- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2018 United States, United States, Australia, Italy, France, Australia, Australia, United States, AustraliaPublisher:American Association for the Advancement of Science (AAAS) Funded by:DFGDFGAndrew Pomeroy; Andrew Pomeroy; Elisa Casella; Valeriano Parravicini; Antoine Collin; Antoine Collin; Rémy Canavesio; Daniel L. Harris; Daniel L. Harris; Jody M. Webster; Alessio Rovere; Hannah E. Power;If coral reefs continue to degrade, waves on coastlines may substantially increase, leading to greater coastal erosion.
Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università degli Studi di Venezia Ca' FoscariArticle . 2018License: CC BY NCUniversité de Bretagne Occidentale: HALArticle . 2018License: CC BY NCFull-Text: https://hal.science/hal-01724281Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2018License: CC BY NCFull-Text: https://hal.science/hal-01724281Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2018License: CC BY NCFull-Text: http://hdl.handle.net/11343/273103Data sources: Bielefeld Academic Search Engine (BASE)Université de Nantes: HAL-UNIV-NANTESArticle . 2018License: CC BY NCFull-Text: https://hal.science/hal-01724281Data sources: Bielefeld Academic Search Engine (BASE)Columbia University Academic CommonsArticle . 2018Full-Text: https://doi.org/10.7916/D8F77VN0Data sources: Bielefeld Academic Search Engine (BASE)Normandie Université: HALArticle . 2018License: CC BY NCFull-Text: https://hal.science/hal-01724281Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018License: CC BY NCFull-Text: https://hal.science/hal-01724281Data sources: Bielefeld Academic Search Engine (BASE)Fachrepositorium LebenswissenschaftenArticle . 2018License: CC BY NCData sources: Fachrepositorium LebenswissenschaftenINRIA a CCSD electronic archive serverArticle . 2018Data sources: INRIA a CCSD electronic archive serverThe University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.aao4350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu168 citations 168 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università degli Studi di Venezia Ca' FoscariArticle . 2018License: CC BY NCUniversité de Bretagne Occidentale: HALArticle . 2018License: CC BY NCFull-Text: https://hal.science/hal-01724281Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2018License: CC BY NCFull-Text: https://hal.science/hal-01724281Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2018License: CC BY NCFull-Text: http://hdl.handle.net/11343/273103Data sources: Bielefeld Academic Search Engine (BASE)Université de Nantes: HAL-UNIV-NANTESArticle . 2018License: CC BY NCFull-Text: https://hal.science/hal-01724281Data sources: Bielefeld Academic Search Engine (BASE)Columbia University Academic CommonsArticle . 2018Full-Text: https://doi.org/10.7916/D8F77VN0Data sources: Bielefeld Academic Search Engine (BASE)Normandie Université: HALArticle . 2018License: CC BY NCFull-Text: https://hal.science/hal-01724281Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018License: CC BY NCFull-Text: https://hal.science/hal-01724281Data sources: Bielefeld Academic Search Engine (BASE)Fachrepositorium LebenswissenschaftenArticle . 2018License: CC BY NCData sources: Fachrepositorium LebenswissenschaftenINRIA a CCSD electronic archive serverArticle . 2018Data sources: INRIA a CCSD electronic archive serverThe University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.aao4350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 Italy, FrancePublisher:Wiley Parravicini, Valeriano; Mangialajo, Luisa; Mousseau, Laure; Peirano, Andrea; Morri, Carla; Montefalcone, Monica; Francour, Patrice; Kulbicki, Michel; Bianchi, Carlo Nike;doi: 10.1111/maec.12277
handle: 11567/865771
AbstractThe effects of global change are particularly serious in areas where range shifts of species are physically constrained such as the Ligurian Sea, which is one of the coldest sectors of the Mediterranean. In this basin, historical information on water temperature (from the sea surface down to 75 m depth) dates back to the 1950s. Early studies also recorded warm‐water species occurrence. Thanks to these data we provide the first detailed characterization of water temperature variation from 1958 up to 2010 in the layer 0–75 m depth. We coupled this analysis with the available information on rocky reef epibenthic communities (literature review from 1955 to 1964 and field data from 1980 to 2010). The analysis of water temperature revealed several patterns of variation: a cooling phase from 1958 to 1980, a phase of rapid warming from 1980 to 1990 and a phase of slower warming from 1990 to 2010. Inter‐annual variation in temperature increased over the entire period for the water layer down to 20 m. Warm‐water native and alien species richness increased during the warming phases. Literature estimates suggest a decrease in warm‐water native species richness during the cooling phase. The analysis of quantitative data collected in the early 1990s and late 2000s indicated a decrease in the cover of warm‐water native species on shallow rocky reefs and an increase in deeper waters. We argue that increased inter‐annual variation in water temperature may disadvantage native warm‐water species in shallow waters. Our results indicate that the effect of temperature rises in cold, constrained basins may be more complex than the simple prediction of species changing their geographical range according to their thermal limits.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverMarine EcologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut national des sciences de l'Univers: HAL-INSUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/maec.12277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverMarine EcologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut national des sciences de l'Univers: HAL-INSUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/maec.12277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 FrancePublisher:Springer Science and Business Media LLC Morat, Fabien; Wicquart, Jérémy; Schiettekatte, Nina; de Sinéty, Guillemette; Bienvenu, Jean; Casey, Jordan; Brandl, Simon; Vii, Jason; Carlot, Jérémy; Degregori, Samuel; Mercière, Alexandre; Fey, Pauline; Galzin, René; Letourneur, Yves; Sasal, Pierre; Parravicini, Valeriano;AbstractSomatic growth is a critical biological trait for organismal, population, and ecosystem-level processes. Due to its direct link with energetic demands, growth also represents an important parameter to estimate energy and nutrient fluxes. For marine fishes, growth rate information is most frequently derived from sagittal otoliths, and most of the available data stems from studies on temperate species that are targeted by commercial fisheries. Although the analysis of otoliths is a powerful tool to estimate individual growth, the time-consuming nature of otolith processing is one barrier for collection of comprehensive datasets across multiple species. This is especially true for coral reef fishes, which are extremely diverse. Here, we provide back-calculated size-at-age estimates (including measures of uncertainty) based on sagittal otoliths from 710 individuals belonging to 45 coral reef fish species from French Polynesia. In addition, we provide Von Bertalanffy growth parameters which are useful to predict community level biomass production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-00711-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-00711-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 France, ItalyPublisher:Wiley Alexandre Mercière; Alessio Rovere; Jérémy Carlot; Diego R. Barneche; Simon J. Brandl; Valeriano Parravicini; Laetitia Hédouin; Ulisse Cardini; Hunter S. Lenihan; Jordan M. Casey; Jordan M. Casey; Mohsen Kayal; Mehdi Adjeroud; Mehdi Adjeroud; Benoit Espiau;AbstractSea‐level rise is predicted to cause major damage to tropical coastlines. While coral reefs can act as natural barriers for ocean waves, their protection hinges on the ability of scleractinian corals to produce enough calcium carbonate (CaCO3) to keep up with rising sea levels. As a consequence of intensifying disturbances, coral communities are changing rapidly, potentially reducing community‐level CaCO3 production. By combining colony‐level physiology and long‐term monitoring data, we show that reefs recovering from major disturbances can produce 40% more CaCO3 than currently estimated due to the disproportionate contribution of juvenile corals. However, the buffering effect of highly productive juvenile corals is compromised by recruitment failures, which have been more frequently observed after large‐scale, repeated bleaching events. While the size structure of corals can bolster a critical ecological function on reefs, climate change impacts on recruitment may undermine this buffering effect, thus further compromising the persistence of reefs and their provision of important ecosystem services.
Archivio istituziona... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerGlobal Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerGlobal Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Australia, United KingdomPublisher:American Association for the Advancement of Science (AAAS) Funded by:ARC | ARC Centres of Excellence..., ANR | REEFLUX, NSERCARC| ARC Centres of Excellences - Grant ID: CE140100020 ,ANR| REEFLUX ,NSERCCarole C. Baldwin; Jordan M. Casey; Jordan M. Casey; Isabelle M. Côté; Nina M. D. Schiettekatte; Christopher H. R. Goatley; Valeriano Parravicini; David R. Bellwood; Renato A. Morais; Simon J. Brandl; Simon J. Brandl; Luke Tornabene;Little fish make a big contributionCoral reefs represent one of the most biodiverse and rich ecosystems. Such richness conjures up images of coral heads and large colorful reef fishes. Brandlet al.show, however, that one of the most striking and important parts of the reef ecosystem is almost never seen (see the Perspective by Riginos and Leis). Small cryptobenthic fish, like blennies, make up nearly 40% of reef fish biodiversity. Furthermore, the majority of cryptobenthic fish larvae settle locally, rather than being widely dispersed, and have rapid turnover rates. Such high diversity and densities could thus provide the biomass base for larger, better-known reef fish.Science, this issue p.1189; see also p.1128
Science arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aav3384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu173 citations 173 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Science arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aav3384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 AustraliaPublisher:The Royal Society Gonzalo Pérez-Rosales; Héloïse Rouzé; Gergely Torda; Pim Bongaerts; Michel Pichon; Valeriano Parravicini; Laetitia Hédouin;Climate change and consequent coral bleaching are causing the disappearance of reef-building corals worldwide. While bleaching episodes significantly impact shallow waters, little is known about their impact on mesophotic coral communities. We studied the prevalence of coral bleaching two to three months after a heat stress event, along an extreme depth range from 6 to 90 m in French Polynesia. Bayesian modelling showed a decreasing probability of bleaching of all coral genera over depth, with little to no bleaching observed at lower mesophotic depths (greater than or equal to 60 m). We found that depth-generalist corals benefit more from increasing depth than depth-specialists (corals with a narrow depth range). Our data suggest that the reduced prevalence of bleaching with depth, especially from shallow to upper mesophotic depths (40 m), had a stronger relation with the light-irradiance attenuation than temperature. While acknowledging the geographical and temporal variability of the role of mesophotic reefs as spatial refuges during thermal stress, we ought to understand why coral bleaching reduces with depth. Future studies should consider repeated monitoring and detailed ecophysiological and environmental data. Our study demonstrated how increasing depth may offer a level of protection and that lower mesophotic communities could escape the impacts of a thermal bleaching event.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2021Full-Text: https://doi.org/10.1098/rsos.210139Data sources: Bielefeld Academic Search Engine (BASE)Royal Society Open ScienceArticle . 2021 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsos.210139&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2021Full-Text: https://doi.org/10.1098/rsos.210139Data sources: Bielefeld Academic Search Engine (BASE)Royal Society Open ScienceArticle . 2021 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsos.210139&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 Australia, France, Switzerland, SwitzerlandPublisher:American Association for the Advancement of Science (AAAS) Valeriano Parravicini; David Mouillot; David Mouillot; Michel Kulbicki; Steffen M. Olsen; Loïc Pellissier; Loïc Pellissier; Mary S. Wisz; Mary S. Wisz; Glenn Litsios; Glenn Litsios; Peter F. Cowman; Fabien Leprieur; David R. Bellwood;Ancient reefs provided fishy refuges Climate fluctuations have occurred repeatedly in Earth's history, and so there is much to be learned from examining the responses of past systems. Pellessier et al. reconstructed paleoenvironments over the past 3 million years from sediment cores collected across coral reef systems to explore the impacts of past conditions on reef fish diversity. Coral reefs survived in the Indo-Australian regions during times of otherwise extensive habitat loss. These robust reefs can explain much of the diversity found in present-day reef fish species. Science , this issue p. 1016
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/67073Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1249853&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 149 citations 149 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/67073Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1249853&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 FrancePublisher:Wiley Funded by:EC | COCONETEC| COCONETAuthors: /Parravicini, Valeriano; Azzurro, E.; /Kulbicki, Michel; Belmaker, J.;doi: 10.1111/ele.12401
pmid: 25626355
AbstractClimatic niche conservatism, the tendency of species‐climate associations to remain unchanged across space and time, is pivotal for forecasting the spread of invasive species and biodiversity changes. Indeed, it represents one of the key assumptions underlying species distribution models (SDMs), the main tool currently available for predicting range shifts of species. However, to date, no comprehensive assessment of niche conservatism is available for the marine realm. We use the invasion by Indo‐Pacific tropical fishes into the Mediterranean Sea, the world's most invaded marine basin, to examine the conservatism of the climatic niche. We show that tropical invaders may spread far beyond their native niches and that SDMs do not predict their new distributions better than null models. Our results suggest that SDMs may underestimate the potential spread of invasive species and call for prudence in employing these models in order to forecast species invasion and their response to environmental change.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverEcology LettersArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1111/ele....Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.12401&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 131 citations 131 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverEcology LettersArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1111/ele....Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.12401&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United Kingdom, AustraliaPublisher:American Association for the Advancement of Science (AAAS) Nina M. D. Schiettekatte; Simon J. Brandl; Simon J. Brandl; Carole C. Baldwin; Valeriano Parravicini; Isabelle M. Côté; Jordan M. Casey; Jordan M. Casey; Renato A. Morais; David R. Bellwood; Luke Tornabene; Christopher H. R. Goatley;Allgeier and Cline suggest that our model overestimates the contributions of cryptobenthic fishes to coral reef functioning. However, their 20-year model ignores the basic biological limits of population growth. If incorporated, cryptobenthic contributions to consumed fish biomass remain high (20 to 70%). Disturbance cycles and uncertainties surrounding the fate of large fishes on decadal scales further demonstrate the important role of cryptobenthic fishes.
Science arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aaz1301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Science arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aaz1301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Italy, Italy, Saudi ArabiaPublisher:The Royal Society Valeriano Parravicini; Valeriano Parravicini; Simone Montano; Davide Seveso; Michael L. Berumen; Davide Maggioni; Giovanni Strona; Roberto Arrigoni; Paolo Galli; Simone Fattorini; Simone Fattorini;In spite of growing evidence that climate change may dramatically affect networks of interacting species, whether—and to what extent—ecological interactions can mediate species' responses to disturbances is an open question. Here we show how a largely overseen association such as that between hydrozoans and scleractinian corals could be possibly associated with a reduction in coral susceptibility to ever-increasing predator and disease outbreaks. We examined 2455 scleractinian colonies (from both Maldivian and the Saudi Arabian coral reefs) searching for non-random patterns in the occurrence of hydrozoans on corals showing signs of different health conditions (i.e. bleaching, algal overgrowth, corallivory and different coral diseases). We show that, after accounting for geographical, ecological and co-evolutionary factors, signs of disease and corallivory are significantly lower in coral colonies hosting hydrozoans than in hydrozoan-free ones. This finding has important implications for our understanding of the ecology of coral reefs, and for their conservation in the current scenario of global change, because it suggests that symbiotic hydrozoans may play an active role in protecting their scleractinian hosts from stresses induced by warming water temperatures.
BOA - Bicocca Open A... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2017 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2018Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2017.2405&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert BOA - Bicocca Open A... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2017 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2018Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2017.2405&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2018 United States, United States, Australia, Italy, France, Australia, Australia, United States, AustraliaPublisher:American Association for the Advancement of Science (AAAS) Funded by:DFGDFGAndrew Pomeroy; Andrew Pomeroy; Elisa Casella; Valeriano Parravicini; Antoine Collin; Antoine Collin; Rémy Canavesio; Daniel L. Harris; Daniel L. Harris; Jody M. Webster; Alessio Rovere; Hannah E. Power;If coral reefs continue to degrade, waves on coastlines may substantially increase, leading to greater coastal erosion.
Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università degli Studi di Venezia Ca' FoscariArticle . 2018License: CC BY NCUniversité de Bretagne Occidentale: HALArticle . 2018License: CC BY NCFull-Text: https://hal.science/hal-01724281Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2018License: CC BY NCFull-Text: https://hal.science/hal-01724281Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2018License: CC BY NCFull-Text: http://hdl.handle.net/11343/273103Data sources: Bielefeld Academic Search Engine (BASE)Université de Nantes: HAL-UNIV-NANTESArticle . 2018License: CC BY NCFull-Text: https://hal.science/hal-01724281Data sources: Bielefeld Academic Search Engine (BASE)Columbia University Academic CommonsArticle . 2018Full-Text: https://doi.org/10.7916/D8F77VN0Data sources: Bielefeld Academic Search Engine (BASE)Normandie Université: HALArticle . 2018License: CC BY NCFull-Text: https://hal.science/hal-01724281Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018License: CC BY NCFull-Text: https://hal.science/hal-01724281Data sources: Bielefeld Academic Search Engine (BASE)Fachrepositorium LebenswissenschaftenArticle . 2018License: CC BY NCData sources: Fachrepositorium LebenswissenschaftenINRIA a CCSD electronic archive serverArticle . 2018Data sources: INRIA a CCSD electronic archive serverThe University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.aao4350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu168 citations 168 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università degli Studi di Venezia Ca' FoscariArticle . 2018License: CC BY NCUniversité de Bretagne Occidentale: HALArticle . 2018License: CC BY NCFull-Text: https://hal.science/hal-01724281Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2018License: CC BY NCFull-Text: https://hal.science/hal-01724281Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2018License: CC BY NCFull-Text: http://hdl.handle.net/11343/273103Data sources: Bielefeld Academic Search Engine (BASE)Université de Nantes: HAL-UNIV-NANTESArticle . 2018License: CC BY NCFull-Text: https://hal.science/hal-01724281Data sources: Bielefeld Academic Search Engine (BASE)Columbia University Academic CommonsArticle . 2018Full-Text: https://doi.org/10.7916/D8F77VN0Data sources: Bielefeld Academic Search Engine (BASE)Normandie Université: HALArticle . 2018License: CC BY NCFull-Text: https://hal.science/hal-01724281Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018License: CC BY NCFull-Text: https://hal.science/hal-01724281Data sources: Bielefeld Academic Search Engine (BASE)Fachrepositorium LebenswissenschaftenArticle . 2018License: CC BY NCData sources: Fachrepositorium LebenswissenschaftenINRIA a CCSD electronic archive serverArticle . 2018Data sources: INRIA a CCSD electronic archive serverThe University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.aao4350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 Italy, FrancePublisher:Wiley Parravicini, Valeriano; Mangialajo, Luisa; Mousseau, Laure; Peirano, Andrea; Morri, Carla; Montefalcone, Monica; Francour, Patrice; Kulbicki, Michel; Bianchi, Carlo Nike;doi: 10.1111/maec.12277
handle: 11567/865771
AbstractThe effects of global change are particularly serious in areas where range shifts of species are physically constrained such as the Ligurian Sea, which is one of the coldest sectors of the Mediterranean. In this basin, historical information on water temperature (from the sea surface down to 75 m depth) dates back to the 1950s. Early studies also recorded warm‐water species occurrence. Thanks to these data we provide the first detailed characterization of water temperature variation from 1958 up to 2010 in the layer 0–75 m depth. We coupled this analysis with the available information on rocky reef epibenthic communities (literature review from 1955 to 1964 and field data from 1980 to 2010). The analysis of water temperature revealed several patterns of variation: a cooling phase from 1958 to 1980, a phase of rapid warming from 1980 to 1990 and a phase of slower warming from 1990 to 2010. Inter‐annual variation in temperature increased over the entire period for the water layer down to 20 m. Warm‐water native and alien species richness increased during the warming phases. Literature estimates suggest a decrease in warm‐water native species richness during the cooling phase. The analysis of quantitative data collected in the early 1990s and late 2000s indicated a decrease in the cover of warm‐water native species on shallow rocky reefs and an increase in deeper waters. We argue that increased inter‐annual variation in water temperature may disadvantage native warm‐water species in shallow waters. Our results indicate that the effect of temperature rises in cold, constrained basins may be more complex than the simple prediction of species changing their geographical range according to their thermal limits.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverMarine EcologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut national des sciences de l'Univers: HAL-INSUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/maec.12277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverMarine EcologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut national des sciences de l'Univers: HAL-INSUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/maec.12277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 FrancePublisher:Springer Science and Business Media LLC Morat, Fabien; Wicquart, Jérémy; Schiettekatte, Nina; de Sinéty, Guillemette; Bienvenu, Jean; Casey, Jordan; Brandl, Simon; Vii, Jason; Carlot, Jérémy; Degregori, Samuel; Mercière, Alexandre; Fey, Pauline; Galzin, René; Letourneur, Yves; Sasal, Pierre; Parravicini, Valeriano;AbstractSomatic growth is a critical biological trait for organismal, population, and ecosystem-level processes. Due to its direct link with energetic demands, growth also represents an important parameter to estimate energy and nutrient fluxes. For marine fishes, growth rate information is most frequently derived from sagittal otoliths, and most of the available data stems from studies on temperate species that are targeted by commercial fisheries. Although the analysis of otoliths is a powerful tool to estimate individual growth, the time-consuming nature of otolith processing is one barrier for collection of comprehensive datasets across multiple species. This is especially true for coral reef fishes, which are extremely diverse. Here, we provide back-calculated size-at-age estimates (including measures of uncertainty) based on sagittal otoliths from 710 individuals belonging to 45 coral reef fish species from French Polynesia. In addition, we provide Von Bertalanffy growth parameters which are useful to predict community level biomass production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-00711-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-00711-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 France, ItalyPublisher:Wiley Alexandre Mercière; Alessio Rovere; Jérémy Carlot; Diego R. Barneche; Simon J. Brandl; Valeriano Parravicini; Laetitia Hédouin; Ulisse Cardini; Hunter S. Lenihan; Jordan M. Casey; Jordan M. Casey; Mohsen Kayal; Mehdi Adjeroud; Mehdi Adjeroud; Benoit Espiau;AbstractSea‐level rise is predicted to cause major damage to tropical coastlines. While coral reefs can act as natural barriers for ocean waves, their protection hinges on the ability of scleractinian corals to produce enough calcium carbonate (CaCO3) to keep up with rising sea levels. As a consequence of intensifying disturbances, coral communities are changing rapidly, potentially reducing community‐level CaCO3 production. By combining colony‐level physiology and long‐term monitoring data, we show that reefs recovering from major disturbances can produce 40% more CaCO3 than currently estimated due to the disproportionate contribution of juvenile corals. However, the buffering effect of highly productive juvenile corals is compromised by recruitment failures, which have been more frequently observed after large‐scale, repeated bleaching events. While the size structure of corals can bolster a critical ecological function on reefs, climate change impacts on recruitment may undermine this buffering effect, thus further compromising the persistence of reefs and their provision of important ecosystem services.
Archivio istituziona... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerGlobal Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerGlobal Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Australia, United KingdomPublisher:American Association for the Advancement of Science (AAAS) Funded by:ARC | ARC Centres of Excellence..., ANR | REEFLUX, NSERCARC| ARC Centres of Excellences - Grant ID: CE140100020 ,ANR| REEFLUX ,NSERCCarole C. Baldwin; Jordan M. Casey; Jordan M. Casey; Isabelle M. Côté; Nina M. D. Schiettekatte; Christopher H. R. Goatley; Valeriano Parravicini; David R. Bellwood; Renato A. Morais; Simon J. Brandl; Simon J. Brandl; Luke Tornabene;Little fish make a big contributionCoral reefs represent one of the most biodiverse and rich ecosystems. Such richness conjures up images of coral heads and large colorful reef fishes. Brandlet al.show, however, that one of the most striking and important parts of the reef ecosystem is almost never seen (see the Perspective by Riginos and Leis). Small cryptobenthic fish, like blennies, make up nearly 40% of reef fish biodiversity. Furthermore, the majority of cryptobenthic fish larvae settle locally, rather than being widely dispersed, and have rapid turnover rates. Such high diversity and densities could thus provide the biomass base for larger, better-known reef fish.Science, this issue p.1189; see also p.1128
Science arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aav3384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu173 citations 173 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Science arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aav3384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 AustraliaPublisher:The Royal Society Gonzalo Pérez-Rosales; Héloïse Rouzé; Gergely Torda; Pim Bongaerts; Michel Pichon; Valeriano Parravicini; Laetitia Hédouin;Climate change and consequent coral bleaching are causing the disappearance of reef-building corals worldwide. While bleaching episodes significantly impact shallow waters, little is known about their impact on mesophotic coral communities. We studied the prevalence of coral bleaching two to three months after a heat stress event, along an extreme depth range from 6 to 90 m in French Polynesia. Bayesian modelling showed a decreasing probability of bleaching of all coral genera over depth, with little to no bleaching observed at lower mesophotic depths (greater than or equal to 60 m). We found that depth-generalist corals benefit more from increasing depth than depth-specialists (corals with a narrow depth range). Our data suggest that the reduced prevalence of bleaching with depth, especially from shallow to upper mesophotic depths (40 m), had a stronger relation with the light-irradiance attenuation than temperature. While acknowledging the geographical and temporal variability of the role of mesophotic reefs as spatial refuges during thermal stress, we ought to understand why coral bleaching reduces with depth. Future studies should consider repeated monitoring and detailed ecophysiological and environmental data. Our study demonstrated how increasing depth may offer a level of protection and that lower mesophotic communities could escape the impacts of a thermal bleaching event.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2021Full-Text: https://doi.org/10.1098/rsos.210139Data sources: Bielefeld Academic Search Engine (BASE)Royal Society Open ScienceArticle . 2021 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsos.210139&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2021Full-Text: https://doi.org/10.1098/rsos.210139Data sources: Bielefeld Academic Search Engine (BASE)Royal Society Open ScienceArticle . 2021 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsos.210139&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 Australia, France, Switzerland, SwitzerlandPublisher:American Association for the Advancement of Science (AAAS) Valeriano Parravicini; David Mouillot; David Mouillot; Michel Kulbicki; Steffen M. Olsen; Loïc Pellissier; Loïc Pellissier; Mary S. Wisz; Mary S. Wisz; Glenn Litsios; Glenn Litsios; Peter F. Cowman; Fabien Leprieur; David R. Bellwood;Ancient reefs provided fishy refuges Climate fluctuations have occurred repeatedly in Earth's history, and so there is much to be learned from examining the responses of past systems. Pellessier et al. reconstructed paleoenvironments over the past 3 million years from sediment cores collected across coral reef systems to explore the impacts of past conditions on reef fish diversity. Coral reefs survived in the Indo-Australian regions during times of otherwise extensive habitat loss. These robust reefs can explain much of the diversity found in present-day reef fish species. Science , this issue p. 1016
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/67073Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1249853&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 149 citations 149 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/67073Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1249853&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 FrancePublisher:Wiley Funded by:EC | COCONETEC| COCONETAuthors: /Parravicini, Valeriano; Azzurro, E.; /Kulbicki, Michel; Belmaker, J.;doi: 10.1111/ele.12401
pmid: 25626355
AbstractClimatic niche conservatism, the tendency of species‐climate associations to remain unchanged across space and time, is pivotal for forecasting the spread of invasive species and biodiversity changes. Indeed, it represents one of the key assumptions underlying species distribution models (SDMs), the main tool currently available for predicting range shifts of species. However, to date, no comprehensive assessment of niche conservatism is available for the marine realm. We use the invasion by Indo‐Pacific tropical fishes into the Mediterranean Sea, the world's most invaded marine basin, to examine the conservatism of the climatic niche. We show that tropical invaders may spread far beyond their native niches and that SDMs do not predict their new distributions better than null models. Our results suggest that SDMs may underestimate the potential spread of invasive species and call for prudence in employing these models in order to forecast species invasion and their response to environmental change.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverEcology LettersArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1111/ele....Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.12401&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 131 citations 131 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverEcology LettersArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1111/ele....Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.12401&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United Kingdom, AustraliaPublisher:American Association for the Advancement of Science (AAAS) Nina M. D. Schiettekatte; Simon J. Brandl; Simon J. Brandl; Carole C. Baldwin; Valeriano Parravicini; Isabelle M. Côté; Jordan M. Casey; Jordan M. Casey; Renato A. Morais; David R. Bellwood; Luke Tornabene; Christopher H. R. Goatley;Allgeier and Cline suggest that our model overestimates the contributions of cryptobenthic fishes to coral reef functioning. However, their 20-year model ignores the basic biological limits of population growth. If incorporated, cryptobenthic contributions to consumed fish biomass remain high (20 to 70%). Disturbance cycles and uncertainties surrounding the fate of large fishes on decadal scales further demonstrate the important role of cryptobenthic fishes.
Science arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aaz1301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Science arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aaz1301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Italy, Italy, Saudi ArabiaPublisher:The Royal Society Valeriano Parravicini; Valeriano Parravicini; Simone Montano; Davide Seveso; Michael L. Berumen; Davide Maggioni; Giovanni Strona; Roberto Arrigoni; Paolo Galli; Simone Fattorini; Simone Fattorini;In spite of growing evidence that climate change may dramatically affect networks of interacting species, whether—and to what extent—ecological interactions can mediate species' responses to disturbances is an open question. Here we show how a largely overseen association such as that between hydrozoans and scleractinian corals could be possibly associated with a reduction in coral susceptibility to ever-increasing predator and disease outbreaks. We examined 2455 scleractinian colonies (from both Maldivian and the Saudi Arabian coral reefs) searching for non-random patterns in the occurrence of hydrozoans on corals showing signs of different health conditions (i.e. bleaching, algal overgrowth, corallivory and different coral diseases). We show that, after accounting for geographical, ecological and co-evolutionary factors, signs of disease and corallivory are significantly lower in coral colonies hosting hydrozoans than in hydrozoan-free ones. This finding has important implications for our understanding of the ecology of coral reefs, and for their conservation in the current scenario of global change, because it suggests that symbiotic hydrozoans may play an active role in protecting their scleractinian hosts from stresses induced by warming water temperatures.
BOA - Bicocca Open A... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2017 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2018Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2017.2405&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert BOA - Bicocca Open A... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2017 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2018Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2017.2405&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu