- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020 Spain, Spain, Argentina, France, Spain, Spain, United Kingdom, SpainPublisher:American Association for the Advancement of Science (AAAS) Funded by:DFG, EC | BIODESERT, EC | AGREENSKILLSPLUS +5 projectsDFG ,EC| BIODESERT ,EC| AGREENSKILLSPLUS ,EC| MADONNA ,NSERC ,EC| BIOCOM ,EC| CLIMIFUN ,EC| Gradual_ChangeAuthors: Manuel Delgado-Baquerizo; Manuel Delgado-Baquerizo; Santiago Soliveres; Matthias C. Rillig; +15 AuthorsManuel Delgado-Baquerizo; Manuel Delgado-Baquerizo; Santiago Soliveres; Matthias C. Rillig; Anika Lehmann; Yanchuang Zhao; Yanchuang Zhao; Rocío Hernández-Clemente; Miguel Berdugo; Miguel Berdugo; Vincent Maire; Fernando T. Maestre; Hugo Saiz; Nicolas Gross; Juan José Gaitán; Juan José Gaitán; Juan José Gaitán; Ricard V. Solé; Ricard V. Solé;pmid: 32054762
handle: 10230/56624 , 10261/218899 , 10396/26855 , 11336/168306 , 1959.7/uws:63666
Thresholds of aridity Increasing aridity due to climate change is expected to affect multiple ecosystem structural and functional attributes in global drylands, which cover ∼45% of the terrestrial globe. Berdugo et al. show that increasing aridity promotes thresholds on the structure and functioning of drylands (see the Perspective by Hirota and Oliveira). Their database includes 20 variables summarizing multiple aspects and levels of ecological organization. They found evidence for a series of abrupt ecological events occurring sequentially in three phases, culminating with a shift to low-cover ecosystems that are nutrient- and species-poor at high aridity values. They estimate that more than 20% of land surface will cross at least one of the thresholds by 2100, which can potentially lead to widespread land degradation and desertification worldwide. Science , this issue p. 787 ; see also p. 739
Science arrow_drop_down Helvia - Repositorio Institucional de la Universidad de CórdobaArticle . 2020License: CC BY NC NDFull-Text: http://dx.doi.org/10.1126/science.aay5958Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de AlicanteArticle . 2020Data sources: Repositorio Institucional de la Universidad de AlicanteMACO (Monografies Acadèmiques Catalanes en Obert)Article . 2025Data sources: MACO (Monografies Acadèmiques Catalanes en Obert)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aay5958&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 740 citations 740 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
visibility 37visibility views 37 download downloads 77 Powered bymore_vert Science arrow_drop_down Helvia - Repositorio Institucional de la Universidad de CórdobaArticle . 2020License: CC BY NC NDFull-Text: http://dx.doi.org/10.1126/science.aay5958Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de AlicanteArticle . 2020Data sources: Repositorio Institucional de la Universidad de AlicanteMACO (Monografies Acadèmiques Catalanes en Obert)Article . 2025Data sources: MACO (Monografies Acadèmiques Catalanes en Obert)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aay5958&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Canada, Canada, Denmark, Finland, SwedenPublisher:Springer Science and Business Media LLC Funded by:NSF | LTER: Changing Disturbanc..., AKA | Towards mechanistic under..., NSERC +5 projectsNSF| LTER: Changing Disturbances, Ecological Legacies, and the Future of the Alaskan Boreal Forest ,AKA| Towards mechanistic understanding of reindeer impacts on wetland carbon balance (ReindeerPaths) ,NSERC ,NSF| Collaborative Research: Vegetation And Ecosystem Impacts On Permafrost Vulnerability ,AKA| Land use as a modulator of land cover transitions and the ecosystem–atmosphere carbon balance (LANDMOD) ,AKA| RESILIENCE IN SOCIAL-ECOLOGICAL SYSTEMS IN IN NORTHWEST EURASIA (RISES) ,EC| CHARTER ,NSF| NNA Research: Collaborative Research: Fate of the Caribou: from local knowledge to range-wide dynamics in the changing ArcticLogan T. Berner; Kathleen M. Orndahl; Melissa Rose; Mikkel Tamstorf; Marie F. Arndal; Heather D. Alexander; Elyn R. Humphreys; Michael M. Loranty; Sarah M. Ludwig; Johanna Nyman; Sari Juutinen; Mika Aurela; Konsta Happonen; Juha Mikola; Michelle C. Mack; Mathew R. Vankoughnett; Colleen M. Iversen; Verity G. Salmon; Dedi Yang; Jitendra Kumar; Paul Grogan; Ryan K. Danby; Neal A. Scott; Johan Olofsson; Matthias B. Siewert; Lucas Deschamps; Esther Lévesque; Vincent Maire; Amélie Morneault; Gilles Gauthier; Charles Gignac; Stéphane Boudreau; Anna Gaspard; Alexander Kholodov; M. Syndonia Bret-Harte; Heather E. Greaves; Donald Walker; Fiona M. Gregory; Anders Michelsen; Timo Kumpula; Miguel Villoslada; Henni Ylänne; Miska Luoto; Tarmo Virtanen; Bruce C. Forbes; Norbert Hölzel; Howard Epstein; Ramona J. Heim; Andrew Bunn; Robert M. Holmes; Jacqueline K. Y. Hung; Susan M. Natali; Anna-Maria Virkkala; Scott J. Goetz;AbstractPlant biomass is a fundamental ecosystem attribute that is sensitive to rapid climatic changes occurring in the Arctic. Nevertheless, measuring plant biomass in the Arctic is logistically challenging and resource intensive. Lack of accessible field data hinders efforts to understand the amount, composition, distribution, and changes in plant biomass in these northern ecosystems. Here, we present The Arctic plant aboveground biomass synthesis dataset, which includes field measurements of lichen, bryophyte, herb, shrub, and/or tree aboveground biomass (g m−2) on 2,327 sample plots from 636 field sites in seven countries. We created the synthesis dataset by assembling and harmonizing 32 individual datasets. Aboveground biomass was primarily quantified by harvesting sample plots during mid- to late-summer, though tree and often tall shrub biomass were quantified using surveys and allometric models. Each biomass measurement is associated with metadata including sample date, location, method, data source, and other information. This unique dataset can be leveraged to monitor, map, and model plant biomass across the rapidly warming Arctic.
Natural Resources In... arrow_drop_down Natural Resources Institute Finland: JukuriArticleLicense: CC BYFull-Text: https://jukuri.luke.fi/handle/10024/555088Data sources: Bielefeld Academic Search Engine (BASE)Université du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2024 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemPublikationer från Umeå universitetArticle . 2024 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2024 . Peer-reviewedUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-024-03139-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Natural Resources In... arrow_drop_down Natural Resources Institute Finland: JukuriArticleLicense: CC BYFull-Text: https://jukuri.luke.fi/handle/10024/555088Data sources: Bielefeld Academic Search Engine (BASE)Université du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2024 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemPublikationer från Umeå universitetArticle . 2024 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2024 . Peer-reviewedUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-024-03139-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:NSF Arctic Data Center Authors: Orndahl, Kathleen M.; Berner, Logan T.; Macander, Matthew J.; Arndal, Marie F.; +45 AuthorsOrndahl, Kathleen M.; Berner, Logan T.; Macander, Matthew J.; Arndal, Marie F.; Alexander, Heather D.; Humphreys, Elyn R.; Loranty, Michael M.; Ludwig, Sarah M.; Nyman, Johanna; Juutinen, Sari; Aurela, Mika; Mikola, Juha; Mack, Michelle C.; Rose, Melissa; Vankoughnett, Mathew R.; Iversen, Colleen M.; Salmon, Verity G.; Kumar, Jitendra; Yang, Dedi; Grogan, Paul; Danby, Ryan K.; Scott, Neal A.; Olofsson, Johan; Siewert, Matthias B.; Deschamps, Lucas; Lévesque, Esther; Maire, Vincent; Gauthier, Gilles; Boudreau, Stéphane; Gaspard, Anna; Bret-Harte, M. Syndonia; Raynolds, Martha K.; Walker, Donald A.; Michelsen, Anders; Kumpula, Timo; Villoslada, Miguel; Ylänne, Henni; Luoto, Miska; Virtanen, Tarmo; Greaves, Heather E.; Forbes, Bruce C.; Heim, Ramona J.; Hölzel, Norbert; Epstein, Howard; Bunn, Andrew G.; Holmes, Robert Max; Natali, Susan M.; Virkkala, Anna-Maria; Goetz, Scott J.;doi: 10.18739/a2ns0m06b
This dataset provides estimates of live, oven-dried aboveground biomass of all plants (tree, shrub, graminoid, forb, bryophyte) and all woody plants (tree, shrub) at 30-meter resolution across the Arctic tundra biome. Estimates of woody plant dominance are also provided as: (woody plant biomass / plant biomass) * 100. Plant biomass and woody plant biomass were estimated for each pixel (grams per square meter [g / m2]) using field harvest data for calibration/validation along with modeled seasonal surface reflectance data derived using Landsat satellite imagery and the Continuous Change Detection and Classification algorithm, and other supplementary predictors related to topography, region (e.g. bioclimate zone, ecosystem type), land cover, and derivative spectral products. Modeling was performed in a two-stage process using random forest models. First, biomass presence/absence was predicted using probability forests. Then, biomass quantity was predicted using regression forests. The model outputs were combined to produce final biomass estimates. Pixel uncertainty was assessed using Monte Carlo iterations. Field and remote sensing data were permuted during each iteration and the median (50th percentile, p500) predictions for each pixel were considered best estimates. In addition, this dataset provides the lower (2.5th percentile, p025) and upper (97.5th percentile, p975) bounds of a 95% uncertainty interval. Estimates of woody plant dominance are not modeled directly, but rather derived from plant biomass and woody plant biomass best estimates. The Pan Arctic domain includes both the Polar Arctic, defined using bioclimate zone data from the Circumpolar Arctic Vegetation Mapping Project (CAVM; Walker et al., 2005), and the Oro Arctic (treeless alpine tundra at high latitudes outside the Polar Arctic), defined using tundra ecoregions from the RESOLVE ecoregions dataset (Dinerstein et al., 2017) and treeline data from CAVM (CAVM Team, 2003). The mapped products focus on Arctic tundra vegetation biomass, but the coarse delineation of this biome meant some forested areas were included within the study domain. Therefore, this dataset also provides a tree mask product that can be used to mask out areas with canopy height ≥ 5 meters. This mask helps reduce, but does not eliminate entirely, areas of dense tree cover within the domain. Users should be cautious of predictions in forested areas as the models used to predict biomass were not well constrained in these areas. This dataset includes 132 files: 128 cloud-optimized GeoTIFFs, 2 tables in comma-separated values (CSV) format, 1 vector polygon in Shapefile format, and one figure in JPEG format. Raster data is provided in the WGS 84 / North Pole LAEA Bering Sea projection (EPSG:3571) at 30 meter (m) resolution. Raster data are tiled with letters representing rows and numbers representing columns, but note that some tiles do not contain unmasked pixels. We included all tiles nonetheless to maintain consistency. Tiling information can be found in the ‘metadata’ directory as a figure (JPEG) or shapefile.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18739/a2ns0m06b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18739/a2ns0m06b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Spain, Canada, Portugal, Spain, France, Canada, Spain, Portugal, SpainPublisher:Springer Science and Business Media LLC Funded by:ARC | Discovery Projects - Gran..., EC | DRYFUN, EC | BIODESERT +3 projectsARC| Discovery Projects - Grant ID: DP210102593 ,EC| DRYFUN ,EC| BIODESERT ,EC| AGREENSKILLSPLUS ,FCT| CEECIND/02453/2018/CP1534/CT0001 ,DFG| EarthShape: Earth Surface Shaping by BiotaGross, Nicolas; Maestre, Fernando; Liancourt, Pierre; Berdugo, Miguel; Martin, Raphaël; Gozalo, Beatriz; Ochoa, Victoria; Delgado-Baquerizo, Manuel; Maire, Vincent; Saiz, Hugo; Soliveres, Santiago; Valencia, Enrique; Eldridge, David; Guirado, Emilio; Jabot, Franck; Asensio, Sergio; Gaitán, Juan; García-Gómez, Miguel; Martínez, Paloma; Martínez-Valderrama, Jaime; Mendoza, Betty; Moreno-Jiménez, Eduardo; Pescador, David; Plaza, César; Pijuan, Ivan Santaolaria; Abedi, Mehdi; Ahumada, Rodrigo; Amghar, Fateh; Arroyo, Antonio; Bahalkeh, Khadijeh; Bailey, Lydia; Ben Salem, Farah; Blaum, Niels; Boldgiv, Bazartseren; Bowker, Matthew; Branquinho, Cristina; van den Brink, Liesbeth; Bu, Chongfeng; Canessa, Rafaella; Castillo-Monroy, Andrea del P.; Castro, Helena; Castro, Patricio; Chibani, Roukaya; Conceição, Abel Augusto; Darrouzet-Nardi, Anthony; Davila, Yvonne; Deák, Balázs; Donoso, David; Durán, Jorge; Espinosa, Carlos; Fajardo, Alex; Farzam, Mohammad; Ferrante, Daniela; Franzese, Jorgelina; Fraser, Lauchlan; Gonzalez, Sofía; Gusman-Montalvan, Elizabeth; Hernández-Hernández, Rosa Mary; Hölzel, Norbert; Huber-Sannwald, Elisabeth; Jadan, Oswaldo; Jeltsch, Florian; Jentsch, Anke; Ju, Mengchen; Kaseke, Kudzai; Kindermann, Liana; Le Roux, Peter; Linstädter, Anja; Louw, Michelle; Mabaso, Mancha; Maggs-Kölling, Gillian; Makhalanyane, Thulani; Issa, Oumarou Malam; Manzaneda, Antonio; Marais, Eugene; Margerie, Pierre; Hughes, Frederic Mendes; Messeder, João Vitor S.; Mora, Juan; Moreno, Gerardo; Munson, Seth; Nunes, Alice; Oliva, Gabriel; Oñatibia, Gaston; Peter, Guadalupe; Pueyo, Yolanda; Quiroga, R. Emiliano; Ramírez-Iglesias, Elizabeth; Reed, Sasha; Rey, Pedro; Reyes Gómez, Víctor; Rodríguez, Alexandra; Rolo, Victor; Rubalcaba, Juan; Ruppert, Jan; Sala, Osvaldo; Salah, Ayman; Sebei, Phokgedi Julius; Stavi, Ilan; Stephens, Colton; Teixido, Alberto; Thomas, Andrew; Throop, Heather; Tielbörger, Katja; Travers, Samantha; Undrakhbold, Sainbileg; Val, James; Valkó, Orsolya; Velbert, Frederike; Wamiti, Wanyoike; Wang, Lixin; Wang, Deli; Wardle, Glenda; Wolff, Peter; Yahdjian, Laura; Yari, Reza; Zaady, Eli; Zeberio, Juan Manuel; Zhang, Yuanling; Zhou, Xiaobing; Le Bagousse-Pinguet, Yoann;Earth harbours an extraordinary plant phenotypic diversity1 that is at risk from ongoing global changes2,3. However, it remains unknown how increasing aridity and livestock grazing pressure-two major drivers of global change4-6-shape the trait covariation that underlies plant phenotypic diversity1,7. Here we assessed how covariation among 20 chemical and morphological traits responds to aridity and grazing pressure within global drylands. Our analysis involved 133,769 trait measurements spanning 1,347 observations of 301 perennial plant species surveyed across 326 plots from 6 continents. Crossing an aridity threshold of approximately 0.7 (close to the transition between semi-arid and arid zones) led to an unexpected 88% increase in trait diversity. This threshold appeared in the presence of grazers, and moved toward lower aridity levels with increasing grazing pressure. Moreover, 57% of observed trait diversity occurred only in the most arid and grazed drylands, highlighting the phenotypic uniqueness of these extreme environments. Our work indicates that drylands act as a global reservoir of plant phenotypic diversity and challenge the pervasive view that harsh environmental conditions reduce plant trait diversity8-10. They also highlight that many alternative strategies may enable plants to cope with increases in environmental stress induced by climate change and land-use intensification.
Digital Repository o... arrow_drop_down Digital Repository of University of ZaragozaArticle . 2024Data sources: Digital Repository of University of ZaragozaUniversidade de Lisboa: Repositório.ULArticle . 2024Data sources: Universidade de Lisboa: Repositório.ULRepositorio Institucional de la Universidad de AlicanteArticle . 2024Data sources: Repositorio Institucional de la Universidad de AlicanteRecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversité du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-07731-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 17 citations 17 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 91visibility views 91 download downloads 133 Powered bymore_vert Digital Repository o... arrow_drop_down Digital Repository of University of ZaragozaArticle . 2024Data sources: Digital Repository of University of ZaragozaUniversidade de Lisboa: Repositório.ULArticle . 2024Data sources: Universidade de Lisboa: Repositório.ULRepositorio Institucional de la Universidad de AlicanteArticle . 2024Data sources: Repositorio Institucional de la Universidad de AlicanteRecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversité du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-07731-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Germany, DenmarkPublisher:Wiley Funded by:NSERCNSERCAuthors: Cassandra Elphinstone; Fernando Hernández; Marco Todesco; Jean‐Sébastien Légaré; +29 AuthorsCassandra Elphinstone; Fernando Hernández; Marco Todesco; Jean‐Sébastien Légaré; Winnie Cheung; Paul C. Sokoloff; Annika Hofgaard; Casper T. Christiansen; Esther R. Frei; Esther Lévesque; Gergana N. Daskalova; Haydn J. D. Thomas; Isla H. Myers‐Smith; Jacob A. Harris; Jeffery M. Saarela; Jeremy L. May; Joachim Obst; Julia Boike; Karin Clark; Katie MacIntosh; Katlyn R. Betway‐May; Liam Case; Mats P. Björkman; Michael L. Moody; Niels Martin Schmidt; Per Molgaard; Robert G. Björk; Robert D. Hollister; Roger D. Bull; Sofie Agger; Vincent Maire; Greg H. R. Henry; Loren H. Rieseberg;doi: 10.1111/jbi.14961
AbstractAimArctic plants survived the Pleistocene glaciations in unglaciated refugia. The number, ages, and locations of these refugia are often unclear. We use high‐resolution genomic data from present‐day and Little‐Ice‐Age populations of Arctic Bell‐Heather to re‐evaluate the biogeography of this species and determine whether it had multiple independent refugia or a single refugium in Beringia.LocationCircumpolar Arctic and Coastal British Columbia (BC) alpine.Taxon Cassiope tetragona L., subspecies saximontana and tetragona, outgroup C. mertensiana (Ericaceae).MethodsWe built genotyping‐by‐sequencing (GBS) libraries using Cassiope tetragona tissue from 36 Arctic locations, including two ~250‐ to 500‐year‐old populations collected under glacial ice on Ellesmere Island, Canada. We assembled a de novo GBS reference to call variants. Population structure, genetic diversity and demography were inferred from PCA, ADMIXTURE, fastsimcoal2, SplitsTree, and several population genomics statistics.ResultsPopulation structure analyses identified 4–5 clusters that align with geographic locations. Nucleotide diversity was highest in Beringia and decreased eastwards across Canada. Demographic coalescent analyses dated the following splits with Alaska: BC subspecies saximontana (5 mya), Russia (~1.4 mya), Europe (>200–600 kya), and Greenland (~60 kya). Northern Canada populations appear to have formed during the current interglacial (7–9 kya). Admixture analyses show genetic variants from Alaska appear more frequently in present‐day than historic plants on Ellesmere Island.ConclusionsPopulation and demographic analyses support BC, Alaska, Russia, Europe and Greenland as all having had independent Pleistocene refugia. Northern Canadian populations appear to be founded during the current interglacial with genetic contributions from Alaska, Europe and Greenland. We found evidence, on Ellesmere Island, for continued recent gene flow in the last 250–500 years. These results suggest that a re‐analysis of other Arctic species with shallow population structure using higher resolution genomic markers and demographic analyses may help reveal deeper structure and other circumpolar glacial refugia.
Journal of Biogeogra... arrow_drop_down Copenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemElectronic Publication Information CenterArticle . 2024Data sources: Electronic Publication Information CenterUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jbi.14961&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Biogeogra... arrow_drop_down Copenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemElectronic Publication Information CenterArticle . 2024Data sources: Electronic Publication Information CenterUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jbi.14961&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Spain, Spain, Netherlands, Spain, France, NetherlandsPublisher:Proceedings of the National Academy of Sciences Funded by:ARC | Discovery Projects - Gran..., EC | DRYFUN, ARC | Discovery Projects - Gran... +1 projectsARC| Discovery Projects - Grant ID: DP190103714 ,EC| DRYFUN ,ARC| Discovery Projects - Grant ID: DP170104634 ,EC| BIODESERTJun-Tao Wang; Beatriz Gozalo; Victoria Ochoa; Johannes H. C. Cornelissen; Sergio Asensio; Yoann Le Bagousse-Pinguet; Yoann Le Bagousse-Pinguet; Fernando T. Maestre; Brajesh K. Singh; Rubén Milla; Marina Dacal; Marina Dacal; Vincent Maire; Pablo García-Palacios; Pablo García-Palacios; Hugo Saiz; Hugo Saiz; Nicolas Gross; Nicolas Gross; Norma Salinas; Sonia Ruiz; Lucas Deschamps; Carmen García;pmid: 33568533
pmc: PMC7896339
SignificanceIdentifying species assemblages that boost the provision of multiple ecosystem functions simultaneously (multifunctionality) is crucial to undertake effective restoration actions aiming at simultaneously promoting biodiversity and high multifunctionality in a changing world. By disentangling the effect of multiple traits on multifunctionality in a litter decomposition experiment, we show that it is possible to identify the assemblages that boost multifunctionality across multiple species mixtures originating from six biomes. We found that higher evenness among dissimilar species and the functional attributes of rare species as key biodiversity attributes to enhance multifunctionality and to reduce the abundance of plant pathogens. Our study identifies those species assemblages needed to simultaneously maximize multifunctionality and limit plant disease risks in natural and managed ecosystems.
Proceedings of the N... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de AlicanteArticle . 2021Data sources: Repositorio Institucional de la Universidad de AlicanteInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2021 . Peer-reviewedData sources: CrossrefProceedings of the National Academy of SciencesArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Western Sydney (UWS): Research DirectArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2019355118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 61 citations 61 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 44visibility views 44 download downloads 114 Powered bymore_vert Proceedings of the N... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de AlicanteArticle . 2021Data sources: Repositorio Institucional de la Universidad de AlicanteInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2021 . Peer-reviewedData sources: CrossrefProceedings of the National Academy of SciencesArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Western Sydney (UWS): Research DirectArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2019355118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United Kingdom, Argentina, Australia, ArgentinaPublisher:American Association for the Advancement of Science (AAAS) Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP170103410Ian J. Wright; Robert M. Kooyman; I. Colin Prentice; I. Colin Prentice; Rafael Villar; Sandra Díaz; Vincent Maire; Vincent Maire; Ning Dong; Ning Dong; Han Wang; Han Wang; Peter B. Reich; Peter B. Reich; Michelle R. Leishman; Elizabeth A. Law; Elizabeth A. Law; Peter Wilf; Rachael V. Gallagher; Ülo Niinemets; Mark Westoby; Lawren Sack; Bonnie F. Jacobs;Leaf size, climate, and energy balance Why does plant leaf size increase at lower latitudes, as exemplified by the evolutionary success of species with very large leaves in the tropics? Wright et al. analyzed leaf data for 7670 plant species, along with climatic data, from 682 sites worldwide. Their findings reveal consistent patterns and explain why earlier predictions from energy balance theory had only limited success. The authors provide a fully quantitative explanation for the latitudinal gradient in leaf size, with implications for plant ecology and physiology, vegetation modeling, and paleobotany. Science , this issue p. 917
Spiral - Imperial Co... arrow_drop_down Spiral - Imperial College Digital RepositoryArticle . 2017Data sources: Spiral - Imperial College Digital RepositoryThe University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aal4760&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 664 citations 664 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Spiral - Imperial Co... arrow_drop_down Spiral - Imperial College Digital RepositoryArticle . 2017Data sources: Spiral - Imperial College Digital RepositoryThe University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aal4760&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:NSF Arctic Data Center Berner, Logan T.; Orndahl, Kathleen M.; Rose, Melissa; Tamstorf, Mikkel; Arndal, Marie F.; Alexander, Heather D.; Yang, Dedi; Sistla, Seeta; Humphreys, Elyn R.; Loranty, Michael M.; Ludwig, Sarah M.; Nyman, Johanna; Juutinen, Sari; Aurela, Mika; Happonen, Konsta; Mikola, Juha; Mack, Michelle C.; Vankoughnett, Mathew R.; Iversen, Colleen M.; Salmon, Verity G.; Kumar, Jitendra; Grogan, Paul; Danby, Ryan K.; Scott, Neal A.; Pold, Grace; Olofsson, Johan; Siewert, Matthias B.; Deschamps, Lucas; Lévesque, Esther; Maire, Vincent; Morneault, Amélie; Gauthier, Gilles; Gignac, Charles; Boudreau, Stéphane; Gaspard, Anna; Kholodov, Alexander; Bret-Harte, M. Syndonia; Greaves, Heather E.; Walker, Donald; Ylänne, Henni; Gregory, Fiona M.; Michelsen, Anders; Kumpula, Timo; Villoslada, Miguel; Luoto, Miska; Virtanen, Tarmo; Forbes, Bruce C.; Baillargeon, Natalie; Hölzel, Norbert; Epstein, Howard; Heim, Ramona J.; Bunn, Andrew; Holmes, Robert M.; Hung, Jacqueline K.Y.; Natali, Susan M.; Virkkala, Anna-Maria; Goetz, Scott J.;doi: 10.18739/a2qj78081
Plant biomass is a fundamental ecosystem attribute that is sensitive to rapid climatic changes occurring in the Arctic. Nevertheless, measuring plant biomass in the Arctic is logistically challenging and resource intensive. Lack of accessible field data hinders efforts to understand the amount, composition, distribution, and changes in plant biomass in these northern ecosystems. Here, we present The Arctic Plant Aboveground Biomass Synthesis Dataset, which includes field measurements of lichen, bryophyte, herb, shrub, and/or tree aboveground biomass grams per meter squared (g/m^2) on 2327 sample plots in seven countries. We created the synthesis dataset by assembling and harmonizing 32 individual datasets. Aboveground biomass was primarily quantified by harvesting sample plots during mid- to late-summer, though tree and often tall shrub biomass were quantified using surveys and allometric models. Each biomass measurement is associated with metadata including sample date, location, method, data source, and other information. This unique dataset can be leveraged to monitor, map, and model plant biomass across the rapidly warming Arctic.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18739/a2qj78081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18739/a2qj78081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:NSF Arctic Data Center Berner, Logan T.; Orndahl, Kathleen M.; Rose, Melissa; Tamstorf, Mikkel; Arndal, Marie F.; Yang, Dedi; Humphreys, Elyn R.; Loranty, Michael M.; Ludwig, Sarah M.; Nyman, Johanna; Juutinen, Sari; Aurela, Mika; Happonen, Konsta; Mikola, Juha; Mack, Michelle C.; Vankoughnett, Mathew R.; Iversen, Colleen M.; Salmon, Verity G.; Kumar, Jitendra; Grogan, Paul; Danby, Ryan K.; Scott, Neal A.; Olofsson, Johan; Siewert, Matthias B.; Deschamps, Lucas; Lévesque, Esther; Maire, Vincent; Morneault, Amélie; Gauthier, Gilles; Gignac, Charles; Boudreau, Stéphane; Gaspard, Anna; Kholodov, Alexander; Bret-Harte, M. Syndonia; Greaves, Heather E.; Walker, Donald; Gregory, Fiona M.; Michelsen, Anders; Kumpula, Timo; Villoslada, Miguel; Ylänne, Henni; Luoto, Miska; Virtanen, Tarmo; Forbes, Bruce C.; Hölzel, Norbert; Epstein, Howard; Heim, Ramona J.; Bunn, Andrew; Holmes, Robert M.; Hung, Jacqueline K.Y.; Natali, Susan M.; Virkkala, Anna-Maria; Goetz, Scott J.;doi: 10.18739/a2k931783
Plant biomass is a fundamental ecosystem attribute that is sensitive to rapid climatic changes occurring in the Arctic. Nevertheless, measuring plant biomass in the Arctic is logistically challenging and resource intensive. Lack of accessible field data hinders efforts to understand the amount, composition, distribution, and changes in plant biomass in these northern ecosystems. Here, we present The Arctic Plant Aboveground Biomass Synthesis Dataset, which includes field measurements of lichen, bryophyte, herb, shrub, and/or tree aboveground biomass grams per meter squared (g/m^2) on 2327 sample plots in seven countries. We created the synthesis dataset by assembling and harmonizing 32 individual datasets. Aboveground biomass was primarily quantified by harvesting sample plots during mid- to late-summer, though tree and often tall shrub biomass were quantified using surveys and allometric models. Each biomass measurement is associated with metadata including sample date, location, method, data source, and other information. This unique dataset can be leveraged to monitor, map, and model plant biomass across the rapidly warming Arctic.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18739/a2k931783&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18739/a2k931783&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 Spain, Spain, Argentina, France, Spain, Spain, United Kingdom, SpainPublisher:American Association for the Advancement of Science (AAAS) Funded by:DFG, EC | BIODESERT, EC | AGREENSKILLSPLUS +5 projectsDFG ,EC| BIODESERT ,EC| AGREENSKILLSPLUS ,EC| MADONNA ,NSERC ,EC| BIOCOM ,EC| CLIMIFUN ,EC| Gradual_ChangeAuthors: Manuel Delgado-Baquerizo; Manuel Delgado-Baquerizo; Santiago Soliveres; Matthias C. Rillig; +15 AuthorsManuel Delgado-Baquerizo; Manuel Delgado-Baquerizo; Santiago Soliveres; Matthias C. Rillig; Anika Lehmann; Yanchuang Zhao; Yanchuang Zhao; Rocío Hernández-Clemente; Miguel Berdugo; Miguel Berdugo; Vincent Maire; Fernando T. Maestre; Hugo Saiz; Nicolas Gross; Juan José Gaitán; Juan José Gaitán; Juan José Gaitán; Ricard V. Solé; Ricard V. Solé;pmid: 32054762
handle: 10230/56624 , 10261/218899 , 10396/26855 , 11336/168306 , 1959.7/uws:63666
Thresholds of aridity Increasing aridity due to climate change is expected to affect multiple ecosystem structural and functional attributes in global drylands, which cover ∼45% of the terrestrial globe. Berdugo et al. show that increasing aridity promotes thresholds on the structure and functioning of drylands (see the Perspective by Hirota and Oliveira). Their database includes 20 variables summarizing multiple aspects and levels of ecological organization. They found evidence for a series of abrupt ecological events occurring sequentially in three phases, culminating with a shift to low-cover ecosystems that are nutrient- and species-poor at high aridity values. They estimate that more than 20% of land surface will cross at least one of the thresholds by 2100, which can potentially lead to widespread land degradation and desertification worldwide. Science , this issue p. 787 ; see also p. 739
Science arrow_drop_down Helvia - Repositorio Institucional de la Universidad de CórdobaArticle . 2020License: CC BY NC NDFull-Text: http://dx.doi.org/10.1126/science.aay5958Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de AlicanteArticle . 2020Data sources: Repositorio Institucional de la Universidad de AlicanteMACO (Monografies Acadèmiques Catalanes en Obert)Article . 2025Data sources: MACO (Monografies Acadèmiques Catalanes en Obert)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aay5958&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 740 citations 740 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
visibility 37visibility views 37 download downloads 77 Powered bymore_vert Science arrow_drop_down Helvia - Repositorio Institucional de la Universidad de CórdobaArticle . 2020License: CC BY NC NDFull-Text: http://dx.doi.org/10.1126/science.aay5958Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de AlicanteArticle . 2020Data sources: Repositorio Institucional de la Universidad de AlicanteMACO (Monografies Acadèmiques Catalanes en Obert)Article . 2025Data sources: MACO (Monografies Acadèmiques Catalanes en Obert)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aay5958&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Canada, Canada, Denmark, Finland, SwedenPublisher:Springer Science and Business Media LLC Funded by:NSF | LTER: Changing Disturbanc..., AKA | Towards mechanistic under..., NSERC +5 projectsNSF| LTER: Changing Disturbances, Ecological Legacies, and the Future of the Alaskan Boreal Forest ,AKA| Towards mechanistic understanding of reindeer impacts on wetland carbon balance (ReindeerPaths) ,NSERC ,NSF| Collaborative Research: Vegetation And Ecosystem Impacts On Permafrost Vulnerability ,AKA| Land use as a modulator of land cover transitions and the ecosystem–atmosphere carbon balance (LANDMOD) ,AKA| RESILIENCE IN SOCIAL-ECOLOGICAL SYSTEMS IN IN NORTHWEST EURASIA (RISES) ,EC| CHARTER ,NSF| NNA Research: Collaborative Research: Fate of the Caribou: from local knowledge to range-wide dynamics in the changing ArcticLogan T. Berner; Kathleen M. Orndahl; Melissa Rose; Mikkel Tamstorf; Marie F. Arndal; Heather D. Alexander; Elyn R. Humphreys; Michael M. Loranty; Sarah M. Ludwig; Johanna Nyman; Sari Juutinen; Mika Aurela; Konsta Happonen; Juha Mikola; Michelle C. Mack; Mathew R. Vankoughnett; Colleen M. Iversen; Verity G. Salmon; Dedi Yang; Jitendra Kumar; Paul Grogan; Ryan K. Danby; Neal A. Scott; Johan Olofsson; Matthias B. Siewert; Lucas Deschamps; Esther Lévesque; Vincent Maire; Amélie Morneault; Gilles Gauthier; Charles Gignac; Stéphane Boudreau; Anna Gaspard; Alexander Kholodov; M. Syndonia Bret-Harte; Heather E. Greaves; Donald Walker; Fiona M. Gregory; Anders Michelsen; Timo Kumpula; Miguel Villoslada; Henni Ylänne; Miska Luoto; Tarmo Virtanen; Bruce C. Forbes; Norbert Hölzel; Howard Epstein; Ramona J. Heim; Andrew Bunn; Robert M. Holmes; Jacqueline K. Y. Hung; Susan M. Natali; Anna-Maria Virkkala; Scott J. Goetz;AbstractPlant biomass is a fundamental ecosystem attribute that is sensitive to rapid climatic changes occurring in the Arctic. Nevertheless, measuring plant biomass in the Arctic is logistically challenging and resource intensive. Lack of accessible field data hinders efforts to understand the amount, composition, distribution, and changes in plant biomass in these northern ecosystems. Here, we present The Arctic plant aboveground biomass synthesis dataset, which includes field measurements of lichen, bryophyte, herb, shrub, and/or tree aboveground biomass (g m−2) on 2,327 sample plots from 636 field sites in seven countries. We created the synthesis dataset by assembling and harmonizing 32 individual datasets. Aboveground biomass was primarily quantified by harvesting sample plots during mid- to late-summer, though tree and often tall shrub biomass were quantified using surveys and allometric models. Each biomass measurement is associated with metadata including sample date, location, method, data source, and other information. This unique dataset can be leveraged to monitor, map, and model plant biomass across the rapidly warming Arctic.
Natural Resources In... arrow_drop_down Natural Resources Institute Finland: JukuriArticleLicense: CC BYFull-Text: https://jukuri.luke.fi/handle/10024/555088Data sources: Bielefeld Academic Search Engine (BASE)Université du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2024 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemPublikationer från Umeå universitetArticle . 2024 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2024 . Peer-reviewedUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-024-03139-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Natural Resources In... arrow_drop_down Natural Resources Institute Finland: JukuriArticleLicense: CC BYFull-Text: https://jukuri.luke.fi/handle/10024/555088Data sources: Bielefeld Academic Search Engine (BASE)Université du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2024 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemPublikationer från Umeå universitetArticle . 2024 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2024 . Peer-reviewedUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-024-03139-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:NSF Arctic Data Center Authors: Orndahl, Kathleen M.; Berner, Logan T.; Macander, Matthew J.; Arndal, Marie F.; +45 AuthorsOrndahl, Kathleen M.; Berner, Logan T.; Macander, Matthew J.; Arndal, Marie F.; Alexander, Heather D.; Humphreys, Elyn R.; Loranty, Michael M.; Ludwig, Sarah M.; Nyman, Johanna; Juutinen, Sari; Aurela, Mika; Mikola, Juha; Mack, Michelle C.; Rose, Melissa; Vankoughnett, Mathew R.; Iversen, Colleen M.; Salmon, Verity G.; Kumar, Jitendra; Yang, Dedi; Grogan, Paul; Danby, Ryan K.; Scott, Neal A.; Olofsson, Johan; Siewert, Matthias B.; Deschamps, Lucas; Lévesque, Esther; Maire, Vincent; Gauthier, Gilles; Boudreau, Stéphane; Gaspard, Anna; Bret-Harte, M. Syndonia; Raynolds, Martha K.; Walker, Donald A.; Michelsen, Anders; Kumpula, Timo; Villoslada, Miguel; Ylänne, Henni; Luoto, Miska; Virtanen, Tarmo; Greaves, Heather E.; Forbes, Bruce C.; Heim, Ramona J.; Hölzel, Norbert; Epstein, Howard; Bunn, Andrew G.; Holmes, Robert Max; Natali, Susan M.; Virkkala, Anna-Maria; Goetz, Scott J.;doi: 10.18739/a2ns0m06b
This dataset provides estimates of live, oven-dried aboveground biomass of all plants (tree, shrub, graminoid, forb, bryophyte) and all woody plants (tree, shrub) at 30-meter resolution across the Arctic tundra biome. Estimates of woody plant dominance are also provided as: (woody plant biomass / plant biomass) * 100. Plant biomass and woody plant biomass were estimated for each pixel (grams per square meter [g / m2]) using field harvest data for calibration/validation along with modeled seasonal surface reflectance data derived using Landsat satellite imagery and the Continuous Change Detection and Classification algorithm, and other supplementary predictors related to topography, region (e.g. bioclimate zone, ecosystem type), land cover, and derivative spectral products. Modeling was performed in a two-stage process using random forest models. First, biomass presence/absence was predicted using probability forests. Then, biomass quantity was predicted using regression forests. The model outputs were combined to produce final biomass estimates. Pixel uncertainty was assessed using Monte Carlo iterations. Field and remote sensing data were permuted during each iteration and the median (50th percentile, p500) predictions for each pixel were considered best estimates. In addition, this dataset provides the lower (2.5th percentile, p025) and upper (97.5th percentile, p975) bounds of a 95% uncertainty interval. Estimates of woody plant dominance are not modeled directly, but rather derived from plant biomass and woody plant biomass best estimates. The Pan Arctic domain includes both the Polar Arctic, defined using bioclimate zone data from the Circumpolar Arctic Vegetation Mapping Project (CAVM; Walker et al., 2005), and the Oro Arctic (treeless alpine tundra at high latitudes outside the Polar Arctic), defined using tundra ecoregions from the RESOLVE ecoregions dataset (Dinerstein et al., 2017) and treeline data from CAVM (CAVM Team, 2003). The mapped products focus on Arctic tundra vegetation biomass, but the coarse delineation of this biome meant some forested areas were included within the study domain. Therefore, this dataset also provides a tree mask product that can be used to mask out areas with canopy height ≥ 5 meters. This mask helps reduce, but does not eliminate entirely, areas of dense tree cover within the domain. Users should be cautious of predictions in forested areas as the models used to predict biomass were not well constrained in these areas. This dataset includes 132 files: 128 cloud-optimized GeoTIFFs, 2 tables in comma-separated values (CSV) format, 1 vector polygon in Shapefile format, and one figure in JPEG format. Raster data is provided in the WGS 84 / North Pole LAEA Bering Sea projection (EPSG:3571) at 30 meter (m) resolution. Raster data are tiled with letters representing rows and numbers representing columns, but note that some tiles do not contain unmasked pixels. We included all tiles nonetheless to maintain consistency. Tiling information can be found in the ‘metadata’ directory as a figure (JPEG) or shapefile.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18739/a2ns0m06b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18739/a2ns0m06b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Spain, Canada, Portugal, Spain, France, Canada, Spain, Portugal, SpainPublisher:Springer Science and Business Media LLC Funded by:ARC | Discovery Projects - Gran..., EC | DRYFUN, EC | BIODESERT +3 projectsARC| Discovery Projects - Grant ID: DP210102593 ,EC| DRYFUN ,EC| BIODESERT ,EC| AGREENSKILLSPLUS ,FCT| CEECIND/02453/2018/CP1534/CT0001 ,DFG| EarthShape: Earth Surface Shaping by BiotaGross, Nicolas; Maestre, Fernando; Liancourt, Pierre; Berdugo, Miguel; Martin, Raphaël; Gozalo, Beatriz; Ochoa, Victoria; Delgado-Baquerizo, Manuel; Maire, Vincent; Saiz, Hugo; Soliveres, Santiago; Valencia, Enrique; Eldridge, David; Guirado, Emilio; Jabot, Franck; Asensio, Sergio; Gaitán, Juan; García-Gómez, Miguel; Martínez, Paloma; Martínez-Valderrama, Jaime; Mendoza, Betty; Moreno-Jiménez, Eduardo; Pescador, David; Plaza, César; Pijuan, Ivan Santaolaria; Abedi, Mehdi; Ahumada, Rodrigo; Amghar, Fateh; Arroyo, Antonio; Bahalkeh, Khadijeh; Bailey, Lydia; Ben Salem, Farah; Blaum, Niels; Boldgiv, Bazartseren; Bowker, Matthew; Branquinho, Cristina; van den Brink, Liesbeth; Bu, Chongfeng; Canessa, Rafaella; Castillo-Monroy, Andrea del P.; Castro, Helena; Castro, Patricio; Chibani, Roukaya; Conceição, Abel Augusto; Darrouzet-Nardi, Anthony; Davila, Yvonne; Deák, Balázs; Donoso, David; Durán, Jorge; Espinosa, Carlos; Fajardo, Alex; Farzam, Mohammad; Ferrante, Daniela; Franzese, Jorgelina; Fraser, Lauchlan; Gonzalez, Sofía; Gusman-Montalvan, Elizabeth; Hernández-Hernández, Rosa Mary; Hölzel, Norbert; Huber-Sannwald, Elisabeth; Jadan, Oswaldo; Jeltsch, Florian; Jentsch, Anke; Ju, Mengchen; Kaseke, Kudzai; Kindermann, Liana; Le Roux, Peter; Linstädter, Anja; Louw, Michelle; Mabaso, Mancha; Maggs-Kölling, Gillian; Makhalanyane, Thulani; Issa, Oumarou Malam; Manzaneda, Antonio; Marais, Eugene; Margerie, Pierre; Hughes, Frederic Mendes; Messeder, João Vitor S.; Mora, Juan; Moreno, Gerardo; Munson, Seth; Nunes, Alice; Oliva, Gabriel; Oñatibia, Gaston; Peter, Guadalupe; Pueyo, Yolanda; Quiroga, R. Emiliano; Ramírez-Iglesias, Elizabeth; Reed, Sasha; Rey, Pedro; Reyes Gómez, Víctor; Rodríguez, Alexandra; Rolo, Victor; Rubalcaba, Juan; Ruppert, Jan; Sala, Osvaldo; Salah, Ayman; Sebei, Phokgedi Julius; Stavi, Ilan; Stephens, Colton; Teixido, Alberto; Thomas, Andrew; Throop, Heather; Tielbörger, Katja; Travers, Samantha; Undrakhbold, Sainbileg; Val, James; Valkó, Orsolya; Velbert, Frederike; Wamiti, Wanyoike; Wang, Lixin; Wang, Deli; Wardle, Glenda; Wolff, Peter; Yahdjian, Laura; Yari, Reza; Zaady, Eli; Zeberio, Juan Manuel; Zhang, Yuanling; Zhou, Xiaobing; Le Bagousse-Pinguet, Yoann;Earth harbours an extraordinary plant phenotypic diversity1 that is at risk from ongoing global changes2,3. However, it remains unknown how increasing aridity and livestock grazing pressure-two major drivers of global change4-6-shape the trait covariation that underlies plant phenotypic diversity1,7. Here we assessed how covariation among 20 chemical and morphological traits responds to aridity and grazing pressure within global drylands. Our analysis involved 133,769 trait measurements spanning 1,347 observations of 301 perennial plant species surveyed across 326 plots from 6 continents. Crossing an aridity threshold of approximately 0.7 (close to the transition between semi-arid and arid zones) led to an unexpected 88% increase in trait diversity. This threshold appeared in the presence of grazers, and moved toward lower aridity levels with increasing grazing pressure. Moreover, 57% of observed trait diversity occurred only in the most arid and grazed drylands, highlighting the phenotypic uniqueness of these extreme environments. Our work indicates that drylands act as a global reservoir of plant phenotypic diversity and challenge the pervasive view that harsh environmental conditions reduce plant trait diversity8-10. They also highlight that many alternative strategies may enable plants to cope with increases in environmental stress induced by climate change and land-use intensification.
Digital Repository o... arrow_drop_down Digital Repository of University of ZaragozaArticle . 2024Data sources: Digital Repository of University of ZaragozaUniversidade de Lisboa: Repositório.ULArticle . 2024Data sources: Universidade de Lisboa: Repositório.ULRepositorio Institucional de la Universidad de AlicanteArticle . 2024Data sources: Repositorio Institucional de la Universidad de AlicanteRecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversité du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-07731-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 17 citations 17 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 91visibility views 91 download downloads 133 Powered bymore_vert Digital Repository o... arrow_drop_down Digital Repository of University of ZaragozaArticle . 2024Data sources: Digital Repository of University of ZaragozaUniversidade de Lisboa: Repositório.ULArticle . 2024Data sources: Universidade de Lisboa: Repositório.ULRepositorio Institucional de la Universidad de AlicanteArticle . 2024Data sources: Repositorio Institucional de la Universidad de AlicanteRecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversité du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-07731-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Germany, DenmarkPublisher:Wiley Funded by:NSERCNSERCAuthors: Cassandra Elphinstone; Fernando Hernández; Marco Todesco; Jean‐Sébastien Légaré; +29 AuthorsCassandra Elphinstone; Fernando Hernández; Marco Todesco; Jean‐Sébastien Légaré; Winnie Cheung; Paul C. Sokoloff; Annika Hofgaard; Casper T. Christiansen; Esther R. Frei; Esther Lévesque; Gergana N. Daskalova; Haydn J. D. Thomas; Isla H. Myers‐Smith; Jacob A. Harris; Jeffery M. Saarela; Jeremy L. May; Joachim Obst; Julia Boike; Karin Clark; Katie MacIntosh; Katlyn R. Betway‐May; Liam Case; Mats P. Björkman; Michael L. Moody; Niels Martin Schmidt; Per Molgaard; Robert G. Björk; Robert D. Hollister; Roger D. Bull; Sofie Agger; Vincent Maire; Greg H. R. Henry; Loren H. Rieseberg;doi: 10.1111/jbi.14961
AbstractAimArctic plants survived the Pleistocene glaciations in unglaciated refugia. The number, ages, and locations of these refugia are often unclear. We use high‐resolution genomic data from present‐day and Little‐Ice‐Age populations of Arctic Bell‐Heather to re‐evaluate the biogeography of this species and determine whether it had multiple independent refugia or a single refugium in Beringia.LocationCircumpolar Arctic and Coastal British Columbia (BC) alpine.Taxon Cassiope tetragona L., subspecies saximontana and tetragona, outgroup C. mertensiana (Ericaceae).MethodsWe built genotyping‐by‐sequencing (GBS) libraries using Cassiope tetragona tissue from 36 Arctic locations, including two ~250‐ to 500‐year‐old populations collected under glacial ice on Ellesmere Island, Canada. We assembled a de novo GBS reference to call variants. Population structure, genetic diversity and demography were inferred from PCA, ADMIXTURE, fastsimcoal2, SplitsTree, and several population genomics statistics.ResultsPopulation structure analyses identified 4–5 clusters that align with geographic locations. Nucleotide diversity was highest in Beringia and decreased eastwards across Canada. Demographic coalescent analyses dated the following splits with Alaska: BC subspecies saximontana (5 mya), Russia (~1.4 mya), Europe (>200–600 kya), and Greenland (~60 kya). Northern Canada populations appear to have formed during the current interglacial (7–9 kya). Admixture analyses show genetic variants from Alaska appear more frequently in present‐day than historic plants on Ellesmere Island.ConclusionsPopulation and demographic analyses support BC, Alaska, Russia, Europe and Greenland as all having had independent Pleistocene refugia. Northern Canadian populations appear to be founded during the current interglacial with genetic contributions from Alaska, Europe and Greenland. We found evidence, on Ellesmere Island, for continued recent gene flow in the last 250–500 years. These results suggest that a re‐analysis of other Arctic species with shallow population structure using higher resolution genomic markers and demographic analyses may help reveal deeper structure and other circumpolar glacial refugia.
Journal of Biogeogra... arrow_drop_down Copenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemElectronic Publication Information CenterArticle . 2024Data sources: Electronic Publication Information CenterUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jbi.14961&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Biogeogra... arrow_drop_down Copenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemElectronic Publication Information CenterArticle . 2024Data sources: Electronic Publication Information CenterUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jbi.14961&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Spain, Spain, Netherlands, Spain, France, NetherlandsPublisher:Proceedings of the National Academy of Sciences Funded by:ARC | Discovery Projects - Gran..., EC | DRYFUN, ARC | Discovery Projects - Gran... +1 projectsARC| Discovery Projects - Grant ID: DP190103714 ,EC| DRYFUN ,ARC| Discovery Projects - Grant ID: DP170104634 ,EC| BIODESERTJun-Tao Wang; Beatriz Gozalo; Victoria Ochoa; Johannes H. C. Cornelissen; Sergio Asensio; Yoann Le Bagousse-Pinguet; Yoann Le Bagousse-Pinguet; Fernando T. Maestre; Brajesh K. Singh; Rubén Milla; Marina Dacal; Marina Dacal; Vincent Maire; Pablo García-Palacios; Pablo García-Palacios; Hugo Saiz; Hugo Saiz; Nicolas Gross; Nicolas Gross; Norma Salinas; Sonia Ruiz; Lucas Deschamps; Carmen García;pmid: 33568533
pmc: PMC7896339
SignificanceIdentifying species assemblages that boost the provision of multiple ecosystem functions simultaneously (multifunctionality) is crucial to undertake effective restoration actions aiming at simultaneously promoting biodiversity and high multifunctionality in a changing world. By disentangling the effect of multiple traits on multifunctionality in a litter decomposition experiment, we show that it is possible to identify the assemblages that boost multifunctionality across multiple species mixtures originating from six biomes. We found that higher evenness among dissimilar species and the functional attributes of rare species as key biodiversity attributes to enhance multifunctionality and to reduce the abundance of plant pathogens. Our study identifies those species assemblages needed to simultaneously maximize multifunctionality and limit plant disease risks in natural and managed ecosystems.
Proceedings of the N... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de AlicanteArticle . 2021Data sources: Repositorio Institucional de la Universidad de AlicanteInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2021 . Peer-reviewedData sources: CrossrefProceedings of the National Academy of SciencesArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Western Sydney (UWS): Research DirectArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2019355118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 61 citations 61 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 44visibility views 44 download downloads 114 Powered bymore_vert Proceedings of the N... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de AlicanteArticle . 2021Data sources: Repositorio Institucional de la Universidad de AlicanteInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2021 . Peer-reviewedData sources: CrossrefProceedings of the National Academy of SciencesArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Western Sydney (UWS): Research DirectArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2019355118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United Kingdom, Argentina, Australia, ArgentinaPublisher:American Association for the Advancement of Science (AAAS) Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP170103410Ian J. Wright; Robert M. Kooyman; I. Colin Prentice; I. Colin Prentice; Rafael Villar; Sandra Díaz; Vincent Maire; Vincent Maire; Ning Dong; Ning Dong; Han Wang; Han Wang; Peter B. Reich; Peter B. Reich; Michelle R. Leishman; Elizabeth A. Law; Elizabeth A. Law; Peter Wilf; Rachael V. Gallagher; Ülo Niinemets; Mark Westoby; Lawren Sack; Bonnie F. Jacobs;Leaf size, climate, and energy balance Why does plant leaf size increase at lower latitudes, as exemplified by the evolutionary success of species with very large leaves in the tropics? Wright et al. analyzed leaf data for 7670 plant species, along with climatic data, from 682 sites worldwide. Their findings reveal consistent patterns and explain why earlier predictions from energy balance theory had only limited success. The authors provide a fully quantitative explanation for the latitudinal gradient in leaf size, with implications for plant ecology and physiology, vegetation modeling, and paleobotany. Science , this issue p. 917
Spiral - Imperial Co... arrow_drop_down Spiral - Imperial College Digital RepositoryArticle . 2017Data sources: Spiral - Imperial College Digital RepositoryThe University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aal4760&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 664 citations 664 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Spiral - Imperial Co... arrow_drop_down Spiral - Imperial College Digital RepositoryArticle . 2017Data sources: Spiral - Imperial College Digital RepositoryThe University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aal4760&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:NSF Arctic Data Center Berner, Logan T.; Orndahl, Kathleen M.; Rose, Melissa; Tamstorf, Mikkel; Arndal, Marie F.; Alexander, Heather D.; Yang, Dedi; Sistla, Seeta; Humphreys, Elyn R.; Loranty, Michael M.; Ludwig, Sarah M.; Nyman, Johanna; Juutinen, Sari; Aurela, Mika; Happonen, Konsta; Mikola, Juha; Mack, Michelle C.; Vankoughnett, Mathew R.; Iversen, Colleen M.; Salmon, Verity G.; Kumar, Jitendra; Grogan, Paul; Danby, Ryan K.; Scott, Neal A.; Pold, Grace; Olofsson, Johan; Siewert, Matthias B.; Deschamps, Lucas; Lévesque, Esther; Maire, Vincent; Morneault, Amélie; Gauthier, Gilles; Gignac, Charles; Boudreau, Stéphane; Gaspard, Anna; Kholodov, Alexander; Bret-Harte, M. Syndonia; Greaves, Heather E.; Walker, Donald; Ylänne, Henni; Gregory, Fiona M.; Michelsen, Anders; Kumpula, Timo; Villoslada, Miguel; Luoto, Miska; Virtanen, Tarmo; Forbes, Bruce C.; Baillargeon, Natalie; Hölzel, Norbert; Epstein, Howard; Heim, Ramona J.; Bunn, Andrew; Holmes, Robert M.; Hung, Jacqueline K.Y.; Natali, Susan M.; Virkkala, Anna-Maria; Goetz, Scott J.;doi: 10.18739/a2qj78081
Plant biomass is a fundamental ecosystem attribute that is sensitive to rapid climatic changes occurring in the Arctic. Nevertheless, measuring plant biomass in the Arctic is logistically challenging and resource intensive. Lack of accessible field data hinders efforts to understand the amount, composition, distribution, and changes in plant biomass in these northern ecosystems. Here, we present The Arctic Plant Aboveground Biomass Synthesis Dataset, which includes field measurements of lichen, bryophyte, herb, shrub, and/or tree aboveground biomass grams per meter squared (g/m^2) on 2327 sample plots in seven countries. We created the synthesis dataset by assembling and harmonizing 32 individual datasets. Aboveground biomass was primarily quantified by harvesting sample plots during mid- to late-summer, though tree and often tall shrub biomass were quantified using surveys and allometric models. Each biomass measurement is associated with metadata including sample date, location, method, data source, and other information. This unique dataset can be leveraged to monitor, map, and model plant biomass across the rapidly warming Arctic.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18739/a2qj78081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18739/a2qj78081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:NSF Arctic Data Center Berner, Logan T.; Orndahl, Kathleen M.; Rose, Melissa; Tamstorf, Mikkel; Arndal, Marie F.; Yang, Dedi; Humphreys, Elyn R.; Loranty, Michael M.; Ludwig, Sarah M.; Nyman, Johanna; Juutinen, Sari; Aurela, Mika; Happonen, Konsta; Mikola, Juha; Mack, Michelle C.; Vankoughnett, Mathew R.; Iversen, Colleen M.; Salmon, Verity G.; Kumar, Jitendra; Grogan, Paul; Danby, Ryan K.; Scott, Neal A.; Olofsson, Johan; Siewert, Matthias B.; Deschamps, Lucas; Lévesque, Esther; Maire, Vincent; Morneault, Amélie; Gauthier, Gilles; Gignac, Charles; Boudreau, Stéphane; Gaspard, Anna; Kholodov, Alexander; Bret-Harte, M. Syndonia; Greaves, Heather E.; Walker, Donald; Gregory, Fiona M.; Michelsen, Anders; Kumpula, Timo; Villoslada, Miguel; Ylänne, Henni; Luoto, Miska; Virtanen, Tarmo; Forbes, Bruce C.; Hölzel, Norbert; Epstein, Howard; Heim, Ramona J.; Bunn, Andrew; Holmes, Robert M.; Hung, Jacqueline K.Y.; Natali, Susan M.; Virkkala, Anna-Maria; Goetz, Scott J.;doi: 10.18739/a2k931783
Plant biomass is a fundamental ecosystem attribute that is sensitive to rapid climatic changes occurring in the Arctic. Nevertheless, measuring plant biomass in the Arctic is logistically challenging and resource intensive. Lack of accessible field data hinders efforts to understand the amount, composition, distribution, and changes in plant biomass in these northern ecosystems. Here, we present The Arctic Plant Aboveground Biomass Synthesis Dataset, which includes field measurements of lichen, bryophyte, herb, shrub, and/or tree aboveground biomass grams per meter squared (g/m^2) on 2327 sample plots in seven countries. We created the synthesis dataset by assembling and harmonizing 32 individual datasets. Aboveground biomass was primarily quantified by harvesting sample plots during mid- to late-summer, though tree and often tall shrub biomass were quantified using surveys and allometric models. Each biomass measurement is associated with metadata including sample date, location, method, data source, and other information. This unique dataset can be leveraged to monitor, map, and model plant biomass across the rapidly warming Arctic.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18739/a2k931783&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18739/a2k931783&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu