- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Wiley Ion Grosu; Dora Demeter; Andreea Diac; Andreea Diac; Jean Roncali; Salma Mohamed;pmid: 24591362
AbstractA small donor–acceptor molecule is synthesized in a two‐step procedure involving reaction of N,N‐diphenylhydrazine on 2,5‐diformylthiophene and Knoevenagel condensation. Results of UV/Vis absorption spectroscopy and cyclic voltammetry show that replacement of the phenyl ring bridge of a reference compound 2 by an azo group produces a slight red‐shift of λmax, an enhancement of the molecular absorption coefficient, and a decrease of the energy level of the frontier orbitals. A preliminary evaluation of the potentialities of compound 1 as donor material in a basic bilayer planar heterojunction cell of 28 mm2 active area using C60 as acceptor gave a short‐circuit current density of 6.32 mA cm−2 and a power conversion efficiency of 2.07 %.
ChemSusChem arrow_drop_down ChemSusChemArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201301339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert ChemSusChem arrow_drop_down ChemSusChemArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201301339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 FrancePublisher:Elsevier BV Linda Cattin; Jean Roncali; Mohammed Addou; Victorien Jeux; Mohammed Makha; Mohammed Makha; Vincent Froger; Mustapha Morsli; J.C. Bernède; Philippe Leriche;We investigate the effect of anode buffer layers (ABLs) on the performances of multi-layer heterojunction solar cells with thienylenevinylene–triphenylamine with peripheral dicyanovinylene groups (TDCV–TPA) as donor material and fullerene C60 as acceptor. The deposition of a CuI layer between the ITO anode and the electron donor significantly improves the short-circuit current density (Jsc) and fill factor (FF) but reduces the open-circuit voltage (Voc). On the other hand, a MoO3 buffer layer increases the Voc but leads to limited Jsc and FF values, thus reducing power conversion efficiency (PCE). In this context, we show that the use of a hybrid anode buffer layer MoO3/CuI leads to a considerable improvement of the cells performances and a PCE of 2.50% has been achieved. These results are discussed on the basis of the dual function of MoO3 and CuI. While both of them reduce the hole injection barrier, CuI improves the conductivity of the organic film through an improvement of molecular order while MoO3 prevents leakage current through the diode. Finally the results of a cursory study of the ageing process provide further support to this interpretation of the effects of the various buffer layers.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverSolar Energy Materials and Solar CellsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2012.12.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverSolar Energy Materials and Solar CellsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2012.12.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Alévêque, Olivier; Leriche, Philippe; Cocherel, Nicolas; Frère, Pierre; Cravino, Antonio; Roncali, Jean;Hybrid conjugated systems consisting of a triphenylamine core substituted by three dithiafulvenyl moieties have been synthesized and tested as active materials in organic field-effect transistors and photovoltaic devices. UV–vis. spectroscopy studies demonstrate that, despite their amorphous character shown by X-ray diffraction and differential scanning calorimetry, strong interactions exist in these materials as an aggregative band is observed at low energies. A first evaluation of their potentialities as p semiconductor in organic field-effect transistors shows significant hole mobilities. For bilayer photovoltaic devices, a power conversion efficiency of 0.11% is observed and the external quantum efficiency of the cell under monochromatic irradiation shows a non-negligible contribution of the aggregative band.
Hyper Article en Lig... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2008.04.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2008.04.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Report 2022Embargo end date: 21 Jan 2023 Germany, Saudi Arabia, Germany, Switzerland, Netherlands, United Kingdom, United States, Italy, Saudi Arabia, Germany, Italy, Italy, Australia, Italy, ItalyPublisher:Elsevier BV Funded by:NSF | Invisible Luminescent Sol..., ARC | ARC Future Fellowships - ..., NSF | MRSEC: UW Molecular Engin...NSF| Invisible Luminescent Solar Concentrators ,ARC| ARC Future Fellowships - Grant ID: FT210100210 ,NSF| MRSEC: UW Molecular Engineering Materials CenterChenchen Yang; Harry A. Atwater; Marc A. Baldo; Derya Baran; Christopher J. Barile; Miles C. Barr; Matthew Bates; Moungi G. Bawendi; Matthew R. Bergren; Babak Borhan; Christoph J. Brabec; Sergio Brovelli; Vladimir Bulović; Paola Ceroni; Michael G. Debije; Jose-Maria Delgado-Sanchez; Wen-Ji Dong; Phillip M. Duxbury; Rachel C. Evans; Stephen R. Forrest; Daniel R. Gamelin; Noel C. Giebink; Xiao Gong; Gianmarco Griffini; Fei Guo; Christopher K. Herrera; Anita W.Y. Ho-Baillie; Russell J. Holmes; Sung-Kyu Hong; Thomas Kirchartz; Benjamin G. Levine; Hongbo Li; Yilin Li; Dianyi Liu; Maria A. Loi; Christine K. Luscombe; Nikolay S. Makarov; Fahad Mateen; Raffaello Mazzaro; Hunter McDaniel; Michael D. McGehee; Francesco Meinardi; Amador Menéndez-Velázquez; Jie Min; David B. Mitzi; Mehdi Moemeni; Jun Hyuk Moon; Andrew Nattestad; Mohammad K. Nazeeruddin; Ana F. Nogueira; Ulrich W. Paetzold; David L. Patrick; Andrea Pucci; Barry P. Rand; Elsa Reichmanis; Bryce S. Richards; Jean Roncali; Federico Rosei; Timothy W. Schmidt; Franky So; Chang-Ching Tu; Aria Vahdani; Wilfried G.J.H.M. van Sark; Rafael Verduzco; Alberto Vomiero; Wallace W.H. Wong; Kaifeng Wu; Hin-Lap Yip; Xiaowei Zhang; Haiguang Zhao; Richard R. Lunt;handle: 10281/353491 , 10278/3755647 , 11568/1129844 , 11311/1197339 , 11585/879499 , 10754/675369 , 11343/337118
handle: 10281/353491 , 10278/3755647 , 11568/1129844 , 11311/1197339 , 11585/879499 , 10754/675369 , 11343/337118
Fair and meaningful device per- formance comparison among luminescent solar concentrator- photovoltaic (LSC-PV) reports cannot be realized without a gen- eral consensus on reporting stan- dards in LSC-PV research. There- fore, it is imperative to adopt standardized characterization protocols for these emerging types of PV devices that are consistent with other PV devices. This commentary highlights several common limitations in LSC literature and summarizes the best practices moving for- ward to harmonize with standard PV reporting, considering the greater nuances present with LSC-PV. Based on these prac- tices, a checklist of actionable items is provided to help stan- dardize the characterization/re- porting protocols and offer a set of baseline expectations for au- thors, reviewers, and editors. The general consensus combined with the checklist will ultimately guide LSC-PV research towards reliable and meaningful ad- vances.
Caltech Authors arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/11343/337118Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2022Full-Text: https://doi.org/10.1016/j.joule.2021.12.004Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)JouleArticle . 2022License: taverneData sources: Eindhoven University of Technology Research PortalUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2022Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.joule.2021.12.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 99 citations 99 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Caltech Authors arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/11343/337118Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2022Full-Text: https://doi.org/10.1016/j.joule.2021.12.004Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)JouleArticle . 2022License: taverneData sources: Eindhoven University of Technology Research PortalUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2022Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.joule.2021.12.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Authors: Bricaud, Quentin; Cravino, Antonio; Leriche, Philippe; Roncali, Jean;Regioregular poly[3-(3,6-dioxaheptyl)thiophene] (PDHT) has been synthesized by Grignard metathesis (GRIM). The UV–vis absorption spectrum of spin-cast films of PDHT presents a well-resolved vibrational fine structure typical of well-ordered polymers. The characterization of bulk heterojunction solar cells fabricated using PCBM as acceptor shows that PDHT leads to power conversion efficiencies in ca 4–5 times lower than that obtained with regioregular poly(3-hexylthiophene) (P3HT). In contrast, the characterization of bilayer solar cells realized by thermal evaporation of C60 on spin-cast polymer films shows that PDHT leads to performances similar or even better than P3HT both before and after thermal treatment.
Hyper Article en Lig... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2009.04.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2009.04.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Wiley Ion Grosu; Dora Demeter; Andreea Diac; Andreea Diac; Jean Roncali; Salma Mohamed;pmid: 24591362
AbstractA small donor–acceptor molecule is synthesized in a two‐step procedure involving reaction of N,N‐diphenylhydrazine on 2,5‐diformylthiophene and Knoevenagel condensation. Results of UV/Vis absorption spectroscopy and cyclic voltammetry show that replacement of the phenyl ring bridge of a reference compound 2 by an azo group produces a slight red‐shift of λmax, an enhancement of the molecular absorption coefficient, and a decrease of the energy level of the frontier orbitals. A preliminary evaluation of the potentialities of compound 1 as donor material in a basic bilayer planar heterojunction cell of 28 mm2 active area using C60 as acceptor gave a short‐circuit current density of 6.32 mA cm−2 and a power conversion efficiency of 2.07 %.
ChemSusChem arrow_drop_down ChemSusChemArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201301339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert ChemSusChem arrow_drop_down ChemSusChemArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201301339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 FrancePublisher:Elsevier BV Linda Cattin; Jean Roncali; Mohammed Addou; Victorien Jeux; Mohammed Makha; Mohammed Makha; Vincent Froger; Mustapha Morsli; J.C. Bernède; Philippe Leriche;We investigate the effect of anode buffer layers (ABLs) on the performances of multi-layer heterojunction solar cells with thienylenevinylene–triphenylamine with peripheral dicyanovinylene groups (TDCV–TPA) as donor material and fullerene C60 as acceptor. The deposition of a CuI layer between the ITO anode and the electron donor significantly improves the short-circuit current density (Jsc) and fill factor (FF) but reduces the open-circuit voltage (Voc). On the other hand, a MoO3 buffer layer increases the Voc but leads to limited Jsc and FF values, thus reducing power conversion efficiency (PCE). In this context, we show that the use of a hybrid anode buffer layer MoO3/CuI leads to a considerable improvement of the cells performances and a PCE of 2.50% has been achieved. These results are discussed on the basis of the dual function of MoO3 and CuI. While both of them reduce the hole injection barrier, CuI improves the conductivity of the organic film through an improvement of molecular order while MoO3 prevents leakage current through the diode. Finally the results of a cursory study of the ageing process provide further support to this interpretation of the effects of the various buffer layers.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverSolar Energy Materials and Solar CellsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2012.12.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverSolar Energy Materials and Solar CellsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2012.12.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Alévêque, Olivier; Leriche, Philippe; Cocherel, Nicolas; Frère, Pierre; Cravino, Antonio; Roncali, Jean;Hybrid conjugated systems consisting of a triphenylamine core substituted by three dithiafulvenyl moieties have been synthesized and tested as active materials in organic field-effect transistors and photovoltaic devices. UV–vis. spectroscopy studies demonstrate that, despite their amorphous character shown by X-ray diffraction and differential scanning calorimetry, strong interactions exist in these materials as an aggregative band is observed at low energies. A first evaluation of their potentialities as p semiconductor in organic field-effect transistors shows significant hole mobilities. For bilayer photovoltaic devices, a power conversion efficiency of 0.11% is observed and the external quantum efficiency of the cell under monochromatic irradiation shows a non-negligible contribution of the aggregative band.
Hyper Article en Lig... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2008.04.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2008.04.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Report 2022Embargo end date: 21 Jan 2023 Germany, Saudi Arabia, Germany, Switzerland, Netherlands, United Kingdom, United States, Italy, Saudi Arabia, Germany, Italy, Italy, Australia, Italy, ItalyPublisher:Elsevier BV Funded by:NSF | Invisible Luminescent Sol..., ARC | ARC Future Fellowships - ..., NSF | MRSEC: UW Molecular Engin...NSF| Invisible Luminescent Solar Concentrators ,ARC| ARC Future Fellowships - Grant ID: FT210100210 ,NSF| MRSEC: UW Molecular Engineering Materials CenterChenchen Yang; Harry A. Atwater; Marc A. Baldo; Derya Baran; Christopher J. Barile; Miles C. Barr; Matthew Bates; Moungi G. Bawendi; Matthew R. Bergren; Babak Borhan; Christoph J. Brabec; Sergio Brovelli; Vladimir Bulović; Paola Ceroni; Michael G. Debije; Jose-Maria Delgado-Sanchez; Wen-Ji Dong; Phillip M. Duxbury; Rachel C. Evans; Stephen R. Forrest; Daniel R. Gamelin; Noel C. Giebink; Xiao Gong; Gianmarco Griffini; Fei Guo; Christopher K. Herrera; Anita W.Y. Ho-Baillie; Russell J. Holmes; Sung-Kyu Hong; Thomas Kirchartz; Benjamin G. Levine; Hongbo Li; Yilin Li; Dianyi Liu; Maria A. Loi; Christine K. Luscombe; Nikolay S. Makarov; Fahad Mateen; Raffaello Mazzaro; Hunter McDaniel; Michael D. McGehee; Francesco Meinardi; Amador Menéndez-Velázquez; Jie Min; David B. Mitzi; Mehdi Moemeni; Jun Hyuk Moon; Andrew Nattestad; Mohammad K. Nazeeruddin; Ana F. Nogueira; Ulrich W. Paetzold; David L. Patrick; Andrea Pucci; Barry P. Rand; Elsa Reichmanis; Bryce S. Richards; Jean Roncali; Federico Rosei; Timothy W. Schmidt; Franky So; Chang-Ching Tu; Aria Vahdani; Wilfried G.J.H.M. van Sark; Rafael Verduzco; Alberto Vomiero; Wallace W.H. Wong; Kaifeng Wu; Hin-Lap Yip; Xiaowei Zhang; Haiguang Zhao; Richard R. Lunt;handle: 10281/353491 , 10278/3755647 , 11568/1129844 , 11311/1197339 , 11585/879499 , 10754/675369 , 11343/337118
handle: 10281/353491 , 10278/3755647 , 11568/1129844 , 11311/1197339 , 11585/879499 , 10754/675369 , 11343/337118
Fair and meaningful device per- formance comparison among luminescent solar concentrator- photovoltaic (LSC-PV) reports cannot be realized without a gen- eral consensus on reporting stan- dards in LSC-PV research. There- fore, it is imperative to adopt standardized characterization protocols for these emerging types of PV devices that are consistent with other PV devices. This commentary highlights several common limitations in LSC literature and summarizes the best practices moving for- ward to harmonize with standard PV reporting, considering the greater nuances present with LSC-PV. Based on these prac- tices, a checklist of actionable items is provided to help stan- dardize the characterization/re- porting protocols and offer a set of baseline expectations for au- thors, reviewers, and editors. The general consensus combined with the checklist will ultimately guide LSC-PV research towards reliable and meaningful ad- vances.
Caltech Authors arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/11343/337118Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2022Full-Text: https://doi.org/10.1016/j.joule.2021.12.004Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)JouleArticle . 2022License: taverneData sources: Eindhoven University of Technology Research PortalUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2022Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.joule.2021.12.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 99 citations 99 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Caltech Authors arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/11343/337118Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2022Full-Text: https://doi.org/10.1016/j.joule.2021.12.004Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)JouleArticle . 2022License: taverneData sources: Eindhoven University of Technology Research PortalUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2022Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.joule.2021.12.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Authors: Bricaud, Quentin; Cravino, Antonio; Leriche, Philippe; Roncali, Jean;Regioregular poly[3-(3,6-dioxaheptyl)thiophene] (PDHT) has been synthesized by Grignard metathesis (GRIM). The UV–vis absorption spectrum of spin-cast films of PDHT presents a well-resolved vibrational fine structure typical of well-ordered polymers. The characterization of bulk heterojunction solar cells fabricated using PCBM as acceptor shows that PDHT leads to power conversion efficiencies in ca 4–5 times lower than that obtained with regioregular poly(3-hexylthiophene) (P3HT). In contrast, the characterization of bilayer solar cells realized by thermal evaporation of C60 on spin-cast polymer films shows that PDHT leads to performances similar or even better than P3HT both before and after thermal treatment.
Hyper Article en Lig... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2009.04.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2009.04.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu