- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2022 Finland, FinlandPublisher:Elsevier BV Authors: Aku Visuri; Jonatan Hamberg; Ella Peltonen;handle: 10138/341565
While the use of smartphones in extreme temperatures does not necessarily occur every day nor in all parts of the world, numerous use cases can be highlighted where the use of smartphones in cold temperatures is mandatory. Modern smartphones are designed to function in a wide range of temperatures, but when exposed to extreme cold temperatures the performance and reliability can significantly suffer. This paper presents a controlled laboratory experiment, using a clinical cold chamber to expose seven smartphone models to both medium cold (0 degrees C to -20 degrees C) and extreme cold (-30 degrees C) environments. The results showcase the smartphones' sensing software's lack of awareness of the cold environment, as well as reliability issues in the form of device crashes across the whole range of tested devices. We present a strategy for implementing monitoring application designs to both appropriately sense the effect of cold environments, as well as predicting device shutdowns in extreme cold. (C) 2021 The Authors. Published by Elsevier B.V. Peer reviewed
Pervasive and Mobile... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Oulu Repository - JultikaArticle . 2022Data sources: University of Oulu Repository - Jultikaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pmcj.2021.101509&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Pervasive and Mobile... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Oulu Repository - JultikaArticle . 2022Data sources: University of Oulu Repository - Jultikaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pmcj.2021.101509&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United KingdomPublisher:Elsevier BV Funded by:AKA | Mobile Crowdsensing in Ub...AKA| Mobile Crowdsensing in Ubiquitous Cloud Environment / Consortium: CUBICSasu Tarkoma; Sasu Tarkoma; Petteri Nurmi; Petteri Nurmi; Ella Peltonen; Eemil Lagerspetz;The question “Where has my battery gone?” remains a common source of frustration for many smartphone users. With the increased complexity of smartphone applications, and the increasing number of system settings affecting them, understanding and optimizing battery use has become a difficult chore. The present paper develops a novel approach for constructing energy models from crowdsourced measurements. In contrast to previous approaches, which have focused on the effect of a specific sensor, system setting or application, our approach can simultaneously capture relationships between multiple factors, and provide a unified view of the energy state of the mobile device. We demonstrate the validity of using crowdsourced measurements for constructing battery models through a combination of large-scale analysis of a dataset containing battery discharge and system state measurements, and hardware power measurements. The results indicate that the models captured by our approach are both in line with previous studies on battery consumption and empirical measurements, providing a cost-effective way to construct energy models during normal operations of the device. The analysis also provides several new insights about battery consumption. For example, our analysis reveals the combined effect of high CPU activity and automatic screen brightness to be higher (resulting in 9 min shorter battery lifetime on average) than the effect of medium CPU load and manual screen brightness; a Wi-Fi signal strength drop of one bar can shorten battery life by over 13%; and a smartphone sitting in direct sunlight can witness over 50% shorter battery life than one indoors in cool conditions. Based on the crowdsourced energy models, we develop Constella, a novel recommender system for system settings. Constella provides actionable and human-readable recommendations on how to adjust system settings in order to reduce overall battery drain. We validate the effectiveness of Constella through a hardware power measurement experiment carried out using three application case studies. The results of the evaluation demonstrate that Constella is capable of generating recommendations that can provide up to 61% improvements in battery life.
Pervasive and Mobile... arrow_drop_down Pervasive and Mobile ComputingArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefLancaster University: Lancaster EprintsArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pmcj.2015.10.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Pervasive and Mobile... arrow_drop_down Pervasive and Mobile ComputingArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefLancaster University: Lancaster EprintsArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pmcj.2015.10.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2024Publisher:ACM Authors: Ella Peltonen; Marko Jurvansuu; Susanna Pirttikangas;Energy management of homes has become an ever-burning question of saving both in monetary costs and fighting climate change. However, energy management studies on smart homes still lack longitudinal real-world data with different seasonal variations and real people living in the buildings. This paper presents a low-price, consumer-market IoT sensor installation to capture residential buildings’ energy efficiency. We present a longitudinal study focusing on the energy efficiency modelling of a building and its energy consumption. We provide our sensing solution’s validation with the district heating system as the primary heating source. Our results highlight that IoT sensor readings can be further utilised to evaluate a standardised, European Union-wide energy certificate.
VTT Research Informa... arrow_drop_down VTT Research Information SystemConference object . 2025License: CC BYData sources: VTT Research Information Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1145/3703790.3703826&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert VTT Research Informa... arrow_drop_down VTT Research Information SystemConference object . 2025License: CC BYData sources: VTT Research Information Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1145/3703790.3703826&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2022 Finland, FinlandPublisher:Elsevier BV Authors: Aku Visuri; Jonatan Hamberg; Ella Peltonen;handle: 10138/341565
While the use of smartphones in extreme temperatures does not necessarily occur every day nor in all parts of the world, numerous use cases can be highlighted where the use of smartphones in cold temperatures is mandatory. Modern smartphones are designed to function in a wide range of temperatures, but when exposed to extreme cold temperatures the performance and reliability can significantly suffer. This paper presents a controlled laboratory experiment, using a clinical cold chamber to expose seven smartphone models to both medium cold (0 degrees C to -20 degrees C) and extreme cold (-30 degrees C) environments. The results showcase the smartphones' sensing software's lack of awareness of the cold environment, as well as reliability issues in the form of device crashes across the whole range of tested devices. We present a strategy for implementing monitoring application designs to both appropriately sense the effect of cold environments, as well as predicting device shutdowns in extreme cold. (C) 2021 The Authors. Published by Elsevier B.V. Peer reviewed
Pervasive and Mobile... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Oulu Repository - JultikaArticle . 2022Data sources: University of Oulu Repository - Jultikaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pmcj.2021.101509&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Pervasive and Mobile... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Oulu Repository - JultikaArticle . 2022Data sources: University of Oulu Repository - Jultikaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pmcj.2021.101509&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United KingdomPublisher:Elsevier BV Funded by:AKA | Mobile Crowdsensing in Ub...AKA| Mobile Crowdsensing in Ubiquitous Cloud Environment / Consortium: CUBICSasu Tarkoma; Sasu Tarkoma; Petteri Nurmi; Petteri Nurmi; Ella Peltonen; Eemil Lagerspetz;The question “Where has my battery gone?” remains a common source of frustration for many smartphone users. With the increased complexity of smartphone applications, and the increasing number of system settings affecting them, understanding and optimizing battery use has become a difficult chore. The present paper develops a novel approach for constructing energy models from crowdsourced measurements. In contrast to previous approaches, which have focused on the effect of a specific sensor, system setting or application, our approach can simultaneously capture relationships between multiple factors, and provide a unified view of the energy state of the mobile device. We demonstrate the validity of using crowdsourced measurements for constructing battery models through a combination of large-scale analysis of a dataset containing battery discharge and system state measurements, and hardware power measurements. The results indicate that the models captured by our approach are both in line with previous studies on battery consumption and empirical measurements, providing a cost-effective way to construct energy models during normal operations of the device. The analysis also provides several new insights about battery consumption. For example, our analysis reveals the combined effect of high CPU activity and automatic screen brightness to be higher (resulting in 9 min shorter battery lifetime on average) than the effect of medium CPU load and manual screen brightness; a Wi-Fi signal strength drop of one bar can shorten battery life by over 13%; and a smartphone sitting in direct sunlight can witness over 50% shorter battery life than one indoors in cool conditions. Based on the crowdsourced energy models, we develop Constella, a novel recommender system for system settings. Constella provides actionable and human-readable recommendations on how to adjust system settings in order to reduce overall battery drain. We validate the effectiveness of Constella through a hardware power measurement experiment carried out using three application case studies. The results of the evaluation demonstrate that Constella is capable of generating recommendations that can provide up to 61% improvements in battery life.
Pervasive and Mobile... arrow_drop_down Pervasive and Mobile ComputingArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefLancaster University: Lancaster EprintsArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pmcj.2015.10.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Pervasive and Mobile... arrow_drop_down Pervasive and Mobile ComputingArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefLancaster University: Lancaster EprintsArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pmcj.2015.10.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2024Publisher:ACM Authors: Ella Peltonen; Marko Jurvansuu; Susanna Pirttikangas;Energy management of homes has become an ever-burning question of saving both in monetary costs and fighting climate change. However, energy management studies on smart homes still lack longitudinal real-world data with different seasonal variations and real people living in the buildings. This paper presents a low-price, consumer-market IoT sensor installation to capture residential buildings’ energy efficiency. We present a longitudinal study focusing on the energy efficiency modelling of a building and its energy consumption. We provide our sensing solution’s validation with the district heating system as the primary heating source. Our results highlight that IoT sensor readings can be further utilised to evaluate a standardised, European Union-wide energy certificate.
VTT Research Informa... arrow_drop_down VTT Research Information SystemConference object . 2025License: CC BYData sources: VTT Research Information Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1145/3703790.3703826&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert VTT Research Informa... arrow_drop_down VTT Research Information SystemConference object . 2025License: CC BYData sources: VTT Research Information Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1145/3703790.3703826&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu