- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Authors: Claire M. Tortorelli; Becky K. Kerns; Meg A. Krawchuk;doi: 10.1002/ecy.3697
pmid: 35352822
AbstractPlant communities are predicted to be more resistant to invasion if they are highly productive, harbor species with similar functional traits to invaders, or support species with high competitive potential. However, the strength of competition may decrease with increasing abiotic stress if species more heavily invest in traits that confer stress tolerance over competitive ability, potentially influencing community trait–resistance relationships. Recent research examining how community traits influence invasion resistance has been predominantly focused on single vegetation types, and results between studies are often conflicting. Few studies have evaluated the extent to which abiotic factors and community traits interact to influence invasion along vegetation gradients. Here, we use an in situ seed addition experiment to examine how above‐ and below‐ground plant traits and vegetation type interact to influence community resistance to invasion by a recently introduced annual grass,Ventenata dubia, along a productivity gradient in eastern Oregon, USA. To measure invasion resistance, we evaluatedV. dubiabiomass in seeded subplots with varying trait compositions across three vegetation types situated along a productivity gradient: scab‐flats (sparsely vegetated dwarf‐shrublands), low sage‐steppe, and ephemeral wet meadows. Trait–resistance relationships were highly context dependent. In wet meadows (the most productive sites), resistance to invasion increased with increasing resident biomass and as community weighted mean trait values for specific leaf area, fine‐to‐total root volume, and height become more similar toV. dubia's trait values, although these relationships were relatively weak. We did not find evidence that neighboring species influenced invasion resistance in less productive vegetation types, in contrast to our expectations that facilitative interactions may increase with decreasing productivity as posited by the stress‐gradient hypothesis. UnlikeV. dubia, which heavily invaded all three vegetation types, introduced species with similar trait values, includingBromus tectorum, were not abundant throughout the study area demonstratingV. dubia's unique ability to take advantage of available resources. Our results illustrate how community traits and site productivity interact to influence community resistance to invasion and highlight that communities with lower overall biomass and few functionally similar species toV. dubiamay be at the greatest risk for invasion.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.3697&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.3697&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Wiley Authors: Steven G. Cumming; Meg A. Krawchuk;doi: 10.1890/09-2004 , 10.1890/09-2004.1
pmid: 21516892
Predictions of future fire activity over Canada's boreal forests have primarily been generated from climate data following assumptions that direct effects of weather will stand alone in contributing to changes in burning. However, this assumption needs explicit testing. First, areas recently burned can be less likely to burn again in the near term, and this endogenous regulation suggests the potential for self-limiting, negative biotic feedback to regional climate-driven increases in fire. Second, forest harvest is ongoing, and resulting changes in vegetation structure have been shown to affect fire activity. Consequently, we tested the assumption that fire activity will be driven by changes in fire weather without regulation by biotic feedback or regional harvest-driven changes in vegetation structure in the mixedwood boreal forest of Alberta, Canada, using a simulation experiment that includes the interaction of fire, stand dynamics, climate change, and clear cut harvest management. We found that climate change projected with fire weather indices calculated from the Canadian Regional Climate Model increased fire activity, as expected, and our simulations established evidence that the magnitude of regional increase in fire was sufficient to generate negative feedback to subsequent fire activity. We illustrate a 39% (1.39-fold) increase in fire initiation and 47% (1.47-fold) increase in area burned when climate and stand dynamics were included in simulations, yet 48% (1.48-fold) and 61% (1.61-fold) increases, respectively, when climate was considered alone. Thus, although biotic feedbacks reduced burned area estimates in important ways, they were secondary to the direct effect of climate on fire. We then show that ongoing harvest management in this region changed landscape composition in a way that led to reduced fire activity, even in the context of climate change. Although forest harvesting resulted in decreased regional fire activity when compared to unharvested conditions, forest composition and age structure was shifted substantially, illustrating a trade-off between management goals to minimize fire and conservation goals to emulate natural disturbance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/09-2004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/09-2004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United Kingdom, United StatesPublisher:Oxford University Press (OUP) Funded by:NSF | The Management and Operat...NSF| The Management and Operation of the National Center for Atmoshperic Research (NCAR)Jacquelyn K Shuman; Jennifer K Balch; Rebecca T Barnes; Philip E Higuera; Christopher I Roos; Dylan W Schwilk; E Natasha Stavros; Tirtha Banerjee; Megan M Bela; Jacob Bendix; Sandro Bertolino; Solomon Bililign; Kevin D Bladon; Paulo Brando; Robert E Breidenthal; Brian Buma; Donna Calhoun; Leila M V Carvalho; Megan E Cattau; Kaelin M Cawley; Sudeep Chandra; Melissa L Chipman; Jeanette Cobian-Iñiguez; Erin Conlisk; Jonathan D Coop; Alison Cullen; Kimberley T Davis; Archana Dayalu; Fernando De Sales; Megan Dolman; Lisa M Ellsworth; Scott Franklin; Christopher H Guiterman; Matthew Hamilton; Erin J Hanan; Winslow D Hansen; Stijn Hantson; Brian J Harvey; Andrés Holz; Tao Huang; Matthew D Hurteau; Nayani T Ilangakoon; Megan Jennings; Charles Jones; Anna Klimaszewski-Patterson; Leda N Kobziar; John Kominoski; Branko Kosovic; Meg A Krawchuk; Paul Laris; Jackson Leonard; S Marcela Loria-Salazar; Melissa Lucash; Hussam Mahmoud; Ellis Margolis; Toby Maxwell; Jessica L McCarty; David B McWethy; Rachel S Meyer; Jessica R Miesel; W Keith Moser; R Chelsea Nagy; Dev Niyogi; Hannah M Palmer; Adam Pellegrini; Benjamin Poulter; Kevin Robertson; Adrian V Rocha; Mojtaba Sadegh; Fernanda Santos; Facundo Scordo; Joseph O Sexton; A Surjalal Sharma; Alistair M S Smith; Amber J Soja; Christopher Still; Tyson Swetnam; Alexandra D Syphard; Morgan W Tingley; Ali Tohidi; Anna T Trugman; Merritt Turetsky; J Morgan Varner; Yuhang Wang; Thea Whitman; Stephanie Yelenik; Xuan Zhang;Abstract Fire is an integral component of ecosystems globally and a tool that humans have harnessed for millennia. Altered fire regimes are a fundamental cause and consequence of global change, impacting people and the biophysical systems on which they depend. As part of the newly emerging Anthropocene, marked by human-caused climate change and radical changes to ecosystems, fire danger is increasing, and fires are having increasingly devastating impacts on human health, infrastructure, and ecosystem services. Increasing fire danger is a vexing problem that requires deep transdisciplinary, trans-sector, and inclusive partnerships to address. Here, we outline barriers and opportunities in the next generation of fire science and provide guidance for investment in future research. We synthesize insights needed to better address the long-standing challenges of innovation across disciplines to (i) promote coordinated research efforts; (ii) embrace different ways of knowing and knowledge generation; (iii) promote exploration of fundamental science; (iv) capitalize on the “firehose” of data for societal benefit; and (v) integrate human and natural systems into models across multiple scales. Fire science is thus at a critical transitional moment. We need to shift from observation and modeled representations of varying components of climate, people, vegetation, and fire to more integrative and predictive approaches that support pathways toward mitigating and adapting to our increasingly flammable world, including the utilization of fire for human safety and benefit. Only through overcoming institutional silos and accessing knowledge across diverse communities can we effectively undertake research that improves outcomes in our more fiery future.
Portland State Unive... arrow_drop_down Portland State University: PDXScholarArticle . 2022License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/7mg7p5b3Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pnasnexus/pgac115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 56 citations 56 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Portland State Unive... arrow_drop_down Portland State University: PDXScholarArticle . 2022License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/7mg7p5b3Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pnasnexus/pgac115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Spain, Australia, SpainPublisher:IOP Publishing Matthias M Boer; David M J S Bowman; Brett P Murphy; Geoffrey J Cary; Mark A Cochrane; Roderick J Fensham; Meg A Krawchuk; Owen F Price; Víctor Resco De Dios; Richard J Williams; Ross A Bradstock;handle: 1885/153332
Most studies of climate change effects on fire regimes assume a gradual reorganization of pyrogeographic patterns and have not considered the potential for transformational changes in the climate-vegetation-fire relationships underlying continental-scale fire regimes. Here, we model current fire activity levels in Australia as a function of mean annual actual evapotranspiration (E) and potential evapotranspiration (E 0), as proxies for fuel productivity and fuel drying potential. We distinguish two domains in $E,{E}_{0}$ space according to the dominant constraint on fire activity being either fuel productivity (PL-type fire) or fuel dryness (DL-type fire) and show that the affinity to these domains is related to fuel type. We propose to assess the potential for transformational shifts in fire type from the difference in the affinity to either domain under a baseline climate and projected future climate. Under the projected climate changes potential for a transformational shift from DL- to PL-type fire was predicted for mesic savanna woodland in the north and for eucalypt forests in coastal areas of the south–west and along the Continental Divide in the south–east of the continent. Potential for a shift from PL- to DL-type fire was predicted for a narrow zone of eucalypt savanna woodland in the north–east. This research was partly financially supported by the Australian Centre for Ecological Analysis and Synthesis (ACEAS). VRD was partly funded by a Ramón y Cajal Fellowhip (RYC-2012-10970). Field data collection and MAC were financially supported by NASA Interdisciplinary Sciences Grant (NNX11AB89G).
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/153332Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaUniversity of Western Sydney (UWS): Research DirectArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/11/6/065002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 52 citations 52 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/153332Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaUniversity of Western Sydney (UWS): Research DirectArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/11/6/065002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Proceedings of the National Academy of Sciences Authors: Tania Schoennagel; Jennifer K. Balch; Hannah Brenkert-Smith; Philip E. Dennison; +8 AuthorsTania Schoennagel; Jennifer K. Balch; Hannah Brenkert-Smith; Philip E. Dennison; Brian J. Harvey; Meg A. Krawchuk; Nathan Mietkiewicz; Penelope Morgan; Max A. Moritz; Ray Rasker; Monica G. Turner; Cathy Whitlock;Wildfires across western North America have increased in number and size over the past three decades, and this trend will continue in response to further warming. As a consequence, the wildland–urban interface is projected to experience substantially higher risk of climate-driven fires in the coming decades. Although many plants, animals, and ecosystem services benefit from fire, it is unknown how ecosystems will respond to increased burning and warming. Policy and management have focused primarily on specified resilience approaches aimed at resistance to wildfire and restoration of areas burned by wildfire through fire suppression and fuels management. These strategies are inadequate to address a new era of western wildfires. In contrast, policies that promote adaptive resilience to wildfire, by which people and ecosystems adjust and reorganize in response to changing fire regimes to reduce future vulnerability, are needed. Key aspects of an adaptive resilience approach are ( i ) recognizing that fuels reduction cannot alter regional wildfire trends; ( ii ) targeting fuels reduction to increase adaptation by some ecosystems and residential communities to more frequent fire; ( iii ) actively managing more wild and prescribed fires with a range of severities; and ( iv ) incentivizing and planning residential development to withstand inevitable wildfire. These strategies represent a shift in policy and management from restoring ecosystems based on historical baselines to adapting to changing fire regimes and from unsustainable defense of the wildland–urban interface to developing fire-adapted communities. We propose an approach that accepts wildfire as an inevitable catalyst of change and that promotes adaptive responses by ecosystems and residential communities to more warming and wildfire.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2017 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1617464114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 583 citations 583 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2017 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1617464114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United StatesPublisher:Proceedings of the National Academy of Sciences Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthKimberley T. Davis; Marcos D. Robles; Kerry B. Kemp; Philip E. Higuera; Teresa Chapman; Kerry L. Metlen; Jamie L. Peeler; Kyle C. Rodman; Travis Woolley; Robert N. Addington; Brian J. Buma; C. Alina Cansler; Michael J. Case; Brandon M. Collins; Jonathan D. Coop; Solomon Z. Dobrowski; Nathan S. Gill; Collin Haffey; Lucas B. Harris; Brian J. Harvey; Ryan D. Haugo; Matthew D. Hurteau; Dominik Kulakowski; Caitlin E. Littlefield; Lisa A. McCauley; Nicholas Povak; Kristen L. Shive; Edward Smith; Jens T. Stevens; Camille S. Stevens-Rumann; Alan H. Taylor; Alan J. Tepley; Derek J. N. Young; Robert A. Andrus; Mike A. Battaglia; Julia K. Berkey; Sebastian U. Busby; Amanda R. Carlson; Marin E. Chambers; Erich Kyle Dodson; Daniel C. Donato; William M. Downing; Paula J. Fornwalt; Joshua S. Halofsky; Ashley Hoffman; Andrés Holz; Jose M. Iniguez; Meg A. Krawchuk; Mark R. Kreider; Andrew J. Larson; Garrett W. Meigs; John Paul Roccaforte; Monica T. Rother; Hugh Safford; Michael Schaedel; Jason S. Sibold; Megan P. Singleton; Monica G. Turner; Alexandra K. Urza; Kyra D. Clark-Wolf; Larissa Yocom; Joseph B. Fontaine; John L. Campbell;Increasing fire severity and warmer, drier postfire conditions are making forests in the western United States (West) vulnerable to ecological transformation. Yet, the relative importance of and interactions between these drivers of forest change remain unresolved, particularly over upcoming decades. Here, we assess how the interactive impacts of changing climate and wildfire activity influenced conifer regeneration after 334 wildfires, using a dataset of postfire conifer regeneration from 10,230 field plots. Our findings highlight declining regeneration capacity across the West over the past four decades for the eight dominant conifer species studied. Postfire regeneration is sensitive to high-severity fire, which limits seed availability, and postfire climate, which influences seedling establishment. In the near-term, projected differences in recruitment probability between low- and high-severity fire scenarios were larger than projected climate change impacts for most species, suggesting that reductions in fire severity, and resultant impacts on seed availability, could partially offset expected climate-driven declines in postfire regeneration. Across 40 to 42% of the study area, we project postfire conifer regeneration to be likely following low-severity but not high-severity fire under future climate scenarios (2031 to 2050). However, increasingly warm, dry climate conditions are projected to eventually outweigh the influence of fire severity and seed availability. The percent of the study area considered unlikely to experience conifer regeneration, regardless of fire severity, increased from 5% in 1981 to 2000 to 26 to 31% by mid-century, highlighting a limited time window over which management actions that reduce fire severity may effectively support postfire conifer regeneration.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023Full-Text: https://escholarship.org/uc/item/5360m6bdData sources: Bielefeld Academic Search Engine (BASE)Portland State University: PDXScholarArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2208120120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 86 citations 86 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023Full-Text: https://escholarship.org/uc/item/5360m6bdData sources: Bielefeld Academic Search Engine (BASE)Portland State University: PDXScholarArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2208120120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Authors: Claire M. Tortorelli; Becky K. Kerns; Meg A. Krawchuk;doi: 10.1002/ecy.3697
pmid: 35352822
AbstractPlant communities are predicted to be more resistant to invasion if they are highly productive, harbor species with similar functional traits to invaders, or support species with high competitive potential. However, the strength of competition may decrease with increasing abiotic stress if species more heavily invest in traits that confer stress tolerance over competitive ability, potentially influencing community trait–resistance relationships. Recent research examining how community traits influence invasion resistance has been predominantly focused on single vegetation types, and results between studies are often conflicting. Few studies have evaluated the extent to which abiotic factors and community traits interact to influence invasion along vegetation gradients. Here, we use an in situ seed addition experiment to examine how above‐ and below‐ground plant traits and vegetation type interact to influence community resistance to invasion by a recently introduced annual grass,Ventenata dubia, along a productivity gradient in eastern Oregon, USA. To measure invasion resistance, we evaluatedV. dubiabiomass in seeded subplots with varying trait compositions across three vegetation types situated along a productivity gradient: scab‐flats (sparsely vegetated dwarf‐shrublands), low sage‐steppe, and ephemeral wet meadows. Trait–resistance relationships were highly context dependent. In wet meadows (the most productive sites), resistance to invasion increased with increasing resident biomass and as community weighted mean trait values for specific leaf area, fine‐to‐total root volume, and height become more similar toV. dubia's trait values, although these relationships were relatively weak. We did not find evidence that neighboring species influenced invasion resistance in less productive vegetation types, in contrast to our expectations that facilitative interactions may increase with decreasing productivity as posited by the stress‐gradient hypothesis. UnlikeV. dubia, which heavily invaded all three vegetation types, introduced species with similar trait values, includingBromus tectorum, were not abundant throughout the study area demonstratingV. dubia's unique ability to take advantage of available resources. Our results illustrate how community traits and site productivity interact to influence community resistance to invasion and highlight that communities with lower overall biomass and few functionally similar species toV. dubiamay be at the greatest risk for invasion.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.3697&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.3697&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Wiley Authors: Steven G. Cumming; Meg A. Krawchuk;doi: 10.1890/09-2004 , 10.1890/09-2004.1
pmid: 21516892
Predictions of future fire activity over Canada's boreal forests have primarily been generated from climate data following assumptions that direct effects of weather will stand alone in contributing to changes in burning. However, this assumption needs explicit testing. First, areas recently burned can be less likely to burn again in the near term, and this endogenous regulation suggests the potential for self-limiting, negative biotic feedback to regional climate-driven increases in fire. Second, forest harvest is ongoing, and resulting changes in vegetation structure have been shown to affect fire activity. Consequently, we tested the assumption that fire activity will be driven by changes in fire weather without regulation by biotic feedback or regional harvest-driven changes in vegetation structure in the mixedwood boreal forest of Alberta, Canada, using a simulation experiment that includes the interaction of fire, stand dynamics, climate change, and clear cut harvest management. We found that climate change projected with fire weather indices calculated from the Canadian Regional Climate Model increased fire activity, as expected, and our simulations established evidence that the magnitude of regional increase in fire was sufficient to generate negative feedback to subsequent fire activity. We illustrate a 39% (1.39-fold) increase in fire initiation and 47% (1.47-fold) increase in area burned when climate and stand dynamics were included in simulations, yet 48% (1.48-fold) and 61% (1.61-fold) increases, respectively, when climate was considered alone. Thus, although biotic feedbacks reduced burned area estimates in important ways, they were secondary to the direct effect of climate on fire. We then show that ongoing harvest management in this region changed landscape composition in a way that led to reduced fire activity, even in the context of climate change. Although forest harvesting resulted in decreased regional fire activity when compared to unharvested conditions, forest composition and age structure was shifted substantially, illustrating a trade-off between management goals to minimize fire and conservation goals to emulate natural disturbance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/09-2004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/09-2004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United Kingdom, United StatesPublisher:Oxford University Press (OUP) Funded by:NSF | The Management and Operat...NSF| The Management and Operation of the National Center for Atmoshperic Research (NCAR)Jacquelyn K Shuman; Jennifer K Balch; Rebecca T Barnes; Philip E Higuera; Christopher I Roos; Dylan W Schwilk; E Natasha Stavros; Tirtha Banerjee; Megan M Bela; Jacob Bendix; Sandro Bertolino; Solomon Bililign; Kevin D Bladon; Paulo Brando; Robert E Breidenthal; Brian Buma; Donna Calhoun; Leila M V Carvalho; Megan E Cattau; Kaelin M Cawley; Sudeep Chandra; Melissa L Chipman; Jeanette Cobian-Iñiguez; Erin Conlisk; Jonathan D Coop; Alison Cullen; Kimberley T Davis; Archana Dayalu; Fernando De Sales; Megan Dolman; Lisa M Ellsworth; Scott Franklin; Christopher H Guiterman; Matthew Hamilton; Erin J Hanan; Winslow D Hansen; Stijn Hantson; Brian J Harvey; Andrés Holz; Tao Huang; Matthew D Hurteau; Nayani T Ilangakoon; Megan Jennings; Charles Jones; Anna Klimaszewski-Patterson; Leda N Kobziar; John Kominoski; Branko Kosovic; Meg A Krawchuk; Paul Laris; Jackson Leonard; S Marcela Loria-Salazar; Melissa Lucash; Hussam Mahmoud; Ellis Margolis; Toby Maxwell; Jessica L McCarty; David B McWethy; Rachel S Meyer; Jessica R Miesel; W Keith Moser; R Chelsea Nagy; Dev Niyogi; Hannah M Palmer; Adam Pellegrini; Benjamin Poulter; Kevin Robertson; Adrian V Rocha; Mojtaba Sadegh; Fernanda Santos; Facundo Scordo; Joseph O Sexton; A Surjalal Sharma; Alistair M S Smith; Amber J Soja; Christopher Still; Tyson Swetnam; Alexandra D Syphard; Morgan W Tingley; Ali Tohidi; Anna T Trugman; Merritt Turetsky; J Morgan Varner; Yuhang Wang; Thea Whitman; Stephanie Yelenik; Xuan Zhang;Abstract Fire is an integral component of ecosystems globally and a tool that humans have harnessed for millennia. Altered fire regimes are a fundamental cause and consequence of global change, impacting people and the biophysical systems on which they depend. As part of the newly emerging Anthropocene, marked by human-caused climate change and radical changes to ecosystems, fire danger is increasing, and fires are having increasingly devastating impacts on human health, infrastructure, and ecosystem services. Increasing fire danger is a vexing problem that requires deep transdisciplinary, trans-sector, and inclusive partnerships to address. Here, we outline barriers and opportunities in the next generation of fire science and provide guidance for investment in future research. We synthesize insights needed to better address the long-standing challenges of innovation across disciplines to (i) promote coordinated research efforts; (ii) embrace different ways of knowing and knowledge generation; (iii) promote exploration of fundamental science; (iv) capitalize on the “firehose” of data for societal benefit; and (v) integrate human and natural systems into models across multiple scales. Fire science is thus at a critical transitional moment. We need to shift from observation and modeled representations of varying components of climate, people, vegetation, and fire to more integrative and predictive approaches that support pathways toward mitigating and adapting to our increasingly flammable world, including the utilization of fire for human safety and benefit. Only through overcoming institutional silos and accessing knowledge across diverse communities can we effectively undertake research that improves outcomes in our more fiery future.
Portland State Unive... arrow_drop_down Portland State University: PDXScholarArticle . 2022License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/7mg7p5b3Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pnasnexus/pgac115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 56 citations 56 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Portland State Unive... arrow_drop_down Portland State University: PDXScholarArticle . 2022License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/7mg7p5b3Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pnasnexus/pgac115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Spain, Australia, SpainPublisher:IOP Publishing Matthias M Boer; David M J S Bowman; Brett P Murphy; Geoffrey J Cary; Mark A Cochrane; Roderick J Fensham; Meg A Krawchuk; Owen F Price; Víctor Resco De Dios; Richard J Williams; Ross A Bradstock;handle: 1885/153332
Most studies of climate change effects on fire regimes assume a gradual reorganization of pyrogeographic patterns and have not considered the potential for transformational changes in the climate-vegetation-fire relationships underlying continental-scale fire regimes. Here, we model current fire activity levels in Australia as a function of mean annual actual evapotranspiration (E) and potential evapotranspiration (E 0), as proxies for fuel productivity and fuel drying potential. We distinguish two domains in $E,{E}_{0}$ space according to the dominant constraint on fire activity being either fuel productivity (PL-type fire) or fuel dryness (DL-type fire) and show that the affinity to these domains is related to fuel type. We propose to assess the potential for transformational shifts in fire type from the difference in the affinity to either domain under a baseline climate and projected future climate. Under the projected climate changes potential for a transformational shift from DL- to PL-type fire was predicted for mesic savanna woodland in the north and for eucalypt forests in coastal areas of the south–west and along the Continental Divide in the south–east of the continent. Potential for a shift from PL- to DL-type fire was predicted for a narrow zone of eucalypt savanna woodland in the north–east. This research was partly financially supported by the Australian Centre for Ecological Analysis and Synthesis (ACEAS). VRD was partly funded by a Ramón y Cajal Fellowhip (RYC-2012-10970). Field data collection and MAC were financially supported by NASA Interdisciplinary Sciences Grant (NNX11AB89G).
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/153332Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaUniversity of Western Sydney (UWS): Research DirectArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/11/6/065002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 52 citations 52 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/153332Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaUniversity of Western Sydney (UWS): Research DirectArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/11/6/065002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Proceedings of the National Academy of Sciences Authors: Tania Schoennagel; Jennifer K. Balch; Hannah Brenkert-Smith; Philip E. Dennison; +8 AuthorsTania Schoennagel; Jennifer K. Balch; Hannah Brenkert-Smith; Philip E. Dennison; Brian J. Harvey; Meg A. Krawchuk; Nathan Mietkiewicz; Penelope Morgan; Max A. Moritz; Ray Rasker; Monica G. Turner; Cathy Whitlock;Wildfires across western North America have increased in number and size over the past three decades, and this trend will continue in response to further warming. As a consequence, the wildland–urban interface is projected to experience substantially higher risk of climate-driven fires in the coming decades. Although many plants, animals, and ecosystem services benefit from fire, it is unknown how ecosystems will respond to increased burning and warming. Policy and management have focused primarily on specified resilience approaches aimed at resistance to wildfire and restoration of areas burned by wildfire through fire suppression and fuels management. These strategies are inadequate to address a new era of western wildfires. In contrast, policies that promote adaptive resilience to wildfire, by which people and ecosystems adjust and reorganize in response to changing fire regimes to reduce future vulnerability, are needed. Key aspects of an adaptive resilience approach are ( i ) recognizing that fuels reduction cannot alter regional wildfire trends; ( ii ) targeting fuels reduction to increase adaptation by some ecosystems and residential communities to more frequent fire; ( iii ) actively managing more wild and prescribed fires with a range of severities; and ( iv ) incentivizing and planning residential development to withstand inevitable wildfire. These strategies represent a shift in policy and management from restoring ecosystems based on historical baselines to adapting to changing fire regimes and from unsustainable defense of the wildland–urban interface to developing fire-adapted communities. We propose an approach that accepts wildfire as an inevitable catalyst of change and that promotes adaptive responses by ecosystems and residential communities to more warming and wildfire.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2017 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1617464114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 583 citations 583 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2017 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1617464114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United StatesPublisher:Proceedings of the National Academy of Sciences Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthKimberley T. Davis; Marcos D. Robles; Kerry B. Kemp; Philip E. Higuera; Teresa Chapman; Kerry L. Metlen; Jamie L. Peeler; Kyle C. Rodman; Travis Woolley; Robert N. Addington; Brian J. Buma; C. Alina Cansler; Michael J. Case; Brandon M. Collins; Jonathan D. Coop; Solomon Z. Dobrowski; Nathan S. Gill; Collin Haffey; Lucas B. Harris; Brian J. Harvey; Ryan D. Haugo; Matthew D. Hurteau; Dominik Kulakowski; Caitlin E. Littlefield; Lisa A. McCauley; Nicholas Povak; Kristen L. Shive; Edward Smith; Jens T. Stevens; Camille S. Stevens-Rumann; Alan H. Taylor; Alan J. Tepley; Derek J. N. Young; Robert A. Andrus; Mike A. Battaglia; Julia K. Berkey; Sebastian U. Busby; Amanda R. Carlson; Marin E. Chambers; Erich Kyle Dodson; Daniel C. Donato; William M. Downing; Paula J. Fornwalt; Joshua S. Halofsky; Ashley Hoffman; Andrés Holz; Jose M. Iniguez; Meg A. Krawchuk; Mark R. Kreider; Andrew J. Larson; Garrett W. Meigs; John Paul Roccaforte; Monica T. Rother; Hugh Safford; Michael Schaedel; Jason S. Sibold; Megan P. Singleton; Monica G. Turner; Alexandra K. Urza; Kyra D. Clark-Wolf; Larissa Yocom; Joseph B. Fontaine; John L. Campbell;Increasing fire severity and warmer, drier postfire conditions are making forests in the western United States (West) vulnerable to ecological transformation. Yet, the relative importance of and interactions between these drivers of forest change remain unresolved, particularly over upcoming decades. Here, we assess how the interactive impacts of changing climate and wildfire activity influenced conifer regeneration after 334 wildfires, using a dataset of postfire conifer regeneration from 10,230 field plots. Our findings highlight declining regeneration capacity across the West over the past four decades for the eight dominant conifer species studied. Postfire regeneration is sensitive to high-severity fire, which limits seed availability, and postfire climate, which influences seedling establishment. In the near-term, projected differences in recruitment probability between low- and high-severity fire scenarios were larger than projected climate change impacts for most species, suggesting that reductions in fire severity, and resultant impacts on seed availability, could partially offset expected climate-driven declines in postfire regeneration. Across 40 to 42% of the study area, we project postfire conifer regeneration to be likely following low-severity but not high-severity fire under future climate scenarios (2031 to 2050). However, increasingly warm, dry climate conditions are projected to eventually outweigh the influence of fire severity and seed availability. The percent of the study area considered unlikely to experience conifer regeneration, regardless of fire severity, increased from 5% in 1981 to 2000 to 26 to 31% by mid-century, highlighting a limited time window over which management actions that reduce fire severity may effectively support postfire conifer regeneration.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023Full-Text: https://escholarship.org/uc/item/5360m6bdData sources: Bielefeld Academic Search Engine (BASE)Portland State University: PDXScholarArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2208120120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 86 citations 86 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023Full-Text: https://escholarship.org/uc/item/5360m6bdData sources: Bielefeld Academic Search Engine (BASE)Portland State University: PDXScholarArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2208120120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu