- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United StatesPublisher:Springer Science and Business Media LLC Funded by:EC | LO-ACTEC| LO-ACTJosé Lobo; Rimjhim Aggarwal; Marina Alberti; Melissa Allen‐Dumas; Luís M. A. Bettencourt; Christopher G. Boone; Christa Brelsford; Vanesa Castán Broto; Hallie Eakin; Sharmistha Bagchi‐Sen; Sara Meerow; Celine D'Cruz; Aromar Revi; Debra Roberts; Michael E. Smith; Abigail M. York; Tao Lin; Xuemei Bai; William Solecki; Diane E. Pataki; Luis A. Bojórquez‐Tapia; Marcy Rockman; Marc Wolfram; Peter Schlösser; Nicolas Gauthier;pmid: 37323541
pmc: PMC10256966
AbstractThere is a growing recognition that responding to climate change necessitates urban adaptation. We sketch a transdisciplinary research effort, arguing that actionable research on urban adaptation needs to recognize the nature of cities as social networks embedded in physical space. Given the pace, scale and socioeconomic outcomes of urbanization in the Global South, the specificities and history of its cities must be central to the study of how well-known agglomeration effects can facilitate adaptation. The proposed effort calls for the co-creation of knowledge involving scientists and stakeholders, especially those historically excluded from the design and implementation of urban development policies.
npj Urban Sustainabi... arrow_drop_down npj Urban SustainabilityArticle . 2023 . Peer-reviewedData sources: European Union Open Data PortalKnowledge@UChicago (University of Chicago)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s42949-023-00113-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert npj Urban Sustainabi... arrow_drop_down npj Urban SustainabilityArticle . 2023 . Peer-reviewedData sources: European Union Open Data PortalKnowledge@UChicago (University of Chicago)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s42949-023-00113-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 United States, United KingdomPublisher:American Geophysical Union (AGU) Christa Brelsford; Andrew Jones; Bhartendu Pandey; Pouya Vahmani; Melissa Allen‐Dumas; Deeksha Rastogi; Kevin Sparks; Melissa Bukovsky; Iryna Dronova; Tianzhen Hong; David M. Iwaniec; Michelle E. Newcomer; Sean C. Reid; Zhonghua Zheng;doi: 10.1029/2024ef004481
AbstractCities are concentrators of complex, multi‐sectoral interactions. As keystones in the interconnected human‐Earth system, cities have an outsized impact on the Earth system. We describe a multi‐lens framework for organizing our understanding of the complexity of urban systems and scientific research on urban systems, which may be useful for natural system scientists exploring the ways their work can be made more actionable. We then describe four critical dimensions along which improvements are needed to advance the urban research that addresses urgent climate challenges: (a) solutions‐oriented research, (b) equity‐centered assessments which rely on fine‐scale human and ecological data, (c) co‐production of knowledge, and (d) better integration of human and natural systems occurring through theory, observation, and modeling.
Earth's Future arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2024Data sources: The University of Manchester - Institutional RepositoryeScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024ef004481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Earth's Future arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2024Data sources: The University of Manchester - Institutional RepositoryeScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024ef004481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Matthew Langholtz; Ingrid Busch; Abishek Kasturi; Michael R. Hilliard; Joanna McFarlane; Costas Tsouris; Srijib Mukherjee; Olufemi A. Omitaomu; Susan M. Kotikot; Melissa R. Allen-Dumas; Christopher R. DeRolph; Maggie R. Davis; Esther S. Parish;doi: 10.3390/land9090299
Bioenergy with carbon capture and storage (BECCS) is one strategy to remove CO2 from the atmosphere. To assess the potential scale and cost of CO2 sequestration from BECCS in the US, this analysis models carbon sequestration net of supply chain emissions and costs of biomass production, delivery, power generation, and CO2 capture and sequestration in saline formations. The analysis includes two biomass supply scenarios (near-term and long-term), two biomass logistics scenarios (conventional and pelletized), and two generation technologies (pulverized combustion and integrated gasification combined cycle). Results show marginal cost per tonne CO2 (accounting for costs of electricity and CO2 emissions of reference power generation scenarios) as a function of CO2 sequestered (simulating capture of up to 90% of total CO2 sequestration potential) and associated spatial distribution of resources and generation locations for the array of scenario options. Under a near-term scenario using up to 206 million tonnes per year of biomass, up to 181 million tonnes CO2 can be sequestered annually at scenario-average costs ranging from $62 to $137 per tonne CO2; under a long-term scenario using up to 740 million tonnes per year of biomass, up to 737 million tonnes CO2 can be sequestered annually at scenario-average costs ranging from $42 to $92 per tonne CO2. These estimates of CO2 sequestration potential may be reduced if future competing demand reduces resource availability or may be increased if displaced emissions from conventional power sources are included. Results suggest there are large-scale opportunities to implement BECCS at moderate cost in the US, particularly in the Midwest, Plains States, and Texas.
Land arrow_drop_down LandOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-445X/9/9/299/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/land9090299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Land arrow_drop_down LandOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-445X/9/9/299/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/land9090299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United StatesPublisher:Springer Science and Business Media LLC Funded by:EC | LO-ACTEC| LO-ACTJosé Lobo; Rimjhim Aggarwal; Marina Alberti; Melissa Allen‐Dumas; Luís M. A. Bettencourt; Christopher G. Boone; Christa Brelsford; Vanesa Castán Broto; Hallie Eakin; Sharmistha Bagchi‐Sen; Sara Meerow; Celine D'Cruz; Aromar Revi; Debra Roberts; Michael E. Smith; Abigail M. York; Tao Lin; Xuemei Bai; William Solecki; Diane E. Pataki; Luis A. Bojórquez‐Tapia; Marcy Rockman; Marc Wolfram; Peter Schlösser; Nicolas Gauthier;pmid: 37323541
pmc: PMC10256966
AbstractThere is a growing recognition that responding to climate change necessitates urban adaptation. We sketch a transdisciplinary research effort, arguing that actionable research on urban adaptation needs to recognize the nature of cities as social networks embedded in physical space. Given the pace, scale and socioeconomic outcomes of urbanization in the Global South, the specificities and history of its cities must be central to the study of how well-known agglomeration effects can facilitate adaptation. The proposed effort calls for the co-creation of knowledge involving scientists and stakeholders, especially those historically excluded from the design and implementation of urban development policies.
npj Urban Sustainabi... arrow_drop_down npj Urban SustainabilityArticle . 2023 . Peer-reviewedData sources: European Union Open Data PortalKnowledge@UChicago (University of Chicago)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s42949-023-00113-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert npj Urban Sustainabi... arrow_drop_down npj Urban SustainabilityArticle . 2023 . Peer-reviewedData sources: European Union Open Data PortalKnowledge@UChicago (University of Chicago)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s42949-023-00113-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 United States, United KingdomPublisher:American Geophysical Union (AGU) Christa Brelsford; Andrew Jones; Bhartendu Pandey; Pouya Vahmani; Melissa Allen‐Dumas; Deeksha Rastogi; Kevin Sparks; Melissa Bukovsky; Iryna Dronova; Tianzhen Hong; David M. Iwaniec; Michelle E. Newcomer; Sean C. Reid; Zhonghua Zheng;doi: 10.1029/2024ef004481
AbstractCities are concentrators of complex, multi‐sectoral interactions. As keystones in the interconnected human‐Earth system, cities have an outsized impact on the Earth system. We describe a multi‐lens framework for organizing our understanding of the complexity of urban systems and scientific research on urban systems, which may be useful for natural system scientists exploring the ways their work can be made more actionable. We then describe four critical dimensions along which improvements are needed to advance the urban research that addresses urgent climate challenges: (a) solutions‐oriented research, (b) equity‐centered assessments which rely on fine‐scale human and ecological data, (c) co‐production of knowledge, and (d) better integration of human and natural systems occurring through theory, observation, and modeling.
Earth's Future arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2024Data sources: The University of Manchester - Institutional RepositoryeScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024ef004481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Earth's Future arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2024Data sources: The University of Manchester - Institutional RepositoryeScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024ef004481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Matthew Langholtz; Ingrid Busch; Abishek Kasturi; Michael R. Hilliard; Joanna McFarlane; Costas Tsouris; Srijib Mukherjee; Olufemi A. Omitaomu; Susan M. Kotikot; Melissa R. Allen-Dumas; Christopher R. DeRolph; Maggie R. Davis; Esther S. Parish;doi: 10.3390/land9090299
Bioenergy with carbon capture and storage (BECCS) is one strategy to remove CO2 from the atmosphere. To assess the potential scale and cost of CO2 sequestration from BECCS in the US, this analysis models carbon sequestration net of supply chain emissions and costs of biomass production, delivery, power generation, and CO2 capture and sequestration in saline formations. The analysis includes two biomass supply scenarios (near-term and long-term), two biomass logistics scenarios (conventional and pelletized), and two generation technologies (pulverized combustion and integrated gasification combined cycle). Results show marginal cost per tonne CO2 (accounting for costs of electricity and CO2 emissions of reference power generation scenarios) as a function of CO2 sequestered (simulating capture of up to 90% of total CO2 sequestration potential) and associated spatial distribution of resources and generation locations for the array of scenario options. Under a near-term scenario using up to 206 million tonnes per year of biomass, up to 181 million tonnes CO2 can be sequestered annually at scenario-average costs ranging from $62 to $137 per tonne CO2; under a long-term scenario using up to 740 million tonnes per year of biomass, up to 737 million tonnes CO2 can be sequestered annually at scenario-average costs ranging from $42 to $92 per tonne CO2. These estimates of CO2 sequestration potential may be reduced if future competing demand reduces resource availability or may be increased if displaced emissions from conventional power sources are included. Results suggest there are large-scale opportunities to implement BECCS at moderate cost in the US, particularly in the Midwest, Plains States, and Texas.
Land arrow_drop_down LandOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-445X/9/9/299/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/land9090299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Land arrow_drop_down LandOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-445X/9/9/299/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/land9090299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu