- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
Funder
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023 France, United States, United StatesPublisher:Wiley Funded by:NSF | LTER: Environmental drive...NSF| LTER: Environmental drivers and ecological consequences of kelp forest dynamics (SBV IV)Smith, Joshua; Free, Christopher; Lopazanski, Cori; Brun, Julien; Anderson, Clarissa; Carr, Mark; Claudet, Joachim; Dugan, Jenifer; Eurich, Jacob; Francis, Tessa; Hamilton, Scott; Mouillot, David; Raimondi, Peter; Starr, Richard; Ziegler, Shelby; Nickols, Kerry; Caselle, Jennifer;doi: 10.1111/gcb.16862
pmid: 37439293
AbstractMarine protected areas (MPAs) have gained attention as a conservation tool for enhancing ecosystem resilience to climate change. However, empirical evidence explicitly linking MPAs to enhanced ecological resilience is limited and mixed. To better understand whether MPAs can buffer climate impacts, we tested the resistance and recovery of marine communities to the 2014–2016 Northeast Pacific heatwave in the largest scientifically designed MPA network in the world off the coast of California, United States. The network consists of 124 MPAs (48 no‐take state marine reserves, and 76 partial‐take or special regulation conservation areas) implemented at different times, with full implementation completed in 2012. We compared fish, benthic invertebrate, and macroalgal community structure inside and outside of 13 no‐take MPAs across rocky intertidal, kelp forest, shallow reef, and deep reef nearshore habitats in California's Central Coast region from 2007 to 2020. We also explored whether MPA features, including age, size, depth, proportion rock, historic fishing pressure, habitat diversity and richness, connectivity, and fish biomass response ratios (proxy for ecological performance), conferred climate resilience for kelp forest and rocky intertidal habitats spanning 28 MPAs across the full network. Ecological communities dramatically shifted due to the marine heatwave across all four nearshore habitats, and MPAs did not facilitate habitat‐wide resistance or recovery. Only in protected rocky intertidal habitats did community structure significantly resist marine heatwave impacts. Community shifts were associated with a pronounced decline in the relative proportion of cold water species and an increase in warm water species. MPA features did not explain resistance or recovery to the marine heatwave. Collectively, our findings suggest that MPAs have limited ability to mitigate the impacts of marine heatwaves on community structure. Given that mechanisms of resilience to climate perturbations are complex, there is a clear need to expand assessments of ecosystem‐wide consequences resulting from acute climate‐driven perturbations, and the potential role of regulatory protection in mitigating community structure changes.
San José State Unive... arrow_drop_down San José State University ScholarWorksArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2023Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16862&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert San José State Unive... arrow_drop_down San José State University ScholarWorksArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2023Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16862&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Springer Science and Business Media LLC Authors: Margaret C. Siple; Tessa B. Francis;pmid: 26427990
Demographic, functional, or habitat diversity can confer stability on populations via portfolio effects (PEs) that integrate across multiple ecological responses and buffer against environmental impacts. The prevalence of these PEs in aquatic organisms is as yet unknown, and can be difficult to quantify; however, understanding mechanisms that stabilize populations in the face of environmental change is a key concern in ecology. Here, we examine PEs in Pacific herring (Clupea pallasii) in Puget Sound (USA) using a 40-year time series of biomass data for 19 distinct spawning population units collected using two survey types. Multivariate auto-regressive state-space models show independent dynamics among spawning subpopulations, suggesting that variation in herring production is partially driven by local effects at spawning grounds or during the earliest life history stages. This independence at the subpopulation level confers a stabilizing effect on the overall Puget Sound spawning stock, with herring being as much as three times more stable in the face of environmental perturbation than a single population unit of the same size. Herring populations within Puget Sound are highly asynchronous but share a common negative growth rate and may be influenced by the Pacific Decadal Oscillation. The biocomplexity in the herring stock shown here demonstrates that preserving spatial and demographic diversity can increase the stability of this herring population and its availability as a resource for consumers.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-015-3439-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-015-3439-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023 France, United States, United StatesPublisher:Wiley Funded by:NSF | LTER: Environmental drive...NSF| LTER: Environmental drivers and ecological consequences of kelp forest dynamics (SBV IV)Smith, Joshua; Free, Christopher; Lopazanski, Cori; Brun, Julien; Anderson, Clarissa; Carr, Mark; Claudet, Joachim; Dugan, Jenifer; Eurich, Jacob; Francis, Tessa; Hamilton, Scott; Mouillot, David; Raimondi, Peter; Starr, Richard; Ziegler, Shelby; Nickols, Kerry; Caselle, Jennifer;doi: 10.1111/gcb.16862
pmid: 37439293
AbstractMarine protected areas (MPAs) have gained attention as a conservation tool for enhancing ecosystem resilience to climate change. However, empirical evidence explicitly linking MPAs to enhanced ecological resilience is limited and mixed. To better understand whether MPAs can buffer climate impacts, we tested the resistance and recovery of marine communities to the 2014–2016 Northeast Pacific heatwave in the largest scientifically designed MPA network in the world off the coast of California, United States. The network consists of 124 MPAs (48 no‐take state marine reserves, and 76 partial‐take or special regulation conservation areas) implemented at different times, with full implementation completed in 2012. We compared fish, benthic invertebrate, and macroalgal community structure inside and outside of 13 no‐take MPAs across rocky intertidal, kelp forest, shallow reef, and deep reef nearshore habitats in California's Central Coast region from 2007 to 2020. We also explored whether MPA features, including age, size, depth, proportion rock, historic fishing pressure, habitat diversity and richness, connectivity, and fish biomass response ratios (proxy for ecological performance), conferred climate resilience for kelp forest and rocky intertidal habitats spanning 28 MPAs across the full network. Ecological communities dramatically shifted due to the marine heatwave across all four nearshore habitats, and MPAs did not facilitate habitat‐wide resistance or recovery. Only in protected rocky intertidal habitats did community structure significantly resist marine heatwave impacts. Community shifts were associated with a pronounced decline in the relative proportion of cold water species and an increase in warm water species. MPA features did not explain resistance or recovery to the marine heatwave. Collectively, our findings suggest that MPAs have limited ability to mitigate the impacts of marine heatwaves on community structure. Given that mechanisms of resilience to climate perturbations are complex, there is a clear need to expand assessments of ecosystem‐wide consequences resulting from acute climate‐driven perturbations, and the potential role of regulatory protection in mitigating community structure changes.
San José State Unive... arrow_drop_down San José State University ScholarWorksArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2023Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16862&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert San José State Unive... arrow_drop_down San José State University ScholarWorksArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2023Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16862&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Springer Science and Business Media LLC Authors: Margaret C. Siple; Tessa B. Francis;pmid: 26427990
Demographic, functional, or habitat diversity can confer stability on populations via portfolio effects (PEs) that integrate across multiple ecological responses and buffer against environmental impacts. The prevalence of these PEs in aquatic organisms is as yet unknown, and can be difficult to quantify; however, understanding mechanisms that stabilize populations in the face of environmental change is a key concern in ecology. Here, we examine PEs in Pacific herring (Clupea pallasii) in Puget Sound (USA) using a 40-year time series of biomass data for 19 distinct spawning population units collected using two survey types. Multivariate auto-regressive state-space models show independent dynamics among spawning subpopulations, suggesting that variation in herring production is partially driven by local effects at spawning grounds or during the earliest life history stages. This independence at the subpopulation level confers a stabilizing effect on the overall Puget Sound spawning stock, with herring being as much as three times more stable in the face of environmental perturbation than a single population unit of the same size. Herring populations within Puget Sound are highly asynchronous but share a common negative growth rate and may be influenced by the Pacific Decadal Oscillation. The biocomplexity in the herring stock shown here demonstrates that preserving spatial and demographic diversity can increase the stability of this herring population and its availability as a resource for consumers.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-015-3439-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-015-3439-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu