza;
    Mohamed Baza
    ORCID
    Harvested from ORCID Public Data File

    Mohamed Baza in OpenAIRE
    orcid Hani Alshahrani;
    Hani Alshahrani
    ORCID
    Harvested from ORCID Public Data File

    Hani Alshahrani in OpenAIRE

    Smart power grids suffer from electricity theft cyber-attacks, where malicious consumers compromise their smart meters (SMs) to downscale the reported electricity consumption readings. This problem costs electric utility companies worldwide considerable financial burdens and threatens power grid stability. Therefore, several machine learning (ML)-based solutions have been proposed to detect electricity theft; however, they have limitations. First, most existing works employ supervised learning that requires the availability of labeled datasets of benign and malicious electricity usage samples. Unfortunately, this approach is not practical due to the scarcity of real malicious electricity usage samples. Moreover, training a supervised detector on specific cyberattack scenarios results in a robust detector against those attacks, but it might fail to detect new attack scenarios. Second, although a few works investigated anomaly detectors for electricity theft, none of the existing works addressed consumers’ privacy. To address these limitations, in this paper, we propose a comprehensive federated learning (FL)-based deep anomaly detection framework tailored for practical, reliable, and privacy-preserving energy theft detection. In our proposed framework, consumers train local deep autoencoder-based detectors on their private electricity usage data and only share their trained detectors’ parameters with an EUC aggregation server to iteratively build a global anomaly detector. Our extensive experimental results not only demonstrate the superior performance of our anomaly detector compared to the supervised detectors but also the capability of our proposed FL-based anomaly detector to accurately detect zero-day attacks of electricity theft while preserving consumers’ privacy.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sensorsarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sensors
    Article . 2024 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    PubMed Central
    Other literature type . 2024
    License: CC BY
    Data sources: PubMed Central
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sensors
    Article . 2024
    Data sources: DOAJ
    addClaim
    Access Routes
    Green
    gold
    5
    citations5
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sensorsarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sensors
      Article . 2024 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      PubMed Central
      Other literature type . 2024
      License: CC BY
      Data sources: PubMed Central
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sensors
      Article . 2024
      Data sources: DOAJ
      addClaim
Powered by OpenAIRE graph