- home
- Advanced Search
Filters
Year range
-chevron_right GOOrganization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | FLOODMAL, UKRI | HYDROMAL: Hydro-dynamic d...UKRI| FLOODMAL ,UKRI| HYDROMAL: Hydro-dynamic drivers of malaria transmission hazard in AfricaM. W. Smith; T. Willis; L. Alfieri; W. H. M. James; M. A. Trigg; D. Yamazaki; A. J. Hardy; B. Bisselink; A. De Roo; M. G. Macklin; C. J. Thomas;AbstractContinental-scale models of malaria climate suitability typically couple well-established temperature-response models with basic estimates of vector habitat availability using rainfall as a proxy. Here we show that across continental Africa, the estimated geographic range of climatic suitability for malaria transmission is more sensitive to the precipitation threshold than the thermal response curve applied. To address this problem we use downscaled daily climate predictions from seven GCMs to run a continental-scale hydrological model for a process-based representation of mosquito breeding habitat availability. A more complex pattern of malaria suitability emerges as water is routed through drainage networks and river corridors serve as year-round transmission foci. The estimated hydro-climatically suitable area for stable malaria transmission is smaller than previous models suggest and shows only a very small increase in state-of-the-art future climate scenarios. However, bigger geographical shifts are observed than with most rainfall threshold models and the pattern of that shift is very different when using a hydrological model to estimate surface water availability for vector breeding.
CORE arrow_drop_down University of Lincoln: Lincoln RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-18239-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 40 citations 40 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 10visibility views 10 download downloads 16 Powered bymore_vert CORE arrow_drop_down University of Lincoln: Lincoln RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-18239-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Funded by:UKRI | PIGSustain: Predicting th...UKRI| PIGSustain: Predicting the Impacts of Intensification and Future Changes on UK Pig Industry ResilienceAuthors: James, WHM; Lomax, N; Birkin, M; Collins, LM;Abstract Background There are a range of policies and guidelines focused on meat consumption which aim to tackle health and environmental issues. Policies are often siloed in nature and propose universal limits on consumption. Despite this, there will be a number of conflicts and trade-offs between interest groups. This study explores secondary impacts associated with guidelines issued by the World Cancer Research Fund and assesses the utility of a targeted policy intervention strategy for reducing red meat consumption. Methods We used highly detailed consumption data of over 5,000 individuals from the National Diet and Nutrition Survey. We firstly compared individual consumption against the policy guidelines to identify demographic groups most likely to consume above recommended levels. We then synthetically modified the food diary data to investigate the secondary impacts of adherence to the recommendations by all individuals. We assessed changes in overall consumption, nutrient intake (iron, zinc, vitamin B12, vitamin B3, fat and saturated fat) and global warming potential. We also projected future impacts under various population projections. Results We found that certain demographic groups are much more likely to exceed the recommendations and would therefore benefit from a targeted intervention approach. Our results provide a baseline for which the impacts of any meat substitute diets can be assessed against. Whilst secondary health benefits may be realised by reducing intake of certain nutrients (e.g. fats), negative impacts may occur due to the reduced intake of other nutrients (e.g. iron, zinc). Reduced overall consumption is likely to have implications for the wider meat industry whilst complementary impacts would occur in terms of reduced greenhouse gas emissions. Impacts will be counteracted or maybe even reversed by any substitute products, highlighting the need to carefully consider the suitability and impacts of meat-replacements. Conclusion The future structure of the meat industry will depend on how conflicts and trade-offs are addressed and how more holistic policy ideas are implemented. This research provides a framework for using demographic and consumption data to reduce negative trade-offs and improve policy effectiveness.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40795-022-00570-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 14visibility views 14 download downloads 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40795-022-00570-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:American Association for the Advancement of Science (AAAS) Mark W. Smith; Thomas Willis; Elizabeth Mroz; William H. M. James; Megan J. Klaar; Simon N. Gosling; Christopher J. Thomas;pmid: 38723080
Changes in climate shift the geographic locations that are suitable for malaria transmission because of the thermal constraints on vector Anopheles mosquitos and Plasmodium spp. malaria parasites and the lack of availability of surface water for vector breeding. Previous Africa-wide assessments have tended to solely represent surface water using precipitation, ignoring many important hydrological processes. Here, we applied a validated and weighted ensemble of global hydrological and climate models to estimate present and future areas of hydroclimatic suitability for malaria transmission. With explicit surface water representation, we predict a net decrease in areas suitable for malaria transmission from 2025 onward, greater sensitivity to future greenhouse gas emissions, and different, more complex, malaria transmission patterns. Areas of malaria transmission that are projected to change are smaller than those estimated by precipitation-based estimates but are associated with greater changes in transmission season lengths.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adk8755&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adk8755&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | FLOODMAL, UKRI | HYDROMAL: Hydro-dynamic d...UKRI| FLOODMAL ,UKRI| HYDROMAL: Hydro-dynamic drivers of malaria transmission hazard in AfricaM. W. Smith; T. Willis; L. Alfieri; W. H. M. James; M. A. Trigg; D. Yamazaki; A. J. Hardy; B. Bisselink; A. De Roo; M. G. Macklin; C. J. Thomas;AbstractContinental-scale models of malaria climate suitability typically couple well-established temperature-response models with basic estimates of vector habitat availability using rainfall as a proxy. Here we show that across continental Africa, the estimated geographic range of climatic suitability for malaria transmission is more sensitive to the precipitation threshold than the thermal response curve applied. To address this problem we use downscaled daily climate predictions from seven GCMs to run a continental-scale hydrological model for a process-based representation of mosquito breeding habitat availability. A more complex pattern of malaria suitability emerges as water is routed through drainage networks and river corridors serve as year-round transmission foci. The estimated hydro-climatically suitable area for stable malaria transmission is smaller than previous models suggest and shows only a very small increase in state-of-the-art future climate scenarios. However, bigger geographical shifts are observed than with most rainfall threshold models and the pattern of that shift is very different when using a hydrological model to estimate surface water availability for vector breeding.
CORE arrow_drop_down University of Lincoln: Lincoln RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-18239-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 40 citations 40 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 10visibility views 10 download downloads 16 Powered bymore_vert CORE arrow_drop_down University of Lincoln: Lincoln RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-18239-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Funded by:UKRI | PIGSustain: Predicting th...UKRI| PIGSustain: Predicting the Impacts of Intensification and Future Changes on UK Pig Industry ResilienceAuthors: James, WHM; Lomax, N; Birkin, M; Collins, LM;Abstract Background There are a range of policies and guidelines focused on meat consumption which aim to tackle health and environmental issues. Policies are often siloed in nature and propose universal limits on consumption. Despite this, there will be a number of conflicts and trade-offs between interest groups. This study explores secondary impacts associated with guidelines issued by the World Cancer Research Fund and assesses the utility of a targeted policy intervention strategy for reducing red meat consumption. Methods We used highly detailed consumption data of over 5,000 individuals from the National Diet and Nutrition Survey. We firstly compared individual consumption against the policy guidelines to identify demographic groups most likely to consume above recommended levels. We then synthetically modified the food diary data to investigate the secondary impacts of adherence to the recommendations by all individuals. We assessed changes in overall consumption, nutrient intake (iron, zinc, vitamin B12, vitamin B3, fat and saturated fat) and global warming potential. We also projected future impacts under various population projections. Results We found that certain demographic groups are much more likely to exceed the recommendations and would therefore benefit from a targeted intervention approach. Our results provide a baseline for which the impacts of any meat substitute diets can be assessed against. Whilst secondary health benefits may be realised by reducing intake of certain nutrients (e.g. fats), negative impacts may occur due to the reduced intake of other nutrients (e.g. iron, zinc). Reduced overall consumption is likely to have implications for the wider meat industry whilst complementary impacts would occur in terms of reduced greenhouse gas emissions. Impacts will be counteracted or maybe even reversed by any substitute products, highlighting the need to carefully consider the suitability and impacts of meat-replacements. Conclusion The future structure of the meat industry will depend on how conflicts and trade-offs are addressed and how more holistic policy ideas are implemented. This research provides a framework for using demographic and consumption data to reduce negative trade-offs and improve policy effectiveness.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40795-022-00570-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 14visibility views 14 download downloads 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40795-022-00570-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:American Association for the Advancement of Science (AAAS) Mark W. Smith; Thomas Willis; Elizabeth Mroz; William H. M. James; Megan J. Klaar; Simon N. Gosling; Christopher J. Thomas;pmid: 38723080
Changes in climate shift the geographic locations that are suitable for malaria transmission because of the thermal constraints on vector Anopheles mosquitos and Plasmodium spp. malaria parasites and the lack of availability of surface water for vector breeding. Previous Africa-wide assessments have tended to solely represent surface water using precipitation, ignoring many important hydrological processes. Here, we applied a validated and weighted ensemble of global hydrological and climate models to estimate present and future areas of hydroclimatic suitability for malaria transmission. With explicit surface water representation, we predict a net decrease in areas suitable for malaria transmission from 2025 onward, greater sensitivity to future greenhouse gas emissions, and different, more complex, malaria transmission patterns. Areas of malaria transmission that are projected to change are smaller than those estimated by precipitation-based estimates but are associated with greater changes in transmission season lengths.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adk8755&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adk8755&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu