- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Hanmin Sheng; Biplob Ray; Jinliang Shao; Dimuth Lasantha; Narottam Das;Expert Systems with ... arrow_drop_down Expert Systems with ApplicationsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eswa.2022.116992&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Expert Systems with ... arrow_drop_down Expert Systems with ApplicationsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eswa.2022.116992&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint 2020 AustraliaPublisher:MDPI AG Authors: Mohammad Nur-E-Alam; Mohammad Nasirul Hoque; Soyed Mohiuddin Ahmed; Mohammad Khairul Basher; +1 AuthorsMohammad Nur-E-Alam; Mohammad Nasirul Hoque; Soyed Mohiuddin Ahmed; Mohammad Khairul Basher; Narottam Das;This paper reports on the optimization of thin-film coating assisted self-sustainable off-grid hybrid power generation systems for cattle farming in rural areas of Bangladesh. Bangladesh is a lower middle-income country with declining rates of poverty among its 160 million people due to persistent economic growth in conjunction with balanced agricultural improvements. Most of the rural households adopt a mixed farming system by cultivating crops and simultaneously rearing livestock. Among the animals raised, cattle are considered as the most valuable asset for the small/medium-scale farmers in terms of their meat and milk production. Currently, along with the major health issue, the COVID-19 pandemic is hindering the world’s economic growth and has thrust millions into unemployment; Bangladesh is also in this loop. However, natural disasters such as COVID-19 pandemic and floods, largely constrain rural smallholder cattle farmers from climbing out of their poverty. In particular, small and medium-scale cattle farmers face many issues that obstruct them from taking advantage of market opportunities and imposing a greater burden on their families and incomes. An appropriate measure can give a way to make those cattle farmers’ businesses both profitable and sustainable. Optimization of thin-film coating assisted self-sustainable off-grid hybrid power generation system for cattle farming is a new and forward-looking approach for sustainable development of the livestock sector. In this study, we design and optimize a thin-film coating assisted hybrid (photovoltaic-battery-generator) power system by using the Hybrid Optimization of Multiple Energy Resources (HOMER, Version 3.14.0) simulation tool. An analysis of the results has suggested that the off-grid hybrid system is more feasible for small and medium-scale cattle farming systems with long-term sustainability to overcome the significant challenges faced by smallholder cattle farmers in Bangladesh.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/20/8609/pdfData sources: Multidisciplinary Digital Publishing InstituteaCQUIRe CQUniversityArticle . 2020License: CC BYFull-Text: http://hdl.cqu.edu.au/10018/1339683Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2020License: CC BYFull-Text: https://ro.ecu.edu.au/ecuworkspost2013/9124Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.20944/prepr...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202009.0498.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/20/8609/pdfData sources: Multidisciplinary Digital Publishing InstituteaCQUIRe CQUniversityArticle . 2020License: CC BYFull-Text: http://hdl.cqu.edu.au/10018/1339683Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2020License: CC BYFull-Text: https://ro.ecu.edu.au/ecuworkspost2013/9124Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.20944/prepr...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202009.0498.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Shantanu Kumar; Ahmed Abu-Siada; Narottam Das; Syed Islam;Communication protocols play a pivotal role in the substation automation system as they carry critical information related to asset control, automation, protection, and monitoring. Substation legacy protocols run the assets’ bulk data on multiple wires over long distances. These data packets pass through multiple nodes, which makes the identification of the location and type of various malfunctions a challenging and time-consuming task. As downtime of substations is of high importance from a regulatory and compliance point of view, utilities are motivated to revisit the overall scheme and redesign a new system that features flexibility, adaptability, interoperability, and high accuracy. This paper presents a comprehensive review of various legacy protocols and highlights the path forward for a new protocol laid down as per the IEC 61850 standard. The IEC 61850 protocol is expected to be user-friendly, employ fiber optics instead of conventional copper wires, facilitate the application of non-conventional instrument transformers, and connect Ethernet wires to multiple intelligent electronic devices. However, deployment of smart protocols in future substations is not a straightforward process as it requires careful planning, shutdown and foreseeable issues related to interface with proprietary vendor equipment. Along with the technical issues of communication, future smart protocols call for advanced personnel and engineering skills to embrace the new technology.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electronics12153345&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electronics12153345&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint 2021Publisher:MDPI AG Authors: Mohammad Nur-E Alam; Soyed Mohiuddin Ahmed; Mohammad Nasirul Hoque; Mohammad Khairul Basher; +1 AuthorsMohammad Nur-E Alam; Soyed Mohiuddin Ahmed; Mohammad Nasirul Hoque; Mohammad Khairul Basher; Narottam Das;This research project focuses on the optimization of the hybrid energy system together with the assistance of thin-film coatings aiming to achieve self-sustainable food and crop storage facilities which will run effectively with its own generated energy. An infrastructure will be designed and constructed that will comprise a hybrid power generation system accompanied by thin-film coated semitransparent and non-transparent construction materials for energy saving. Thin-film low emissivity (Low-E) type coatings will assist the transparent or semitransparent construction materials to reflect most of the infrared (IR-mostly heat) and UV spectra of sunlight without interrupting the visible spectrum and will lead to saving energy consumption by reducing the heat and lighting during day time
https://doi.org/10.2... arrow_drop_down https://doi.org/10.20944/prepr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202105.0486.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.20944/prepr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202105.0486.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 AustraliaPublisher:MDPI AG Authors: Sachin Kumar; Kumari Sarita; Akanksha Singh S Vardhan; Rajvikram Madurai Elavarasan; +2 AuthorsSachin Kumar; Kumari Sarita; Akanksha Singh S Vardhan; Rajvikram Madurai Elavarasan; R. K. Saket; Narottam Das;doi: 10.3390/en13215631
This article presents the Reliability Assessment (RA) of renewable energy interfaced Electrical Distribution System (EDS) considering the electrical loss minimization (ELM). ELM aims at minimizing the detrimental effect of real power and reactive power losses in the EDS. Some techniques, including integration of Renewable Energy Source (RES), network reconfiguration, and expansion planning, have been suggested in the literature for achieving ELM. The optimal RES integration (also referred to as Distributed Generation (DG)) is one of the globally accepted techniques to achieve minimization of electrical losses. Therefore, first, the locations to accommodate these DGs are obtained by implementing two indexes, namely Index-1 for single DG and Index-2 for multiple DGs. Second, a Constriction Factor-based Particle Swarm Optimization (CF-PSO) technique is applied to obtain an optimal sizing(s) of the DGs for achieving the ELM. Third, the RA of the EDS is performed using the optimal location(s) and sizing(s) of the RESs (i.e., Solar photovoltaic (SPV) and Wind Turbine Generator (WTG)). Moreover, a Battery Storage System (BSS) is also incorporated optimally with the RESs to further achieve the ELM and to improve the system’s reliability. The result analysis is performed by considering the power output rating of WTG-GE’s V162-5.6MW (IECS), SPV-Sunpower’s SPR-P5-545-UPP, and BSS-Freqcon’s BESS-3000 (i.e., Battery Energy Storage System 3000), which are provided by the corresponding manufacturers. According to the outcomes of the study, the results are found to be coherent with those obtained using other techniques that are available in the literature. These results are considered for the RA of the EDS. RA is further analyzed considering the uncertainties in reliability data of WTG and SPV, including the failure rate and the repair time. The RA of optimally placed DGs is performed by considering the electrical loss minimization. It is inferred that the reliability of the EDS improves by contemplating suitable reliability data of optimally integrated DGs.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/21/5631/pdfData sources: Multidisciplinary Digital Publishing InstituteaCQUIRe CQUniversityArticle . 2020License: CC BYFull-Text: http://hdl.cqu.edu.au/10018/1339411Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13215631&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 46 citations 46 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/21/5631/pdfData sources: Multidisciplinary Digital Publishing InstituteaCQUIRe CQUniversityArticle . 2020License: CC BYFull-Text: http://hdl.cqu.edu.au/10018/1339411Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13215631&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:MDPI AG Authors: Natarajan Shanmugam; Rishi Pugazhendhi; Rajvikram Madurai Elavarasan; Pitchandi Kasiviswanathan; +1 AuthorsNatarajan Shanmugam; Rishi Pugazhendhi; Rajvikram Madurai Elavarasan; Pitchandi Kasiviswanathan; Narottam Das;doi: 10.3390/en13102631
The solar photovoltaic (PV) cell is a prominent energy harvesting device that reduces the strain in the conventional energy generation approach and endorses the prospectiveness of renewable energy. Thus, the exploration in this ever-green field is worth the effort. From the power conversion efficiency standpoint of view, PVs are consistently improving, and when analyzing the potential areas that can be advanced, more and more exciting challenges are encountered. One such crucial challenge is to increase the photon availability for PV conversion. This challenge is solved using two ways. First, by suppressing the reflection at the interface of the solar cell, and the other way is to enhance the optical pathlength inside the cell for adequate absorption of the photons. Our review addresses this challenge by emphasizing the various strategies that aid in trapping the light in the solar cells. These strategies include the usage of antireflection coatings (ARCs) and light-trapping structures. The primary focus of this study is to review the ARCs from a PV application perspective based on various materials, and it highlights the development of ARCs from more than the past three decades covering the structure, fabrication techniques, optical performance, features, and research potential of ARCs reported. More importantly, various ARCs researched with different classes of PV cells, and their impact on its efficiency is given a special attention. To enhance the optical pathlength, and thus the absorption in solar PV devices, an insight about the advanced light-trapping techniques that deals with the concept of plasmonics, spectral modification, and other prevailing innovative light-trapping structures approaching the Yablonovitch limit is discussed. An extensive collection of information is presented as tables under each core review section. Further, we take a step forward to brief the effects of ageing on ARCs and their influence on the device performance. Finally, we summarize the review of ARCs on the basis of structures, materials, optical performance, multifunctionality, stability, and cost-effectiveness along with a master table comparing the selected high-performance ARCs with perfect AR coatings. Also, from the discussed significant challenges faced by ARCs and future outlook; this work directs the researchers to identify the area of expertise where further research analysis is needed in near future.
aCQUIRe CQUniversity arrow_drop_down aCQUIRe CQUniversityArticle . 2020License: CC BYFull-Text: http://hdl.cqu.edu.au/10018/1334593Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13102631&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 150 citations 150 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert aCQUIRe CQUniversity arrow_drop_down aCQUIRe CQUniversityArticle . 2020License: CC BYFull-Text: http://hdl.cqu.edu.au/10018/1334593Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13102631&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Samina Alam; Kazi Sajedur Rahman; Md. Rokonuzzaman; P. Abdul Salam; Md. Sazal Miah; Narottam Das; Shahariar Chowdhury; Sittiporn Channumsin; Suwat Sreesawet; Manun Channumsin;doi: 10.3390/su141911913
The Sustainable Development Goals (SDGs) play an essential role, emphasizing responsible resource use, production, and consumption, including waste management. In addition, SDG 3, 7, 11, 12, and 13 are directly/indirectly related to waste management. This study aims to determine a suitable waste-to-energy (WtE) technology in Chittagong City, Bangladesh, focusing on cleaner technology. Anaerobic digestion, gasification, incineration, and landfill gas (LFG) recovery were considered as possible alternatives. Technical, economic, environmental, and social issues have been considered as necessary criteria for evaluation. An analytical hierarchy process was applied to rank these technologies based on stakeholders’ perceptions. The study found that anaerobic digestion (AD) ranked first, receiving 38% of overall weight. The second preferred technology is LFG (27%). Gasification and incineration stood at third and fourth, respectively (21% and 14%). According to a sensitivity study, the decision is only sensitive to the economy. LFG will become the most favoured solution for WtE conversion if the economy prioritizes more than 38%. Subsequently, this study’s findings will help achieve Bangladesh’s SDG agenda.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141911913&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141911913&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 AustraliaPublisher:Elsevier BV Authors: Narottam Das; Hendy Wongsodihardjo; Syed Islam;handle: 20.500.11937/34195
Abstract This paper focuses on modeling of multi-junction solar cell (MJSC) to improve the conversion efficiency using MATLAB/Simulink software. The multi-junction photovoltaic (PV) cell is investigated to obtain its maximum performance compare to the conventional silicon PV cell. MATLAB/Simulink modeled results show that tandem cell can provide almost 3-times maximum power compared to the conventional PV cells. Maximum power point tracker (MPPT) has also been performed to improve the conversion efficiency of the PV systems. The MPPT is able to assist the PV cells to attain more power efficiently and deliver electricity to the grid.
Renewable Energy arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2014.09.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable Energy arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2014.09.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Funded by:EC | THINKPVEC| THINKPVAuthors: Nallapaneni Manoj Kumar; Shauhrat S. Chopra; Maria Malvoni; Rajvikram Madurai Elavarasan; +1 AuthorsNallapaneni Manoj Kumar; Shauhrat S. Chopra; Maria Malvoni; Rajvikram Madurai Elavarasan; Narottam Das;doi: 10.3390/en13236439
Harnessing energy from the sunlight using solar photovoltaic trees (SPVTs) has become popular at present as they reduce land footprint and offer numerous complimentary services that offset infrastructure. The SPVT’s complimentary services are noticeable in many ways, e.g., electric vehicle charging stations, landscaping, passenger shelters, onsite energy generated security poles, etc. Although the SPVT offers numerous benefits and services, its deployment is relatively slower due to the challenges it suffers. The most difficult challenges include the structure design, the photovoltaic (PV) cell technology selection for a leaf, and uncertainty in performance due to weather parameter variations. This paper aims to provide the most practical solution supported by the performance prioritization approach (PPA) framework for a typical multilayered SPVT. The proposed PPA framework considers the energy and sustainability indicators and helps in reporting the performance of a multilayered SPVT, with the aim of selecting an efficient PV leaf design. A three-layered SPVT (3-L SPVT) is simulated; moreover, the degradation-influenced lifetime energy performance and carbon dioxide (CO2) emissions were evaluated for three different PV-cell technologies, namely crystalline silicon (c-Si), copper indium gallium selenide (CIGS), and cadmium telluride (CdTe). While evaluating the performance of the 3-L SPVT, the power conversion efficiency, thermal regulation, degradation rate, and lifecycle carbon emissions were considered. The results of the 3-L SPVT were analyzed thoroughly, and it was found that in the early years, the c-Si PV leaves give better energy yields. However, when degradation and other influencing weather parameters were considered over its lifetime, the SPVT with c-Si leaves showed a lowered energy yield. Overall, the lifetime energy and CO2 emission results indicate that the CdTe PV leaf outperforms due to its lower degradation rate compared to c-Si and CIGS. On the other side, the benefits associated with CdTe cells, such as flexible and ultrathin glass structure as well as low-cost manufacturing, make them the best acceptable PV leaf for SPVT design. Through this investigation, we present the selection of suitable solar cell technology for a PV leaf.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/23/6439/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13236439&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/23/6439/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13236439&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Australia, Australia, MalaysiaPublisher:Elsevier BV Mohammad Nur-E-Alam; Kazi Zehad Mostofa; Boon Kar Yap; Mohammad Khairul Basher; M. A. Islam; Mikhail Vasiliev; Manzoore Elahi M. Soudagar; Narottam Das; Sieh Kiong Tiong;El enfoque de este trabajo está en la optimización de sistemas de generación de energía híbridos totalmente fotovoltaicos para edificios energéticamente eficientes y sostenibles, con el objetivo de emisiones netas cero. Esta investigación propone un enfoque híbrido que combina paneles solares convencionales con sistemas avanzados de ventanas solares y la construcción de sistemas fotovoltaicos integrados (BIPV). Al analizar los datos meteorológicos y utilizar los modelos de simulación, predecimos las salidas de energía para diferentes ciudades como Kuala Lumpur, Sydney, Toronto, Auckland, Ciudad del Cabo, Riad y la ciudad de Kuwait. Aunque hay largos plazos de amortización, nuestras simulaciones demuestran que el sistema combinado totalmente PV propuesto puede satisfacer las necesidades energéticas de los edificios modernos (hasta un 78%, dependiendo de la ubicación) y puede ampliarse para edificios enteros. Los resultados simulados indican que las ciudades de Oriente Medio son particularmente adecuadas para estos sistemas híbridos, generando aproximadamente 1,2 veces más energía en comparación con Toronto, Canadá. Además, predecimos el resultado de la posible incorporación de sistemas inteligentes y automatizados para impulsar la eficiencia energética general hacia el logro de un entorno de construcción sostenible. L'objectif de ce travail est l'optimisation d'un système de production d'énergie hybride entièrement photovoltaïque pour des bâtiments économes en énergie et durables, visant des émissions nettes nulles. Cette recherche propose une approche hybride combinant des panneaux solaires conventionnels avec des systèmes de fenêtres solaires avancés et des systèmes photovoltaïques intégrés au bâtiment (BIPV). En analysant les données météorologiques et en utilisant les modèles de simulation, nous prédisons la production d'énergie pour différentes villes telles que Kuala Lumpur, Sydney, Toronto, Auckland, Le Cap, Riyad et Koweït. Bien que les temps de récupération soient longs, nos simulations démontrent que le système mixte tout-PV proposé peut répondre aux besoins énergétiques des bâtiments modernes (jusqu'à 78 %, en fonction de l'emplacement) et peut être étendu à des bâtiments entiers. Les résultats simulés indiquent que les villes du Moyen-Orient sont particulièrement adaptées à ces systèmes hybrides, générant environ 1,2 fois plus d'énergie que Toronto, au Canada. De plus, nous prévoyons le résultat de l'incorporation possible de systèmes intelligents et automatisés pour stimuler l'efficacité énergétique globale vers la réalisation d'un environnement de bâtiment durable. The focus of this work is on the optimization of an all-photovoltaic hybrid power generation systems for energy-efficient and sustainable buildings, aiming for net-zero emissions. This research proposes a hybrid approach combining conventional solar panels with advanced solar window systems and building integrated photovoltaic (BIPV) systems. By analyzing the meteorological data and using the simulation models, we predict energy outputs for different cities such as Kuala Lumpur, Sydney, Toronto, Auckland, Cape Town, Riyadh, and Kuwait City. Although there are long payback times, our simulations demonstrate that the proposed all-PV blended system can meet the energy needs of modern buildings (up to 78%, location dependent) and can be scaled up for entire buildings. The simulated results indicate that Middle Eastern cities are particularly suitable for these hybrid systems, generating approximately 1.2 times more power compared to Toronto, Canada. Additionally, we predict the outcome of the possible incorporation of intelligent and automated systems to boost overall energy efficiency toward achieving a sustainable building environment. ينصب تركيز هذا العمل على تحسين أنظمة توليد الطاقة الهجينة الضوئية بالكامل للمباني الموفرة للطاقة والمستدامة، والتي تهدف إلى تحقيق انبعاثات صافية صفرية. يقترح هذا البحث نهجًا هجينًا يجمع بين الألواح الشمسية التقليدية وأنظمة النوافذ الشمسية المتقدمة وبناء أنظمة كهروضوئية متكاملة (BIPV). من خلال تحليل بيانات الأرصاد الجوية واستخدام نماذج المحاكاة، نتوقع مخرجات الطاقة لمدن مختلفة مثل كوالالمبور وسيدني وتورونتو وأوكلاند وكيب تاون والرياض ومدينة الكويت. على الرغم من وجود أوقات استرداد طويلة، إلا أن عمليات المحاكاة التي أجريناها تُظهر أن النظام المدمج المقترح بالكامل يمكن أن يلبي احتياجات الطاقة للمباني الحديثة (ما يصل إلى 78 ٪، اعتمادًا على الموقع) ويمكن توسيع نطاقه للمباني بأكملها. تشير النتائج المحاكاة إلى أن مدن الشرق الأوسط مناسبة بشكل خاص لهذه الأنظمة الهجينة، حيث تولد طاقة أكبر بنحو 1.2 مرة مقارنة بتورونتو، كندا. بالإضافة إلى ذلك، نتوقع نتائج الدمج المحتمل للأنظمة الذكية والآلية لتعزيز كفاءة الطاقة بشكل عام نحو تحقيق بيئة بناء مستدامة.
Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefEdith Cowan University (ECU, Australia): Research OnlineArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Malaya: UM Institutional RepositoryArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2024.103636&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefEdith Cowan University (ECU, Australia): Research OnlineArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Malaya: UM Institutional RepositoryArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2024.103636&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Hanmin Sheng; Biplob Ray; Jinliang Shao; Dimuth Lasantha; Narottam Das;Expert Systems with ... arrow_drop_down Expert Systems with ApplicationsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eswa.2022.116992&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Expert Systems with ... arrow_drop_down Expert Systems with ApplicationsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eswa.2022.116992&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint 2020 AustraliaPublisher:MDPI AG Authors: Mohammad Nur-E-Alam; Mohammad Nasirul Hoque; Soyed Mohiuddin Ahmed; Mohammad Khairul Basher; +1 AuthorsMohammad Nur-E-Alam; Mohammad Nasirul Hoque; Soyed Mohiuddin Ahmed; Mohammad Khairul Basher; Narottam Das;This paper reports on the optimization of thin-film coating assisted self-sustainable off-grid hybrid power generation systems for cattle farming in rural areas of Bangladesh. Bangladesh is a lower middle-income country with declining rates of poverty among its 160 million people due to persistent economic growth in conjunction with balanced agricultural improvements. Most of the rural households adopt a mixed farming system by cultivating crops and simultaneously rearing livestock. Among the animals raised, cattle are considered as the most valuable asset for the small/medium-scale farmers in terms of their meat and milk production. Currently, along with the major health issue, the COVID-19 pandemic is hindering the world’s economic growth and has thrust millions into unemployment; Bangladesh is also in this loop. However, natural disasters such as COVID-19 pandemic and floods, largely constrain rural smallholder cattle farmers from climbing out of their poverty. In particular, small and medium-scale cattle farmers face many issues that obstruct them from taking advantage of market opportunities and imposing a greater burden on their families and incomes. An appropriate measure can give a way to make those cattle farmers’ businesses both profitable and sustainable. Optimization of thin-film coating assisted self-sustainable off-grid hybrid power generation system for cattle farming is a new and forward-looking approach for sustainable development of the livestock sector. In this study, we design and optimize a thin-film coating assisted hybrid (photovoltaic-battery-generator) power system by using the Hybrid Optimization of Multiple Energy Resources (HOMER, Version 3.14.0) simulation tool. An analysis of the results has suggested that the off-grid hybrid system is more feasible for small and medium-scale cattle farming systems with long-term sustainability to overcome the significant challenges faced by smallholder cattle farmers in Bangladesh.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/20/8609/pdfData sources: Multidisciplinary Digital Publishing InstituteaCQUIRe CQUniversityArticle . 2020License: CC BYFull-Text: http://hdl.cqu.edu.au/10018/1339683Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2020License: CC BYFull-Text: https://ro.ecu.edu.au/ecuworkspost2013/9124Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.20944/prepr...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202009.0498.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/20/8609/pdfData sources: Multidisciplinary Digital Publishing InstituteaCQUIRe CQUniversityArticle . 2020License: CC BYFull-Text: http://hdl.cqu.edu.au/10018/1339683Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2020License: CC BYFull-Text: https://ro.ecu.edu.au/ecuworkspost2013/9124Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.20944/prepr...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202009.0498.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Shantanu Kumar; Ahmed Abu-Siada; Narottam Das; Syed Islam;Communication protocols play a pivotal role in the substation automation system as they carry critical information related to asset control, automation, protection, and monitoring. Substation legacy protocols run the assets’ bulk data on multiple wires over long distances. These data packets pass through multiple nodes, which makes the identification of the location and type of various malfunctions a challenging and time-consuming task. As downtime of substations is of high importance from a regulatory and compliance point of view, utilities are motivated to revisit the overall scheme and redesign a new system that features flexibility, adaptability, interoperability, and high accuracy. This paper presents a comprehensive review of various legacy protocols and highlights the path forward for a new protocol laid down as per the IEC 61850 standard. The IEC 61850 protocol is expected to be user-friendly, employ fiber optics instead of conventional copper wires, facilitate the application of non-conventional instrument transformers, and connect Ethernet wires to multiple intelligent electronic devices. However, deployment of smart protocols in future substations is not a straightforward process as it requires careful planning, shutdown and foreseeable issues related to interface with proprietary vendor equipment. Along with the technical issues of communication, future smart protocols call for advanced personnel and engineering skills to embrace the new technology.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electronics12153345&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electronics12153345&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint 2021Publisher:MDPI AG Authors: Mohammad Nur-E Alam; Soyed Mohiuddin Ahmed; Mohammad Nasirul Hoque; Mohammad Khairul Basher; +1 AuthorsMohammad Nur-E Alam; Soyed Mohiuddin Ahmed; Mohammad Nasirul Hoque; Mohammad Khairul Basher; Narottam Das;This research project focuses on the optimization of the hybrid energy system together with the assistance of thin-film coatings aiming to achieve self-sustainable food and crop storage facilities which will run effectively with its own generated energy. An infrastructure will be designed and constructed that will comprise a hybrid power generation system accompanied by thin-film coated semitransparent and non-transparent construction materials for energy saving. Thin-film low emissivity (Low-E) type coatings will assist the transparent or semitransparent construction materials to reflect most of the infrared (IR-mostly heat) and UV spectra of sunlight without interrupting the visible spectrum and will lead to saving energy consumption by reducing the heat and lighting during day time
https://doi.org/10.2... arrow_drop_down https://doi.org/10.20944/prepr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202105.0486.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.20944/prepr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202105.0486.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 AustraliaPublisher:MDPI AG Authors: Sachin Kumar; Kumari Sarita; Akanksha Singh S Vardhan; Rajvikram Madurai Elavarasan; +2 AuthorsSachin Kumar; Kumari Sarita; Akanksha Singh S Vardhan; Rajvikram Madurai Elavarasan; R. K. Saket; Narottam Das;doi: 10.3390/en13215631
This article presents the Reliability Assessment (RA) of renewable energy interfaced Electrical Distribution System (EDS) considering the electrical loss minimization (ELM). ELM aims at minimizing the detrimental effect of real power and reactive power losses in the EDS. Some techniques, including integration of Renewable Energy Source (RES), network reconfiguration, and expansion planning, have been suggested in the literature for achieving ELM. The optimal RES integration (also referred to as Distributed Generation (DG)) is one of the globally accepted techniques to achieve minimization of electrical losses. Therefore, first, the locations to accommodate these DGs are obtained by implementing two indexes, namely Index-1 for single DG and Index-2 for multiple DGs. Second, a Constriction Factor-based Particle Swarm Optimization (CF-PSO) technique is applied to obtain an optimal sizing(s) of the DGs for achieving the ELM. Third, the RA of the EDS is performed using the optimal location(s) and sizing(s) of the RESs (i.e., Solar photovoltaic (SPV) and Wind Turbine Generator (WTG)). Moreover, a Battery Storage System (BSS) is also incorporated optimally with the RESs to further achieve the ELM and to improve the system’s reliability. The result analysis is performed by considering the power output rating of WTG-GE’s V162-5.6MW (IECS), SPV-Sunpower’s SPR-P5-545-UPP, and BSS-Freqcon’s BESS-3000 (i.e., Battery Energy Storage System 3000), which are provided by the corresponding manufacturers. According to the outcomes of the study, the results are found to be coherent with those obtained using other techniques that are available in the literature. These results are considered for the RA of the EDS. RA is further analyzed considering the uncertainties in reliability data of WTG and SPV, including the failure rate and the repair time. The RA of optimally placed DGs is performed by considering the electrical loss minimization. It is inferred that the reliability of the EDS improves by contemplating suitable reliability data of optimally integrated DGs.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/21/5631/pdfData sources: Multidisciplinary Digital Publishing InstituteaCQUIRe CQUniversityArticle . 2020License: CC BYFull-Text: http://hdl.cqu.edu.au/10018/1339411Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13215631&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 46 citations 46 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/21/5631/pdfData sources: Multidisciplinary Digital Publishing InstituteaCQUIRe CQUniversityArticle . 2020License: CC BYFull-Text: http://hdl.cqu.edu.au/10018/1339411Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13215631&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:MDPI AG Authors: Natarajan Shanmugam; Rishi Pugazhendhi; Rajvikram Madurai Elavarasan; Pitchandi Kasiviswanathan; +1 AuthorsNatarajan Shanmugam; Rishi Pugazhendhi; Rajvikram Madurai Elavarasan; Pitchandi Kasiviswanathan; Narottam Das;doi: 10.3390/en13102631
The solar photovoltaic (PV) cell is a prominent energy harvesting device that reduces the strain in the conventional energy generation approach and endorses the prospectiveness of renewable energy. Thus, the exploration in this ever-green field is worth the effort. From the power conversion efficiency standpoint of view, PVs are consistently improving, and when analyzing the potential areas that can be advanced, more and more exciting challenges are encountered. One such crucial challenge is to increase the photon availability for PV conversion. This challenge is solved using two ways. First, by suppressing the reflection at the interface of the solar cell, and the other way is to enhance the optical pathlength inside the cell for adequate absorption of the photons. Our review addresses this challenge by emphasizing the various strategies that aid in trapping the light in the solar cells. These strategies include the usage of antireflection coatings (ARCs) and light-trapping structures. The primary focus of this study is to review the ARCs from a PV application perspective based on various materials, and it highlights the development of ARCs from more than the past three decades covering the structure, fabrication techniques, optical performance, features, and research potential of ARCs reported. More importantly, various ARCs researched with different classes of PV cells, and their impact on its efficiency is given a special attention. To enhance the optical pathlength, and thus the absorption in solar PV devices, an insight about the advanced light-trapping techniques that deals with the concept of plasmonics, spectral modification, and other prevailing innovative light-trapping structures approaching the Yablonovitch limit is discussed. An extensive collection of information is presented as tables under each core review section. Further, we take a step forward to brief the effects of ageing on ARCs and their influence on the device performance. Finally, we summarize the review of ARCs on the basis of structures, materials, optical performance, multifunctionality, stability, and cost-effectiveness along with a master table comparing the selected high-performance ARCs with perfect AR coatings. Also, from the discussed significant challenges faced by ARCs and future outlook; this work directs the researchers to identify the area of expertise where further research analysis is needed in near future.
aCQUIRe CQUniversity arrow_drop_down aCQUIRe CQUniversityArticle . 2020License: CC BYFull-Text: http://hdl.cqu.edu.au/10018/1334593Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13102631&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 150 citations 150 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert aCQUIRe CQUniversity arrow_drop_down aCQUIRe CQUniversityArticle . 2020License: CC BYFull-Text: http://hdl.cqu.edu.au/10018/1334593Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13102631&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Samina Alam; Kazi Sajedur Rahman; Md. Rokonuzzaman; P. Abdul Salam; Md. Sazal Miah; Narottam Das; Shahariar Chowdhury; Sittiporn Channumsin; Suwat Sreesawet; Manun Channumsin;doi: 10.3390/su141911913
The Sustainable Development Goals (SDGs) play an essential role, emphasizing responsible resource use, production, and consumption, including waste management. In addition, SDG 3, 7, 11, 12, and 13 are directly/indirectly related to waste management. This study aims to determine a suitable waste-to-energy (WtE) technology in Chittagong City, Bangladesh, focusing on cleaner technology. Anaerobic digestion, gasification, incineration, and landfill gas (LFG) recovery were considered as possible alternatives. Technical, economic, environmental, and social issues have been considered as necessary criteria for evaluation. An analytical hierarchy process was applied to rank these technologies based on stakeholders’ perceptions. The study found that anaerobic digestion (AD) ranked first, receiving 38% of overall weight. The second preferred technology is LFG (27%). Gasification and incineration stood at third and fourth, respectively (21% and 14%). According to a sensitivity study, the decision is only sensitive to the economy. LFG will become the most favoured solution for WtE conversion if the economy prioritizes more than 38%. Subsequently, this study’s findings will help achieve Bangladesh’s SDG agenda.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141911913&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141911913&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 AustraliaPublisher:Elsevier BV Authors: Narottam Das; Hendy Wongsodihardjo; Syed Islam;handle: 20.500.11937/34195
Abstract This paper focuses on modeling of multi-junction solar cell (MJSC) to improve the conversion efficiency using MATLAB/Simulink software. The multi-junction photovoltaic (PV) cell is investigated to obtain its maximum performance compare to the conventional silicon PV cell. MATLAB/Simulink modeled results show that tandem cell can provide almost 3-times maximum power compared to the conventional PV cells. Maximum power point tracker (MPPT) has also been performed to improve the conversion efficiency of the PV systems. The MPPT is able to assist the PV cells to attain more power efficiently and deliver electricity to the grid.
Renewable Energy arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2014.09.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable Energy arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2014.09.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Funded by:EC | THINKPVEC| THINKPVAuthors: Nallapaneni Manoj Kumar; Shauhrat S. Chopra; Maria Malvoni; Rajvikram Madurai Elavarasan; +1 AuthorsNallapaneni Manoj Kumar; Shauhrat S. Chopra; Maria Malvoni; Rajvikram Madurai Elavarasan; Narottam Das;doi: 10.3390/en13236439
Harnessing energy from the sunlight using solar photovoltaic trees (SPVTs) has become popular at present as they reduce land footprint and offer numerous complimentary services that offset infrastructure. The SPVT’s complimentary services are noticeable in many ways, e.g., electric vehicle charging stations, landscaping, passenger shelters, onsite energy generated security poles, etc. Although the SPVT offers numerous benefits and services, its deployment is relatively slower due to the challenges it suffers. The most difficult challenges include the structure design, the photovoltaic (PV) cell technology selection for a leaf, and uncertainty in performance due to weather parameter variations. This paper aims to provide the most practical solution supported by the performance prioritization approach (PPA) framework for a typical multilayered SPVT. The proposed PPA framework considers the energy and sustainability indicators and helps in reporting the performance of a multilayered SPVT, with the aim of selecting an efficient PV leaf design. A three-layered SPVT (3-L SPVT) is simulated; moreover, the degradation-influenced lifetime energy performance and carbon dioxide (CO2) emissions were evaluated for three different PV-cell technologies, namely crystalline silicon (c-Si), copper indium gallium selenide (CIGS), and cadmium telluride (CdTe). While evaluating the performance of the 3-L SPVT, the power conversion efficiency, thermal regulation, degradation rate, and lifecycle carbon emissions were considered. The results of the 3-L SPVT were analyzed thoroughly, and it was found that in the early years, the c-Si PV leaves give better energy yields. However, when degradation and other influencing weather parameters were considered over its lifetime, the SPVT with c-Si leaves showed a lowered energy yield. Overall, the lifetime energy and CO2 emission results indicate that the CdTe PV leaf outperforms due to its lower degradation rate compared to c-Si and CIGS. On the other side, the benefits associated with CdTe cells, such as flexible and ultrathin glass structure as well as low-cost manufacturing, make them the best acceptable PV leaf for SPVT design. Through this investigation, we present the selection of suitable solar cell technology for a PV leaf.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/23/6439/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13236439&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/23/6439/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13236439&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Australia, Australia, MalaysiaPublisher:Elsevier BV Mohammad Nur-E-Alam; Kazi Zehad Mostofa; Boon Kar Yap; Mohammad Khairul Basher; M. A. Islam; Mikhail Vasiliev; Manzoore Elahi M. Soudagar; Narottam Das; Sieh Kiong Tiong;El enfoque de este trabajo está en la optimización de sistemas de generación de energía híbridos totalmente fotovoltaicos para edificios energéticamente eficientes y sostenibles, con el objetivo de emisiones netas cero. Esta investigación propone un enfoque híbrido que combina paneles solares convencionales con sistemas avanzados de ventanas solares y la construcción de sistemas fotovoltaicos integrados (BIPV). Al analizar los datos meteorológicos y utilizar los modelos de simulación, predecimos las salidas de energía para diferentes ciudades como Kuala Lumpur, Sydney, Toronto, Auckland, Ciudad del Cabo, Riad y la ciudad de Kuwait. Aunque hay largos plazos de amortización, nuestras simulaciones demuestran que el sistema combinado totalmente PV propuesto puede satisfacer las necesidades energéticas de los edificios modernos (hasta un 78%, dependiendo de la ubicación) y puede ampliarse para edificios enteros. Los resultados simulados indican que las ciudades de Oriente Medio son particularmente adecuadas para estos sistemas híbridos, generando aproximadamente 1,2 veces más energía en comparación con Toronto, Canadá. Además, predecimos el resultado de la posible incorporación de sistemas inteligentes y automatizados para impulsar la eficiencia energética general hacia el logro de un entorno de construcción sostenible. L'objectif de ce travail est l'optimisation d'un système de production d'énergie hybride entièrement photovoltaïque pour des bâtiments économes en énergie et durables, visant des émissions nettes nulles. Cette recherche propose une approche hybride combinant des panneaux solaires conventionnels avec des systèmes de fenêtres solaires avancés et des systèmes photovoltaïques intégrés au bâtiment (BIPV). En analysant les données météorologiques et en utilisant les modèles de simulation, nous prédisons la production d'énergie pour différentes villes telles que Kuala Lumpur, Sydney, Toronto, Auckland, Le Cap, Riyad et Koweït. Bien que les temps de récupération soient longs, nos simulations démontrent que le système mixte tout-PV proposé peut répondre aux besoins énergétiques des bâtiments modernes (jusqu'à 78 %, en fonction de l'emplacement) et peut être étendu à des bâtiments entiers. Les résultats simulés indiquent que les villes du Moyen-Orient sont particulièrement adaptées à ces systèmes hybrides, générant environ 1,2 fois plus d'énergie que Toronto, au Canada. De plus, nous prévoyons le résultat de l'incorporation possible de systèmes intelligents et automatisés pour stimuler l'efficacité énergétique globale vers la réalisation d'un environnement de bâtiment durable. The focus of this work is on the optimization of an all-photovoltaic hybrid power generation systems for energy-efficient and sustainable buildings, aiming for net-zero emissions. This research proposes a hybrid approach combining conventional solar panels with advanced solar window systems and building integrated photovoltaic (BIPV) systems. By analyzing the meteorological data and using the simulation models, we predict energy outputs for different cities such as Kuala Lumpur, Sydney, Toronto, Auckland, Cape Town, Riyadh, and Kuwait City. Although there are long payback times, our simulations demonstrate that the proposed all-PV blended system can meet the energy needs of modern buildings (up to 78%, location dependent) and can be scaled up for entire buildings. The simulated results indicate that Middle Eastern cities are particularly suitable for these hybrid systems, generating approximately 1.2 times more power compared to Toronto, Canada. Additionally, we predict the outcome of the possible incorporation of intelligent and automated systems to boost overall energy efficiency toward achieving a sustainable building environment. ينصب تركيز هذا العمل على تحسين أنظمة توليد الطاقة الهجينة الضوئية بالكامل للمباني الموفرة للطاقة والمستدامة، والتي تهدف إلى تحقيق انبعاثات صافية صفرية. يقترح هذا البحث نهجًا هجينًا يجمع بين الألواح الشمسية التقليدية وأنظمة النوافذ الشمسية المتقدمة وبناء أنظمة كهروضوئية متكاملة (BIPV). من خلال تحليل بيانات الأرصاد الجوية واستخدام نماذج المحاكاة، نتوقع مخرجات الطاقة لمدن مختلفة مثل كوالالمبور وسيدني وتورونتو وأوكلاند وكيب تاون والرياض ومدينة الكويت. على الرغم من وجود أوقات استرداد طويلة، إلا أن عمليات المحاكاة التي أجريناها تُظهر أن النظام المدمج المقترح بالكامل يمكن أن يلبي احتياجات الطاقة للمباني الحديثة (ما يصل إلى 78 ٪، اعتمادًا على الموقع) ويمكن توسيع نطاقه للمباني بأكملها. تشير النتائج المحاكاة إلى أن مدن الشرق الأوسط مناسبة بشكل خاص لهذه الأنظمة الهجينة، حيث تولد طاقة أكبر بنحو 1.2 مرة مقارنة بتورونتو، كندا. بالإضافة إلى ذلك، نتوقع نتائج الدمج المحتمل للأنظمة الذكية والآلية لتعزيز كفاءة الطاقة بشكل عام نحو تحقيق بيئة بناء مستدامة.
Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefEdith Cowan University (ECU, Australia): Research OnlineArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Malaya: UM Institutional RepositoryArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2024.103636&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefEdith Cowan University (ECU, Australia): Research OnlineArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Malaya: UM Institutional RepositoryArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2024.103636&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu