- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United StatesPublisher:Wiley Le Wang; Yingge Du; Zachary W. Lebens-Higgins; Jatinkumar Rana; Hyeseung Chung; Wanli Yang; Louis F. J. Piper; Louis F. J. Piper; Michael A. Jones; Israel Temprano; Clare P. Grey; Carlos Mejia; Jinpeng Wu; Ying Shirley Meng; Mateusz Zuba;AbstractInterest in alkali‐rich oxide cathodes has grown in an effort to identify systems that provide high energy densities through reversible oxygen redox. However, some of the most promising compositions such as those based solely on earth abundant elements, e. g., iron and manganese, suffer from poor capacity retention and large hysteresis. Here, we use the disordered rocksalt cathode, Li1.3Fe0.4Nb0.3O2, as a model system to identify the underlying origin for the poor performance of Li‐rich iron‐based cathodes. Using elementally specific spectroscopic probes, we find the first charge is primarily accounted for by iron oxidation to 4+ below 4.25 V and O2 gas release beyond 4.25 V with no evidence of bulk oxygen redox. Although the Li1.3Fe0.4Nb0.3O2 is not a viable oxygen redox cathode, the iron 3+/4+ redox couple can be used reversibly during cycling.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/11h2x88mData sources: Bielefeld Academic Search Engine (BASE)Batteries & SupercapsArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/batt.202000318&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/11h2x88mData sources: Bielefeld Academic Search Engine (BASE)Batteries & SupercapsArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/batt.202000318&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2017Embargo end date: 02 Oct 2018 GermanyPublisher:The Electrochemical Society Zachary Lebens-Higgins; Nicholas Faenza; Pinaki Mukherjee; Shawn Sallis; Fadwa Badway; Nathalie Pereira; Christoph Schlueter; Tien-Lin Lee; Frederic Cosandey; Glenn Amatucci; Louis F.J. Piper;For layered oxide cathodes, aluminum doping has widely been shown to improve performance, particularly at high degrees of delithiation. While this has led to increased interest in Al-doped systems, including $\mathrm{LiNi_{0.8}Co_{0.15}Al_{0.05}O_{2}}$ (NCA), the aluminum surface environment has not been thoroughly investigated. Using hard x-ray photoelectron spectroscopy measurements of the Al 1s core region for NCA electrodes, we examined the evolution of the surface aluminum environment under electrochemical and thermal stress. By correlating the aluminum environment to transition metal reduction and electrolyte decomposition, we provide further insight into the cathode-electrolyte interface layer. A remarkable finding is that Al-O coatings in LiPF$_6$ electrolyte mimic the evolution observed for the aluminum surface environment in doped layered oxides. ECS transactions 80(10), 197 - 206 (2017). doi:10.1149/08010.0197ecst Published by Pennington, NJ
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/08010.0197ecst&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/08010.0197ecst&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Funded by:NSF | XSEDE: eXtreme Science an...NSF| XSEDE: eXtreme Science and Engineering Discovery EnvironmentBohua Wen; Zhi Deng; Ping-Chun Tsai; Zachary W. Lebens-Higgins; Louis F. J. Piper; Shyue Ping Ong; Yet-Ming Chiang;To access the full performance potential of advanced batteries, electrodes and electrolytes must be designed to facilitate ion transport at all applicable length scales. Here, we perform electrodynamic measurements on single electrode particles of ~6 nAh capacity, decouple bulk and interfacial transport from other pathways and show that Li intercalation into LiNi0.33Mn0.33Co0.33O2 (NMC333) is primarily impeded by interfacial kinetics when using a conventional LiPF6 salt. Electrolytes containing LiTFSI salt, with or without LiPF6, exhibit about 100-fold higher exchange current density under otherwise identical conditions. This anion group effect is explained using molecular dynamics simulations to identify preferred solvation structures, density functional theory calculations of their binding energies and Raman spectroscopy confirmation of solvation structure. We show that TFSI− preferentially solvates Li+ compared to PF6−, and yet its preferred solvation structures provide a lower Li+ binding energy, suggesting a lower desolvation energy consistent with ultrafast interfacial kinetics. Understanding Li transport is important in the development of fast-rate batteries. Here the authors uncover an ultrafast charge transfer across a cathode–electrolyte interface with the aid of single-particle measurements and ascribe the solvation of electrolyte salts to be key for the interfacial kinetics.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-0647-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu129 citations 129 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-0647-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:American Physical Society (APS) Gaurav C. Pandey; Muhammad Ans; Matthew J. Capener; Harry Gillions; Satish Bolloju; Paolo Melgari; Mark Copley; Ashok S. Menon; Louis F.J. Piper;The high-voltage (more than 4.2 V versus graphite) electrochemical degradation of layered nickel-rich lithium 3 transition metal oxide (LiNixMnyCo1−x−yO2, where ≥ 0.6) cathodes currently limits their practical energy densities. The degradation primarily stems from surface oxygen loss and its consequent effects, which leads to rapid capacity fade and voltage hysteresis. Addressing this necessitates not only novel material engineering approaches but also a deeper comprehension of how it leads to performance enhancement. Here, using in-house x-ray diffraction studies of ∼3.4 mA h/cm2 polycrystalline LiNi0.8Mn0.1Co0.1O2 (NMC811)-graphite pilot-line-built pouch cells cycled between 3 and 4.4 V, we show that particle atomic layer deposition (ALD) of an aluminum phosphate surface layer on the NMC811 cathode particles suppresses the formation of electrochemically fatigued phases within the cathode bulk, leading to notable performance enhancements. This study contributes to our growing understanding of how scalable ALD processing is essential for stabilizing the high-voltage performance of Ni-rich layered oxide cathodes. Published by the American Physical Society 2025
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/prxenergy.4.013009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/prxenergy.4.013009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Justin Holloway; Muinuddin Maharun; Irma Houmadi; Guillaume Remy; Louis Piper; Mark Williams; Melanie Jayne Loveridge;The ubiquitous deployment of Li-ion batteries (LIBs) in more demanding applications has reinforced the need to understand the root causes of thermal runaway. Herein, we perform a forensic simulation of a real-case failure scenario, using localised heating of Li(Ni0.5Mn0.3Co0.2)O2 versus graphite 18650 cylindrical cells. This study determined the localised temperatures that would lead to venting and thermal runaway of these cells, as well as correlating the gases produced as a function of the degradation pathway. Catastrophic failure, involving melting (with internal cell temperatures exceeding 1085 °C), deformation and ejection of the cell componentry, was induced by locally applying 200 °C and 250 °C to a fully charged cell. Conversely, catastrophic failure was not observed when the same temperatures were applied to the cells at a lower state of charge (SOC). This work highlights the importance of SOC, chemistry and heat in driving the thermal failure mode of Ni-rich LIB cells, allowing for a better understanding of battery safety and the associated design improvements.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries10030104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries10030104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United StatesPublisher:Wiley Le Wang; Yingge Du; Zachary W. Lebens-Higgins; Jatinkumar Rana; Hyeseung Chung; Wanli Yang; Louis F. J. Piper; Louis F. J. Piper; Michael A. Jones; Israel Temprano; Clare P. Grey; Carlos Mejia; Jinpeng Wu; Ying Shirley Meng; Mateusz Zuba;AbstractInterest in alkali‐rich oxide cathodes has grown in an effort to identify systems that provide high energy densities through reversible oxygen redox. However, some of the most promising compositions such as those based solely on earth abundant elements, e. g., iron and manganese, suffer from poor capacity retention and large hysteresis. Here, we use the disordered rocksalt cathode, Li1.3Fe0.4Nb0.3O2, as a model system to identify the underlying origin for the poor performance of Li‐rich iron‐based cathodes. Using elementally specific spectroscopic probes, we find the first charge is primarily accounted for by iron oxidation to 4+ below 4.25 V and O2 gas release beyond 4.25 V with no evidence of bulk oxygen redox. Although the Li1.3Fe0.4Nb0.3O2 is not a viable oxygen redox cathode, the iron 3+/4+ redox couple can be used reversibly during cycling.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/11h2x88mData sources: Bielefeld Academic Search Engine (BASE)Batteries & SupercapsArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/batt.202000318&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/11h2x88mData sources: Bielefeld Academic Search Engine (BASE)Batteries & SupercapsArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/batt.202000318&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2017Embargo end date: 02 Oct 2018 GermanyPublisher:The Electrochemical Society Zachary Lebens-Higgins; Nicholas Faenza; Pinaki Mukherjee; Shawn Sallis; Fadwa Badway; Nathalie Pereira; Christoph Schlueter; Tien-Lin Lee; Frederic Cosandey; Glenn Amatucci; Louis F.J. Piper;For layered oxide cathodes, aluminum doping has widely been shown to improve performance, particularly at high degrees of delithiation. While this has led to increased interest in Al-doped systems, including $\mathrm{LiNi_{0.8}Co_{0.15}Al_{0.05}O_{2}}$ (NCA), the aluminum surface environment has not been thoroughly investigated. Using hard x-ray photoelectron spectroscopy measurements of the Al 1s core region for NCA electrodes, we examined the evolution of the surface aluminum environment under electrochemical and thermal stress. By correlating the aluminum environment to transition metal reduction and electrolyte decomposition, we provide further insight into the cathode-electrolyte interface layer. A remarkable finding is that Al-O coatings in LiPF$_6$ electrolyte mimic the evolution observed for the aluminum surface environment in doped layered oxides. ECS transactions 80(10), 197 - 206 (2017). doi:10.1149/08010.0197ecst Published by Pennington, NJ
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/08010.0197ecst&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/08010.0197ecst&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Funded by:NSF | XSEDE: eXtreme Science an...NSF| XSEDE: eXtreme Science and Engineering Discovery EnvironmentBohua Wen; Zhi Deng; Ping-Chun Tsai; Zachary W. Lebens-Higgins; Louis F. J. Piper; Shyue Ping Ong; Yet-Ming Chiang;To access the full performance potential of advanced batteries, electrodes and electrolytes must be designed to facilitate ion transport at all applicable length scales. Here, we perform electrodynamic measurements on single electrode particles of ~6 nAh capacity, decouple bulk and interfacial transport from other pathways and show that Li intercalation into LiNi0.33Mn0.33Co0.33O2 (NMC333) is primarily impeded by interfacial kinetics when using a conventional LiPF6 salt. Electrolytes containing LiTFSI salt, with or without LiPF6, exhibit about 100-fold higher exchange current density under otherwise identical conditions. This anion group effect is explained using molecular dynamics simulations to identify preferred solvation structures, density functional theory calculations of their binding energies and Raman spectroscopy confirmation of solvation structure. We show that TFSI− preferentially solvates Li+ compared to PF6−, and yet its preferred solvation structures provide a lower Li+ binding energy, suggesting a lower desolvation energy consistent with ultrafast interfacial kinetics. Understanding Li transport is important in the development of fast-rate batteries. Here the authors uncover an ultrafast charge transfer across a cathode–electrolyte interface with the aid of single-particle measurements and ascribe the solvation of electrolyte salts to be key for the interfacial kinetics.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-0647-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu129 citations 129 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-0647-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:American Physical Society (APS) Gaurav C. Pandey; Muhammad Ans; Matthew J. Capener; Harry Gillions; Satish Bolloju; Paolo Melgari; Mark Copley; Ashok S. Menon; Louis F.J. Piper;The high-voltage (more than 4.2 V versus graphite) electrochemical degradation of layered nickel-rich lithium 3 transition metal oxide (LiNixMnyCo1−x−yO2, where ≥ 0.6) cathodes currently limits their practical energy densities. The degradation primarily stems from surface oxygen loss and its consequent effects, which leads to rapid capacity fade and voltage hysteresis. Addressing this necessitates not only novel material engineering approaches but also a deeper comprehension of how it leads to performance enhancement. Here, using in-house x-ray diffraction studies of ∼3.4 mA h/cm2 polycrystalline LiNi0.8Mn0.1Co0.1O2 (NMC811)-graphite pilot-line-built pouch cells cycled between 3 and 4.4 V, we show that particle atomic layer deposition (ALD) of an aluminum phosphate surface layer on the NMC811 cathode particles suppresses the formation of electrochemically fatigued phases within the cathode bulk, leading to notable performance enhancements. This study contributes to our growing understanding of how scalable ALD processing is essential for stabilizing the high-voltage performance of Ni-rich layered oxide cathodes. Published by the American Physical Society 2025
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/prxenergy.4.013009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/prxenergy.4.013009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Justin Holloway; Muinuddin Maharun; Irma Houmadi; Guillaume Remy; Louis Piper; Mark Williams; Melanie Jayne Loveridge;The ubiquitous deployment of Li-ion batteries (LIBs) in more demanding applications has reinforced the need to understand the root causes of thermal runaway. Herein, we perform a forensic simulation of a real-case failure scenario, using localised heating of Li(Ni0.5Mn0.3Co0.2)O2 versus graphite 18650 cylindrical cells. This study determined the localised temperatures that would lead to venting and thermal runaway of these cells, as well as correlating the gases produced as a function of the degradation pathway. Catastrophic failure, involving melting (with internal cell temperatures exceeding 1085 °C), deformation and ejection of the cell componentry, was induced by locally applying 200 °C and 250 °C to a fully charged cell. Conversely, catastrophic failure was not observed when the same temperatures were applied to the cells at a lower state of charge (SOC). This work highlights the importance of SOC, chemistry and heat in driving the thermal failure mode of Ni-rich LIB cells, allowing for a better understanding of battery safety and the associated design improvements.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries10030104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries10030104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu