- home
- Advanced Search
- Energy Research
- 14. Life underwater
- Energy Research
- 14. Life underwater
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Copernicus GmbH W. J. Shaw; L. K. Berg; M. Debnath; G. Deskos; C. Draxl; C. Draxl; V. P. Ghate; C. B. Hasager; R. Kotamarthi; J. D. Mirocha; P. Muradyan; W. J. Pringle; D. D. Turner; J. M. Wilczak;Abstract. With the increasing level of offshore wind energy investment, it is correspondingly important to be able to accurately characterize the wind resource in terms of energy potential as well as operating conditions affecting wind plant performance, maintenance, and lifespan. Accurate resource assessment at a particular site supports investment decisions. Following construction, accurate wind forecasts are needed to support efficient power markets and integration of wind power with the electrical grid. To optimize the design of wind turbines, it is necessary to accurately describe the environmental characteristics, such as precipitation and waves, that erode turbine surfaces and generate structural loads as a complicated response to the combined impact of shear, atmospheric turbulence, and wave stresses. Despite recent considerable progress both in improvements to numerical weather prediction models and in coupling these models to turbulent flows within wind plants, major challenges remain, especially in the offshore environment. Accurately simulating the interactions among winds, waves, wakes, and their structural interactions with offshore wind turbines requires accounting for spatial (and associated temporal) scales from O(1 m) to O(100 km). Computing capabilities for the foreseeable future will not be able to resolve all of these scales simultaneously, necessitating continuing improvement in subgrid-scale parameterizations within highly nonlinear models. In addition, observations to constrain and validate these models, especially in the rotor-swept area of turbines over the ocean, remains largely absent. Thus, gaining sufficient understanding of the physics of atmospheric flow within and around wind plants remains one of the grand challenges of wind energy, particularly in the offshore environment. This paper provides a review of prominent scientific challenges to characterizing the offshore wind resource using as examples phenomena that occur in the rapidly developing wind energy areas off the United States. Such phenomena include horizontal temperature gradients that lead to strong vertical stratification; consequent features such as low-level jets and internal boundary layers; highly nonstationary conditions, which occur with both extratropical storms (e.g., nor'easters) and tropical storms; air–sea interaction, including deformation of conventional wind profiles by the wave boundary layer; and precipitation with its contributions to leading-edge erosion of wind turbine blades. The paper also describes the current state of modeling and observations in the marine atmospheric boundary layer and provides specific recommendations for filling key current knowledge gaps.
Wind Energy Science arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-7-2307-2022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Wind Energy Science arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-7-2307-2022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Copernicus GmbH Sheng-Lun Tai; Larry K. Berg; Raghavendra Krishnamurthy; Rob Newsom; Anthony Kirincich;Abstract. Turbulence intensity (TI) is often used to quantify the strength of turbulence in wind energy applications and serves as the basis of standards in wind turbine design. Thus, accurately characterizing the spatiotemporal variability of TI should lead to improved predictions of power production. Nevertheless, turbulence measurements over the ocean are far less prevalent than over land due to challenges in instrumental deployment, maintenance, and operation. Atmospheric models such as mesoscale (weather prediction) and large-eddy simulation (LES) models are commonly used in wind energy industry to assess the spatial variability of a given site. However, the TI derivation from atmospheric models have not been well examined. An algorithm is proposed in this study to realize online calculation of TI in the Weather Research and Forecasting (WRF) model. Simulated TI is divided into two components depending on scale, including sub-grid (parameterized based on turbulence kinetic energy (TKE)) and grid resolved. Sensitivity of sea surface temperature (SST) on simulated TI is also tested. An assessment is performed by using observations collected during a field campaign conducted from February to June 2020 near the Woods Hole Oceanographic Institution ’s Martha’s Vineyard Coastal Observatory. Results show while simulated TKE is generally smaller than lidar-observed value, wind speed bias is usually small. Overall, this leads to a slight underestimation in sub-grid scale estimated TI. Improved SST representation subsequently reduces model biases in atmospheric stability as well as wind speed and sub-grid TI near the hub height. Large TI events in conjunction with mesoscale weather systems observed during the studied period pose a challenge to accurately estimate TI from models. Due to notable uncertainty in accurately simulating those events, it suggests summing up sub-grid and resolved TI may not be an ideal solution. Efforts in further improving skills in simulating mesoscale flow and cloud systems are necessary as the next steps.
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-2022-84&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-2022-84&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Copernicus GmbH W. J. Shaw; L. K. Berg; M. Debnath; G. Deskos; C. Draxl; C. Draxl; V. P. Ghate; C. B. Hasager; R. Kotamarthi; J. D. Mirocha; P. Muradyan; W. J. Pringle; D. D. Turner; J. M. Wilczak;Abstract. With the increasing level of offshore wind energy investment, it is correspondingly important to be able to accurately characterize the wind resource in terms of energy potential as well as operating conditions affecting wind plant performance, maintenance, and lifespan. Accurate resource assessment at a particular site supports investment decisions. Following construction, accurate wind forecasts are needed to support efficient power markets and integration of wind power with the electrical grid. To optimize the design of wind turbines, it is necessary to accurately describe the environmental characteristics, such as precipitation and waves, that erode turbine surfaces and generate structural loads as a complicated response to the combined impact of shear, atmospheric turbulence, and wave stresses. Despite recent considerable progress both in improvements to numerical weather prediction models and in coupling these models to turbulent flows within wind plants, major challenges remain, especially in the offshore environment. Accurately simulating the interactions among winds, waves, wakes, and their structural interactions with offshore wind turbines requires accounting for spatial (and associated temporal) scales from O(1 m) to O(100 km). Computing capabilities for the foreseeable future will not be able to resolve all of these scales simultaneously, necessitating continuing improvement in subgrid-scale parameterizations within highly nonlinear models. In addition, observations to constrain and validate these models, especially in the rotor-swept area of turbines over the ocean, remains largely absent. Thus, gaining sufficient understanding of the physics of atmospheric flow within and around wind plants remains one of the grand challenges of wind energy, particularly in the offshore environment. This paper provides a review of prominent scientific challenges to characterizing the offshore wind resource using as examples phenomena that occur in the rapidly developing wind energy areas off the United States. Such phenomena include horizontal temperature gradients that lead to strong vertical stratification; consequent features such as low-level jets and internal boundary layers; highly nonstationary conditions, which occur with both extratropical storms (e.g., nor'easters) and tropical storms; air–sea interaction, including deformation of conventional wind profiles by the wave boundary layer; and precipitation with its contributions to leading-edge erosion of wind turbine blades. The paper also describes the current state of modeling and observations in the marine atmospheric boundary layer and provides specific recommendations for filling key current knowledge gaps.
Wind Energy Science arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-7-2307-2022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Wind Energy Science arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-7-2307-2022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Copernicus GmbH Sheng-Lun Tai; Larry K. Berg; Raghavendra Krishnamurthy; Rob Newsom; Anthony Kirincich;Abstract. Turbulence intensity (TI) is often used to quantify the strength of turbulence in wind energy applications and serves as the basis of standards in wind turbine design. Thus, accurately characterizing the spatiotemporal variability of TI should lead to improved predictions of power production. Nevertheless, turbulence measurements over the ocean are far less prevalent than over land due to challenges in instrumental deployment, maintenance, and operation. Atmospheric models such as mesoscale (weather prediction) and large-eddy simulation (LES) models are commonly used in wind energy industry to assess the spatial variability of a given site. However, the TI derivation from atmospheric models have not been well examined. An algorithm is proposed in this study to realize online calculation of TI in the Weather Research and Forecasting (WRF) model. Simulated TI is divided into two components depending on scale, including sub-grid (parameterized based on turbulence kinetic energy (TKE)) and grid resolved. Sensitivity of sea surface temperature (SST) on simulated TI is also tested. An assessment is performed by using observations collected during a field campaign conducted from February to June 2020 near the Woods Hole Oceanographic Institution ’s Martha’s Vineyard Coastal Observatory. Results show while simulated TKE is generally smaller than lidar-observed value, wind speed bias is usually small. Overall, this leads to a slight underestimation in sub-grid scale estimated TI. Improved SST representation subsequently reduces model biases in atmospheric stability as well as wind speed and sub-grid TI near the hub height. Large TI events in conjunction with mesoscale weather systems observed during the studied period pose a challenge to accurately estimate TI from models. Due to notable uncertainty in accurately simulating those events, it suggests summing up sub-grid and resolved TI may not be an ideal solution. Efforts in further improving skills in simulating mesoscale flow and cloud systems are necessary as the next steps.
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-2022-84&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-2022-84&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu