- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2020Publisher:MDPI AG Funded by:UKRI | DTP 2018-19 University of...UKRI| DTP 2018-19 University of EdinburghAuthors: Desen Kirli; Maximilian Parzen; Aristides Kiprakis;The outbreak of SARS-COV-2 disease 2019 (COVID-19) abruptly changed the patterns in electricity consumption, challenging the system operations of forecasting and balancing supply and demand. This is due to the mitigation measures that include lockdown and Work from Home (WFH), which decreased the aggregated demand and remarkably altered its profile. Here, we characterise these changes with various quantitative markers and compare it with pre-COVID-19 business-as-usual data using Great Britain (GB) as a case study. The ripple effects on the generation portfolio, system frequency, forecasting accuracy and imbalance pricing are also analysed. An energy data extraction and pre-processing pipeline that can be used in a variety of similar studies is also presented. Analysis of the GB demand data during the March 2020 lockdown indicates that a shift to WFH will result to a net benefit for flexible stakeholders, such as consumer on variable tariffs. Furthermore, the analysis illustrates a need for faster and more frequent balancing actions, as a result of the increased share of renewable energy in the generation mix. This new equilibrium of energy demand and supply will require a redesign of the existing balancing mechanisms as well as the longer-term power system planning strategies.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/3/635/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202011.0348.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/3/635/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202011.0348.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2020Publisher:MDPI AG Funded by:UKRI | DTP 2018-19 University of...UKRI| DTP 2018-19 University of EdinburghAuthors: Desen Kirli; Maximilian Parzen; Aristides Kiprakis;The outbreak of SARS-COV-2 disease 2019 (COVID-19) abruptly changed the patterns in electricity consumption, challenging the system operations of forecasting and balancing supply and demand. This is due to the mitigation measures that include lockdown and Work from Home (WFH), which decreased the aggregated demand and remarkably altered its profile. Here, we characterise these changes with various quantitative markers and compare it with pre-COVID-19 business-as-usual data using Great Britain (GB) as a case study. The ripple effects on the generation portfolio, system frequency, forecasting accuracy and imbalance pricing are also analysed. An energy data extraction and pre-processing pipeline that can be used in a variety of similar studies is also presented. Analysis of the GB demand data during the March 2020 lockdown indicates that a shift to WFH will result to a net benefit for flexible stakeholders, such as consumer on variable tariffs. Furthermore, the analysis illustrates a need for faster and more frequent balancing actions, as a result of the increased share of renewable energy in the generation mix. This new equilibrium of energy demand and supply will require a redesign of the existing balancing mechanisms as well as the longer-term power system planning strategies.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/3/635/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202011.0348.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/3/635/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202011.0348.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:MDPI AG Authors: Siraj Sabihuddin; Aristides E. Kiprakis; Markus Mueller;More effective energy production requires a greater penetration of storage technologies. This paper takes a looks at and compares the landscape of energy storage devices. Solutions across four categories of storage, namely: mechanical, chemical, electromagnetic and thermal storage are compared on the basis of energy/power density, specific energy/power, efficiency, lifespan, cycle life, self-discharge rates, capital energy/power costs, scale, application, technical maturity as well as environmental impact. It’s noted that virtually every storage technology is seeing improvements. This paper provides an overview of some of the problems with existing storage systems and identifies some key technologies that hold promise.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8010172&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 243 citations 243 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8010172&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:MDPI AG Authors: Siraj Sabihuddin; Aristides E. Kiprakis; Markus Mueller;More effective energy production requires a greater penetration of storage technologies. This paper takes a looks at and compares the landscape of energy storage devices. Solutions across four categories of storage, namely: mechanical, chemical, electromagnetic and thermal storage are compared on the basis of energy/power density, specific energy/power, efficiency, lifespan, cycle life, self-discharge rates, capital energy/power costs, scale, application, technical maturity as well as environmental impact. It’s noted that virtually every storage technology is seeing improvements. This paper provides an overview of some of the problems with existing storage systems and identifies some key technologies that hold promise.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8010172&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 243 citations 243 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8010172&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2012Publisher:IEEE Authors: Aristides Kiprakis; Stephen McLaughlin; Adam J. Collin; George Tsagarakis;This paper presents a Markov chain approach for developing low-voltage (LV) residential load models for use in the analysis of future smart grids. The motivation is to obtain a better understanding of load use and user behaviour at the LV level which will allow future electricity network performance to be improved by understanding the impact of energy demand transformations through the application of demand-side management (DSM) strategies at the LV side. The developed load models highlight the variations between individual and aggregate load model representation and show that the composition of LV residential users should be carefully considered when analysing LV networks.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/isgteurope.2012.6465866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/isgteurope.2012.6465866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2012Publisher:IEEE Authors: Aristides Kiprakis; Stephen McLaughlin; Adam J. Collin; George Tsagarakis;This paper presents a Markov chain approach for developing low-voltage (LV) residential load models for use in the analysis of future smart grids. The motivation is to obtain a better understanding of load use and user behaviour at the LV level which will allow future electricity network performance to be improved by understanding the impact of energy demand transformations through the application of demand-side management (DSM) strategies at the LV side. The developed load models highlight the variations between individual and aggregate load model representation and show that the composition of LV residential users should be carefully considered when analysing LV networks.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/isgteurope.2012.6465866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/isgteurope.2012.6465866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Authors: Renaldi, R.; Kiprakis, A.; Friedrich, D.;Domestic heating has a large share in the UK total energy consumption and significant contribution to the greenhouse gas emissions since it is mainly fulfilled by fossil fuels. Therefore, decarbonising the heating system is essential and an option to achieve this is by heating system electrification through heat pumps (HP) installation in combination with renewable power generation. A potential increase in performance and flexibility can be achieved by pairing HP with thermal energy storage (TES), which allows the shifting of heat demand to off peak periods or periods with surplus renewable electricity. We present a design and operational optimisation model which is able to assess the performance of HP–TES relative to conventional heating systems. The optimisation is performed on a synthetic heat demand model which requires only the annual heat demand, temperature and occupancy profiles. The results show that the equipment and operational cost of a HP system without TES are significantly higher than for a conventional system. However, the integration of TES and time-of-use tariffs reduce the operational cost of the HP systems and in combination with the Renewable Heating Incentive make the HP systems cost competitive with conventional systems. The presented demand model and optimisation procedure will enable the design of low carbon district heating systems which integrate the heating system with the variable renewable electricity supply.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.02.067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 147 citations 147 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.02.067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Authors: Renaldi, R.; Kiprakis, A.; Friedrich, D.;Domestic heating has a large share in the UK total energy consumption and significant contribution to the greenhouse gas emissions since it is mainly fulfilled by fossil fuels. Therefore, decarbonising the heating system is essential and an option to achieve this is by heating system electrification through heat pumps (HP) installation in combination with renewable power generation. A potential increase in performance and flexibility can be achieved by pairing HP with thermal energy storage (TES), which allows the shifting of heat demand to off peak periods or periods with surplus renewable electricity. We present a design and operational optimisation model which is able to assess the performance of HP–TES relative to conventional heating systems. The optimisation is performed on a synthetic heat demand model which requires only the annual heat demand, temperature and occupancy profiles. The results show that the equipment and operational cost of a HP system without TES are significantly higher than for a conventional system. However, the integration of TES and time-of-use tariffs reduce the operational cost of the HP systems and in combination with the Renewable Heating Incentive make the HP systems cost competitive with conventional systems. The presented demand model and optimisation procedure will enable the design of low carbon district heating systems which integrate the heating system with the variable renewable electricity supply.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.02.067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 147 citations 147 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.02.067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal , Other literature type 2013Embargo end date: 01 Jan 2013 United KingdomPublisher:Walter de Gruyter GmbH Authors: Tsagarakis, George; Collin, Adam; Kiprakis, Aristides;arXiv: http://arxiv.org/abs/1306.0802 , 1306.0802
Abstract This article presents a comprehensive statistical analysis of data obtained from a wide range of literature on the most widely used appliances in the UK residential load sector, as well as a comprehensive technology and market survey conducted by the authors. The article focuses on the individual appliances and begins by consideration of the electrical operations performed by the load. This approach allows for the loads to be categorised based on the electrical characteristics, which is particularly important for implementing load-use statistics in power system analysis. In addition to this, device ownership statistics and probability density functions of power demand are presented for the main residential loads. Although the data presented is primarily intended as a resource for the development of load profiles for power system analysis, it contains a large volume of information that provides a useful database for the wider research community.
International Journa... arrow_drop_down International Journal of Emerging Electric Power SystemsArticle . 2013 . Peer-reviewedData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2013License: arXiv Non-Exclusive DistributionData sources: DataciteInternational Journal of Emerging Electric Power SystemsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/ijeeps-2013-0078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 13 citations 13 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Emerging Electric Power SystemsArticle . 2013 . Peer-reviewedData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2013License: arXiv Non-Exclusive DistributionData sources: DataciteInternational Journal of Emerging Electric Power SystemsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/ijeeps-2013-0078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal , Other literature type 2013Embargo end date: 01 Jan 2013 United KingdomPublisher:Walter de Gruyter GmbH Authors: Tsagarakis, George; Collin, Adam; Kiprakis, Aristides;arXiv: http://arxiv.org/abs/1306.0802 , 1306.0802
Abstract This article presents a comprehensive statistical analysis of data obtained from a wide range of literature on the most widely used appliances in the UK residential load sector, as well as a comprehensive technology and market survey conducted by the authors. The article focuses on the individual appliances and begins by consideration of the electrical operations performed by the load. This approach allows for the loads to be categorised based on the electrical characteristics, which is particularly important for implementing load-use statistics in power system analysis. In addition to this, device ownership statistics and probability density functions of power demand are presented for the main residential loads. Although the data presented is primarily intended as a resource for the development of load profiles for power system analysis, it contains a large volume of information that provides a useful database for the wider research community.
International Journa... arrow_drop_down International Journal of Emerging Electric Power SystemsArticle . 2013 . Peer-reviewedData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2013License: arXiv Non-Exclusive DistributionData sources: DataciteInternational Journal of Emerging Electric Power SystemsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/ijeeps-2013-0078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 13 citations 13 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Emerging Electric Power SystemsArticle . 2013 . Peer-reviewedData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2013License: arXiv Non-Exclusive DistributionData sources: DataciteInternational Journal of Emerging Electric Power SystemsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/ijeeps-2013-0078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Funded by:UKRI | Advanced Optimization and..., UKRI | DTP 2018-19 Heriot Watt U..., UKRI | DecarbonISation PAThways ... +2 projectsUKRI| Advanced Optimization and Control Methods for Adaptive Microgrids ,UKRI| DTP 2018-19 Heriot Watt University ,UKRI| DecarbonISation PAThways for Cooling and Heating (DISPATCH) ,UKRI| Community-scale Energy Demand Reduction in India (CEDRI) ,EC| TESTBED2Kirli, Desen; Couraud, Benoit; Robu, Valentin; Salgado-Bravo, Marcelo; Norbu, Sonam; Andoni, Merlinda; Antonopoulos, Ioannis; Negrete-Pincetic, Matias; Flynn, David; Kiprakis, Aristides;Given the ongoing transition towards a more decentralised and adaptive energy system, the potential of blockchain-enabled smart contracts for the energy sector is being increasingly recognised. Due to their self-executing, customisable and tamper-proof nature, they are seen as a key technology for enabling the transition to a more efficient, transparent and transactive energy market. The applications of smart contracts include coordination of smart electric vehicle charging, automated demand-side response, peer-to-peer energy trading and allocation of the control duties amongst the network operators. Nevertheless, their use in the energy sector is still in its early stages as there are many open challenges related to security, privacy, scalability and billing. In this paper, we systematically review 178 peer-reviewed publications and 13 innovation projects, providing a thorough analysis of the strengths and weaknesses of smart contracts used in the energy sector. This work offers a broad perspective on the opportunities and challenges that stakeholders using this technology face, in both current and emergent markets, such as peer-to-peer energy trading platforms. To provide a roadmap for researchers and practitioners interested in the technology, we propose a systematic model of the smart contracting process, by developing a novel 6-layer architecture, as well as presenting a sample energy contract in pseudocode form and as open-source code. Our analysis focuses on the two mainstream application areas we identify for smart contract use in this area: energy and flexibility trading, and distributed control. The paper concludes with a comprehensive, critical discussion of the advantages and challenges that must be addressed in the area of smart contracts and blockchains in energy, and a set of recommendations that researchers and developers should consider when applying smart contracts to energy system settings.
CORE arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRenewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.112013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 146 citations 146 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert CORE arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRenewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.112013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Funded by:UKRI | Advanced Optimization and..., UKRI | DTP 2018-19 Heriot Watt U..., UKRI | DecarbonISation PAThways ... +2 projectsUKRI| Advanced Optimization and Control Methods for Adaptive Microgrids ,UKRI| DTP 2018-19 Heriot Watt University ,UKRI| DecarbonISation PAThways for Cooling and Heating (DISPATCH) ,UKRI| Community-scale Energy Demand Reduction in India (CEDRI) ,EC| TESTBED2Kirli, Desen; Couraud, Benoit; Robu, Valentin; Salgado-Bravo, Marcelo; Norbu, Sonam; Andoni, Merlinda; Antonopoulos, Ioannis; Negrete-Pincetic, Matias; Flynn, David; Kiprakis, Aristides;Given the ongoing transition towards a more decentralised and adaptive energy system, the potential of blockchain-enabled smart contracts for the energy sector is being increasingly recognised. Due to their self-executing, customisable and tamper-proof nature, they are seen as a key technology for enabling the transition to a more efficient, transparent and transactive energy market. The applications of smart contracts include coordination of smart electric vehicle charging, automated demand-side response, peer-to-peer energy trading and allocation of the control duties amongst the network operators. Nevertheless, their use in the energy sector is still in its early stages as there are many open challenges related to security, privacy, scalability and billing. In this paper, we systematically review 178 peer-reviewed publications and 13 innovation projects, providing a thorough analysis of the strengths and weaknesses of smart contracts used in the energy sector. This work offers a broad perspective on the opportunities and challenges that stakeholders using this technology face, in both current and emergent markets, such as peer-to-peer energy trading platforms. To provide a roadmap for researchers and practitioners interested in the technology, we propose a systematic model of the smart contracting process, by developing a novel 6-layer architecture, as well as presenting a sample energy contract in pseudocode form and as open-source code. Our analysis focuses on the two mainstream application areas we identify for smart contract use in this area: energy and flexibility trading, and distributed control. The paper concludes with a comprehensive, critical discussion of the advantages and challenges that must be addressed in the area of smart contracts and blockchains in energy, and a set of recommendations that researchers and developers should consider when applying smart contracts to energy system settings.
CORE arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRenewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.112013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 146 citations 146 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert CORE arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRenewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.112013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:Elsevier BV Authors: Aristides Kiprakis; George Mavrotas; M. Karmellos; M. Karmellos;Abstract Buildings are responsible for some 40% of the total final energy consumption in the European Union and about 40% of the world’s primary energy consumption. Hence, the reduction of primary energy consumption is important for the overall energy chain. The scope of the current work is to assess the energy efficiency measures in the residential and small commercial sector and to develop a methodology and a software tool for their optimal prioritization. The criteria used for the prioritization of energy efficiency measures in this article are the primary energy consumption and the initial investment cost. The developed methodology used is generic and could be implemented in the case of a new building or retrofitting an existing building. A multi-objective mixed-integer non-linear problem (MINLP) needs to be solved and the weighted sum method is used. Moreover, the novelty of this work is that a software tool has been developed using ‘Matlab®’ which is generic, very simple and time efficient and can be used by a Decision Maker (DM). Two case studies have been developed, one for a new building and one for retrofitting an existing one, in two cities with different climate characteristics. The building was placed in Edinburgh in the UK and Athens in Greece and the analysis showed that the primary energy consumption and the initial investment cost are inversely proportional.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.11.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 105 citations 105 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.11.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:Elsevier BV Authors: Aristides Kiprakis; George Mavrotas; M. Karmellos; M. Karmellos;Abstract Buildings are responsible for some 40% of the total final energy consumption in the European Union and about 40% of the world’s primary energy consumption. Hence, the reduction of primary energy consumption is important for the overall energy chain. The scope of the current work is to assess the energy efficiency measures in the residential and small commercial sector and to develop a methodology and a software tool for their optimal prioritization. The criteria used for the prioritization of energy efficiency measures in this article are the primary energy consumption and the initial investment cost. The developed methodology used is generic and could be implemented in the case of a new building or retrofitting an existing building. A multi-objective mixed-integer non-linear problem (MINLP) needs to be solved and the weighted sum method is used. Moreover, the novelty of this work is that a software tool has been developed using ‘Matlab®’ which is generic, very simple and time efficient and can be used by a Decision Maker (DM). Two case studies have been developed, one for a new building and one for retrofitting an existing one, in two cities with different climate characteristics. The building was placed in Edinburgh in the UK and Athens in Greece and the analysis showed that the primary energy consumption and the initial investment cost are inversely proportional.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.11.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 105 citations 105 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.11.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 United KingdomPublisher:MDPI AG Funded by:EC | ADVANTAGEEC| ADVANTAGEAuthors: Gautham Krishnadas; Aristides Kiprakis;Demand response (DR) is an integral component of smart grid operations that offers the necessary flexibility to support its decarbonisation. In incentive-based DR programs, deviations from the scheduled DR capacity affect the grid’s energy balance and result in revenue losses for the DR participants. This issue aggravates with increasing DR delivery from participants such as large consumer buildings who have limited standard methods to follow for DR capacity scheduling. Load curtailment based DR capacity availability from such consumers can be forecasted reliably with the help of supervised machine learning (ML) models. This study demonstrates the development of data-driven ML based total and flexible load forecast models for a retail building. The ML model development tasks such as data pre-processing, training-testing dataset preparation, cross-validation, algorithm selection, hyperparameter optimisation, feature ranking, model selection and model evaluation are guided by deployment-centric design criteria such as reliability, computational efficiency and scalability. Based on the selected performance metrics, the day-ahead and week-ahead ML based load forecast models developed for the retail building are shown to outperform the timeseries persistence models used for benchmarking. Furthermore, the deployment of these models for DR capacity scheduling is proposed as an ML pipeline that can be realised with the help of ML workflows, computational resources as well as systems for monitoring and visualisation. The ML pipeline ensures faster, cost-effective and large-scale deployment of forecast models that support reliable DR capacity scheduling without affecting the grid’s energy balance. Minimisation of revenue losses encourages increased DR participation from large consumer buildings, ensuring further flexibility in the smart grid.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/7/1848/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13071848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/7/1848/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13071848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 United KingdomPublisher:MDPI AG Funded by:EC | ADVANTAGEEC| ADVANTAGEAuthors: Gautham Krishnadas; Aristides Kiprakis;Demand response (DR) is an integral component of smart grid operations that offers the necessary flexibility to support its decarbonisation. In incentive-based DR programs, deviations from the scheduled DR capacity affect the grid’s energy balance and result in revenue losses for the DR participants. This issue aggravates with increasing DR delivery from participants such as large consumer buildings who have limited standard methods to follow for DR capacity scheduling. Load curtailment based DR capacity availability from such consumers can be forecasted reliably with the help of supervised machine learning (ML) models. This study demonstrates the development of data-driven ML based total and flexible load forecast models for a retail building. The ML model development tasks such as data pre-processing, training-testing dataset preparation, cross-validation, algorithm selection, hyperparameter optimisation, feature ranking, model selection and model evaluation are guided by deployment-centric design criteria such as reliability, computational efficiency and scalability. Based on the selected performance metrics, the day-ahead and week-ahead ML based load forecast models developed for the retail building are shown to outperform the timeseries persistence models used for benchmarking. Furthermore, the deployment of these models for DR capacity scheduling is proposed as an ML pipeline that can be realised with the help of ML workflows, computational resources as well as systems for monitoring and visualisation. The ML pipeline ensures faster, cost-effective and large-scale deployment of forecast models that support reliable DR capacity scheduling without affecting the grid’s energy balance. Minimisation of revenue losses encourages increased DR participation from large consumer buildings, ensuring further flexibility in the smart grid.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/7/1848/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13071848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/7/1848/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13071848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Sohail Sarwar; Desen Kirli; Michael M. C. Merlin; Aristides E. Kiprakis;doi: 10.3390/en15238851
A fundamental strategy for utilizing green energy from renewable sources to tackle global warming is the microgrid (MG). Due to the predominance of AC microgrids in the existing power system and the substantial increase in DC power generation and DC load demand, the development of AC/DC hybrid microgrids (HMG) is inevitable. Despite increased theoretical efficiency and minimized AC/DC/AC conversion losses, uncertain loading, grid outages, and intermittent complexion of renewables have increased the complexity, which poses a significant threat toward system stability in an HMG. As a result, the amount of research on the stability, management, and control of HMG is growing exponentially, which makes it imperative to recognize existing problems and emerging trends. In this survey, several strategies from the most recent literature developed to address the challenges of HMG are reviewed. Power flow analysis, power sharing (energy management), local and global control of DGs, and a brief examination of the complexity of HMG’s protection plans make up the four elements of the review technique in this article. During critical analysis, the test system employed for validation is also taken into consideration. A comprehensive review of the literature demonstrates that MILP is a frequently employed technique for the supervisory control of HMG, whereas tweaking bidirectional converter control is the most common approach in the literature to achieve efficient power sharing. Finally, this review identified the limitations, undiscovered challenges, and major hurdles that need to be addressed in order to develop a sustainable control and management scheme for stable multimode HMG operation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15238851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15238851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Sohail Sarwar; Desen Kirli; Michael M. C. Merlin; Aristides E. Kiprakis;doi: 10.3390/en15238851
A fundamental strategy for utilizing green energy from renewable sources to tackle global warming is the microgrid (MG). Due to the predominance of AC microgrids in the existing power system and the substantial increase in DC power generation and DC load demand, the development of AC/DC hybrid microgrids (HMG) is inevitable. Despite increased theoretical efficiency and minimized AC/DC/AC conversion losses, uncertain loading, grid outages, and intermittent complexion of renewables have increased the complexity, which poses a significant threat toward system stability in an HMG. As a result, the amount of research on the stability, management, and control of HMG is growing exponentially, which makes it imperative to recognize existing problems and emerging trends. In this survey, several strategies from the most recent literature developed to address the challenges of HMG are reviewed. Power flow analysis, power sharing (energy management), local and global control of DGs, and a brief examination of the complexity of HMG’s protection plans make up the four elements of the review technique in this article. During critical analysis, the test system employed for validation is also taken into consideration. A comprehensive review of the literature demonstrates that MILP is a frequently employed technique for the supervisory control of HMG, whereas tweaking bidirectional converter control is the most common approach in the literature to achieve efficient power sharing. Finally, this review identified the limitations, undiscovered challenges, and major hurdles that need to be addressed in order to develop a sustainable control and management scheme for stable multimode HMG operation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15238851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15238851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United KingdomPublisher:Institute of Electrical and Electronics Engineers (IEEE) George Tsagarakis; R. Camilla Thomson; Adam J. Collin; Gareth P. Harrison; Aristides E. Kiprakis; Stephen McLaughlin;A detailed study of the potential impact of low-voltage (LV) residential demand-side management (DSM) on the cost and greenhouse gas (GHG) emissions is presented. The proposed optimization algorithm is used to shift noncritical residential loads, with the wet load category used as a case study, in order to minimize the total daily cost and emissions due to generation. This study shows that it is possible to reshape the total power demand and reduce the corresponding cost and emissions to some extent. It is also shown that, when the baseload generating mix is dominated by coal-fired generation, the daily profiles of GHG emissions and cost conflict, such that further optimization of the cost leads to an increase in emissions.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Industry ApplicationsArticle . 2016 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tia.2016.2516478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Industry ApplicationsArticle . 2016 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tia.2016.2516478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United KingdomPublisher:Institute of Electrical and Electronics Engineers (IEEE) George Tsagarakis; R. Camilla Thomson; Adam J. Collin; Gareth P. Harrison; Aristides E. Kiprakis; Stephen McLaughlin;A detailed study of the potential impact of low-voltage (LV) residential demand-side management (DSM) on the cost and greenhouse gas (GHG) emissions is presented. The proposed optimization algorithm is used to shift noncritical residential loads, with the wet load category used as a case study, in order to minimize the total daily cost and emissions due to generation. This study shows that it is possible to reshape the total power demand and reduce the corresponding cost and emissions to some extent. It is also shown that, when the baseload generating mix is dominated by coal-fired generation, the daily profiles of GHG emissions and cost conflict, such that further optimization of the cost leads to an increase in emissions.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Industry ApplicationsArticle . 2016 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tia.2016.2516478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Industry ApplicationsArticle . 2016 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tia.2016.2516478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2020Publisher:MDPI AG Funded by:UKRI | DTP 2018-19 University of...UKRI| DTP 2018-19 University of EdinburghAuthors: Desen Kirli; Maximilian Parzen; Aristides Kiprakis;The outbreak of SARS-COV-2 disease 2019 (COVID-19) abruptly changed the patterns in electricity consumption, challenging the system operations of forecasting and balancing supply and demand. This is due to the mitigation measures that include lockdown and Work from Home (WFH), which decreased the aggregated demand and remarkably altered its profile. Here, we characterise these changes with various quantitative markers and compare it with pre-COVID-19 business-as-usual data using Great Britain (GB) as a case study. The ripple effects on the generation portfolio, system frequency, forecasting accuracy and imbalance pricing are also analysed. An energy data extraction and pre-processing pipeline that can be used in a variety of similar studies is also presented. Analysis of the GB demand data during the March 2020 lockdown indicates that a shift to WFH will result to a net benefit for flexible stakeholders, such as consumer on variable tariffs. Furthermore, the analysis illustrates a need for faster and more frequent balancing actions, as a result of the increased share of renewable energy in the generation mix. This new equilibrium of energy demand and supply will require a redesign of the existing balancing mechanisms as well as the longer-term power system planning strategies.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/3/635/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202011.0348.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/3/635/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202011.0348.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2020Publisher:MDPI AG Funded by:UKRI | DTP 2018-19 University of...UKRI| DTP 2018-19 University of EdinburghAuthors: Desen Kirli; Maximilian Parzen; Aristides Kiprakis;The outbreak of SARS-COV-2 disease 2019 (COVID-19) abruptly changed the patterns in electricity consumption, challenging the system operations of forecasting and balancing supply and demand. This is due to the mitigation measures that include lockdown and Work from Home (WFH), which decreased the aggregated demand and remarkably altered its profile. Here, we characterise these changes with various quantitative markers and compare it with pre-COVID-19 business-as-usual data using Great Britain (GB) as a case study. The ripple effects on the generation portfolio, system frequency, forecasting accuracy and imbalance pricing are also analysed. An energy data extraction and pre-processing pipeline that can be used in a variety of similar studies is also presented. Analysis of the GB demand data during the March 2020 lockdown indicates that a shift to WFH will result to a net benefit for flexible stakeholders, such as consumer on variable tariffs. Furthermore, the analysis illustrates a need for faster and more frequent balancing actions, as a result of the increased share of renewable energy in the generation mix. This new equilibrium of energy demand and supply will require a redesign of the existing balancing mechanisms as well as the longer-term power system planning strategies.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/3/635/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202011.0348.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/3/635/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202011.0348.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:MDPI AG Authors: Siraj Sabihuddin; Aristides E. Kiprakis; Markus Mueller;More effective energy production requires a greater penetration of storage technologies. This paper takes a looks at and compares the landscape of energy storage devices. Solutions across four categories of storage, namely: mechanical, chemical, electromagnetic and thermal storage are compared on the basis of energy/power density, specific energy/power, efficiency, lifespan, cycle life, self-discharge rates, capital energy/power costs, scale, application, technical maturity as well as environmental impact. It’s noted that virtually every storage technology is seeing improvements. This paper provides an overview of some of the problems with existing storage systems and identifies some key technologies that hold promise.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8010172&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 243 citations 243 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8010172&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:MDPI AG Authors: Siraj Sabihuddin; Aristides E. Kiprakis; Markus Mueller;More effective energy production requires a greater penetration of storage technologies. This paper takes a looks at and compares the landscape of energy storage devices. Solutions across four categories of storage, namely: mechanical, chemical, electromagnetic and thermal storage are compared on the basis of energy/power density, specific energy/power, efficiency, lifespan, cycle life, self-discharge rates, capital energy/power costs, scale, application, technical maturity as well as environmental impact. It’s noted that virtually every storage technology is seeing improvements. This paper provides an overview of some of the problems with existing storage systems and identifies some key technologies that hold promise.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8010172&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 243 citations 243 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8010172&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2012Publisher:IEEE Authors: Aristides Kiprakis; Stephen McLaughlin; Adam J. Collin; George Tsagarakis;This paper presents a Markov chain approach for developing low-voltage (LV) residential load models for use in the analysis of future smart grids. The motivation is to obtain a better understanding of load use and user behaviour at the LV level which will allow future electricity network performance to be improved by understanding the impact of energy demand transformations through the application of demand-side management (DSM) strategies at the LV side. The developed load models highlight the variations between individual and aggregate load model representation and show that the composition of LV residential users should be carefully considered when analysing LV networks.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/isgteurope.2012.6465866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/isgteurope.2012.6465866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2012Publisher:IEEE Authors: Aristides Kiprakis; Stephen McLaughlin; Adam J. Collin; George Tsagarakis;This paper presents a Markov chain approach for developing low-voltage (LV) residential load models for use in the analysis of future smart grids. The motivation is to obtain a better understanding of load use and user behaviour at the LV level which will allow future electricity network performance to be improved by understanding the impact of energy demand transformations through the application of demand-side management (DSM) strategies at the LV side. The developed load models highlight the variations between individual and aggregate load model representation and show that the composition of LV residential users should be carefully considered when analysing LV networks.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/isgteurope.2012.6465866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/isgteurope.2012.6465866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Authors: Renaldi, R.; Kiprakis, A.; Friedrich, D.;Domestic heating has a large share in the UK total energy consumption and significant contribution to the greenhouse gas emissions since it is mainly fulfilled by fossil fuels. Therefore, decarbonising the heating system is essential and an option to achieve this is by heating system electrification through heat pumps (HP) installation in combination with renewable power generation. A potential increase in performance and flexibility can be achieved by pairing HP with thermal energy storage (TES), which allows the shifting of heat demand to off peak periods or periods with surplus renewable electricity. We present a design and operational optimisation model which is able to assess the performance of HP–TES relative to conventional heating systems. The optimisation is performed on a synthetic heat demand model which requires only the annual heat demand, temperature and occupancy profiles. The results show that the equipment and operational cost of a HP system without TES are significantly higher than for a conventional system. However, the integration of TES and time-of-use tariffs reduce the operational cost of the HP systems and in combination with the Renewable Heating Incentive make the HP systems cost competitive with conventional systems. The presented demand model and optimisation procedure will enable the design of low carbon district heating systems which integrate the heating system with the variable renewable electricity supply.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.02.067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 147 citations 147 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.02.067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Authors: Renaldi, R.; Kiprakis, A.; Friedrich, D.;Domestic heating has a large share in the UK total energy consumption and significant contribution to the greenhouse gas emissions since it is mainly fulfilled by fossil fuels. Therefore, decarbonising the heating system is essential and an option to achieve this is by heating system electrification through heat pumps (HP) installation in combination with renewable power generation. A potential increase in performance and flexibility can be achieved by pairing HP with thermal energy storage (TES), which allows the shifting of heat demand to off peak periods or periods with surplus renewable electricity. We present a design and operational optimisation model which is able to assess the performance of HP–TES relative to conventional heating systems. The optimisation is performed on a synthetic heat demand model which requires only the annual heat demand, temperature and occupancy profiles. The results show that the equipment and operational cost of a HP system without TES are significantly higher than for a conventional system. However, the integration of TES and time-of-use tariffs reduce the operational cost of the HP systems and in combination with the Renewable Heating Incentive make the HP systems cost competitive with conventional systems. The presented demand model and optimisation procedure will enable the design of low carbon district heating systems which integrate the heating system with the variable renewable electricity supply.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.02.067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 147 citations 147 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.02.067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal , Other literature type 2013Embargo end date: 01 Jan 2013 United KingdomPublisher:Walter de Gruyter GmbH Authors: Tsagarakis, George; Collin, Adam; Kiprakis, Aristides;arXiv: http://arxiv.org/abs/1306.0802 , 1306.0802
Abstract This article presents a comprehensive statistical analysis of data obtained from a wide range of literature on the most widely used appliances in the UK residential load sector, as well as a comprehensive technology and market survey conducted by the authors. The article focuses on the individual appliances and begins by consideration of the electrical operations performed by the load. This approach allows for the loads to be categorised based on the electrical characteristics, which is particularly important for implementing load-use statistics in power system analysis. In addition to this, device ownership statistics and probability density functions of power demand are presented for the main residential loads. Although the data presented is primarily intended as a resource for the development of load profiles for power system analysis, it contains a large volume of information that provides a useful database for the wider research community.
International Journa... arrow_drop_down International Journal of Emerging Electric Power SystemsArticle . 2013 . Peer-reviewedData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2013License: arXiv Non-Exclusive DistributionData sources: DataciteInternational Journal of Emerging Electric Power SystemsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/ijeeps-2013-0078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 13 citations 13 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Emerging Electric Power SystemsArticle . 2013 . Peer-reviewedData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2013License: arXiv Non-Exclusive DistributionData sources: DataciteInternational Journal of Emerging Electric Power SystemsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/ijeeps-2013-0078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal , Other literature type 2013Embargo end date: 01 Jan 2013 United KingdomPublisher:Walter de Gruyter GmbH Authors: Tsagarakis, George; Collin, Adam; Kiprakis, Aristides;arXiv: http://arxiv.org/abs/1306.0802 , 1306.0802
Abstract This article presents a comprehensive statistical analysis of data obtained from a wide range of literature on the most widely used appliances in the UK residential load sector, as well as a comprehensive technology and market survey conducted by the authors. The article focuses on the individual appliances and begins by consideration of the electrical operations performed by the load. This approach allows for the loads to be categorised based on the electrical characteristics, which is particularly important for implementing load-use statistics in power system analysis. In addition to this, device ownership statistics and probability density functions of power demand are presented for the main residential loads. Although the data presented is primarily intended as a resource for the development of load profiles for power system analysis, it contains a large volume of information that provides a useful database for the wider research community.
International Journa... arrow_drop_down International Journal of Emerging Electric Power SystemsArticle . 2013 . Peer-reviewedData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2013License: arXiv Non-Exclusive DistributionData sources: DataciteInternational Journal of Emerging Electric Power SystemsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/ijeeps-2013-0078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 13 citations 13 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Emerging Electric Power SystemsArticle . 2013 . Peer-reviewedData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2013License: arXiv Non-Exclusive DistributionData sources: DataciteInternational Journal of Emerging Electric Power SystemsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/ijeeps-2013-0078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Funded by:UKRI | Advanced Optimization and..., UKRI | DTP 2018-19 Heriot Watt U..., UKRI | DecarbonISation PAThways ... +2 projectsUKRI| Advanced Optimization and Control Methods for Adaptive Microgrids ,UKRI| DTP 2018-19 Heriot Watt University ,UKRI| DecarbonISation PAThways for Cooling and Heating (DISPATCH) ,UKRI| Community-scale Energy Demand Reduction in India (CEDRI) ,EC| TESTBED2Kirli, Desen; Couraud, Benoit; Robu, Valentin; Salgado-Bravo, Marcelo; Norbu, Sonam; Andoni, Merlinda; Antonopoulos, Ioannis; Negrete-Pincetic, Matias; Flynn, David; Kiprakis, Aristides;Given the ongoing transition towards a more decentralised and adaptive energy system, the potential of blockchain-enabled smart contracts for the energy sector is being increasingly recognised. Due to their self-executing, customisable and tamper-proof nature, they are seen as a key technology for enabling the transition to a more efficient, transparent and transactive energy market. The applications of smart contracts include coordination of smart electric vehicle charging, automated demand-side response, peer-to-peer energy trading and allocation of the control duties amongst the network operators. Nevertheless, their use in the energy sector is still in its early stages as there are many open challenges related to security, privacy, scalability and billing. In this paper, we systematically review 178 peer-reviewed publications and 13 innovation projects, providing a thorough analysis of the strengths and weaknesses of smart contracts used in the energy sector. This work offers a broad perspective on the opportunities and challenges that stakeholders using this technology face, in both current and emergent markets, such as peer-to-peer energy trading platforms. To provide a roadmap for researchers and practitioners interested in the technology, we propose a systematic model of the smart contracting process, by developing a novel 6-layer architecture, as well as presenting a sample energy contract in pseudocode form and as open-source code. Our analysis focuses on the two mainstream application areas we identify for smart contract use in this area: energy and flexibility trading, and distributed control. The paper concludes with a comprehensive, critical discussion of the advantages and challenges that must be addressed in the area of smart contracts and blockchains in energy, and a set of recommendations that researchers and developers should consider when applying smart contracts to energy system settings.
CORE arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRenewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.112013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 146 citations 146 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert CORE arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRenewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.112013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Funded by:UKRI | Advanced Optimization and..., UKRI | DTP 2018-19 Heriot Watt U..., UKRI | DecarbonISation PAThways ... +2 projectsUKRI| Advanced Optimization and Control Methods for Adaptive Microgrids ,UKRI| DTP 2018-19 Heriot Watt University ,UKRI| DecarbonISation PAThways for Cooling and Heating (DISPATCH) ,UKRI| Community-scale Energy Demand Reduction in India (CEDRI) ,EC| TESTBED2Kirli, Desen; Couraud, Benoit; Robu, Valentin; Salgado-Bravo, Marcelo; Norbu, Sonam; Andoni, Merlinda; Antonopoulos, Ioannis; Negrete-Pincetic, Matias; Flynn, David; Kiprakis, Aristides;Given the ongoing transition towards a more decentralised and adaptive energy system, the potential of blockchain-enabled smart contracts for the energy sector is being increasingly recognised. Due to their self-executing, customisable and tamper-proof nature, they are seen as a key technology for enabling the transition to a more efficient, transparent and transactive energy market. The applications of smart contracts include coordination of smart electric vehicle charging, automated demand-side response, peer-to-peer energy trading and allocation of the control duties amongst the network operators. Nevertheless, their use in the energy sector is still in its early stages as there are many open challenges related to security, privacy, scalability and billing. In this paper, we systematically review 178 peer-reviewed publications and 13 innovation projects, providing a thorough analysis of the strengths and weaknesses of smart contracts used in the energy sector. This work offers a broad perspective on the opportunities and challenges that stakeholders using this technology face, in both current and emergent markets, such as peer-to-peer energy trading platforms. To provide a roadmap for researchers and practitioners interested in the technology, we propose a systematic model of the smart contracting process, by developing a novel 6-layer architecture, as well as presenting a sample energy contract in pseudocode form and as open-source code. Our analysis focuses on the two mainstream application areas we identify for smart contract use in this area: energy and flexibility trading, and distributed control. The paper concludes with a comprehensive, critical discussion of the advantages and challenges that must be addressed in the area of smart contracts and blockchains in energy, and a set of recommendations that researchers and developers should consider when applying smart contracts to energy system settings.
CORE arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRenewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.112013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 146 citations 146 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert CORE arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRenewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.112013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:Elsevier BV Authors: Aristides Kiprakis; George Mavrotas; M. Karmellos; M. Karmellos;Abstract Buildings are responsible for some 40% of the total final energy consumption in the European Union and about 40% of the world’s primary energy consumption. Hence, the reduction of primary energy consumption is important for the overall energy chain. The scope of the current work is to assess the energy efficiency measures in the residential and small commercial sector and to develop a methodology and a software tool for their optimal prioritization. The criteria used for the prioritization of energy efficiency measures in this article are the primary energy consumption and the initial investment cost. The developed methodology used is generic and could be implemented in the case of a new building or retrofitting an existing building. A multi-objective mixed-integer non-linear problem (MINLP) needs to be solved and the weighted sum method is used. Moreover, the novelty of this work is that a software tool has been developed using ‘Matlab®’ which is generic, very simple and time efficient and can be used by a Decision Maker (DM). Two case studies have been developed, one for a new building and one for retrofitting an existing one, in two cities with different climate characteristics. The building was placed in Edinburgh in the UK and Athens in Greece and the analysis showed that the primary energy consumption and the initial investment cost are inversely proportional.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.11.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 105 citations 105 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.11.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:Elsevier BV Authors: Aristides Kiprakis; George Mavrotas; M. Karmellos; M. Karmellos;Abstract Buildings are responsible for some 40% of the total final energy consumption in the European Union and about 40% of the world’s primary energy consumption. Hence, the reduction of primary energy consumption is important for the overall energy chain. The scope of the current work is to assess the energy efficiency measures in the residential and small commercial sector and to develop a methodology and a software tool for their optimal prioritization. The criteria used for the prioritization of energy efficiency measures in this article are the primary energy consumption and the initial investment cost. The developed methodology used is generic and could be implemented in the case of a new building or retrofitting an existing building. A multi-objective mixed-integer non-linear problem (MINLP) needs to be solved and the weighted sum method is used. Moreover, the novelty of this work is that a software tool has been developed using ‘Matlab®’ which is generic, very simple and time efficient and can be used by a Decision Maker (DM). Two case studies have been developed, one for a new building and one for retrofitting an existing one, in two cities with different climate characteristics. The building was placed in Edinburgh in the UK and Athens in Greece and the analysis showed that the primary energy consumption and the initial investment cost are inversely proportional.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.11.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 105 citations 105 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.11.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 United KingdomPublisher:MDPI AG Funded by:EC | ADVANTAGEEC| ADVANTAGEAuthors: Gautham Krishnadas; Aristides Kiprakis;Demand response (DR) is an integral component of smart grid operations that offers the necessary flexibility to support its decarbonisation. In incentive-based DR programs, deviations from the scheduled DR capacity affect the grid’s energy balance and result in revenue losses for the DR participants. This issue aggravates with increasing DR delivery from participants such as large consumer buildings who have limited standard methods to follow for DR capacity scheduling. Load curtailment based DR capacity availability from such consumers can be forecasted reliably with the help of supervised machine learning (ML) models. This study demonstrates the development of data-driven ML based total and flexible load forecast models for a retail building. The ML model development tasks such as data pre-processing, training-testing dataset preparation, cross-validation, algorithm selection, hyperparameter optimisation, feature ranking, model selection and model evaluation are guided by deployment-centric design criteria such as reliability, computational efficiency and scalability. Based on the selected performance metrics, the day-ahead and week-ahead ML based load forecast models developed for the retail building are shown to outperform the timeseries persistence models used for benchmarking. Furthermore, the deployment of these models for DR capacity scheduling is proposed as an ML pipeline that can be realised with the help of ML workflows, computational resources as well as systems for monitoring and visualisation. The ML pipeline ensures faster, cost-effective and large-scale deployment of forecast models that support reliable DR capacity scheduling without affecting the grid’s energy balance. Minimisation of revenue losses encourages increased DR participation from large consumer buildings, ensuring further flexibility in the smart grid.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/7/1848/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13071848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/7/1848/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13071848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 United KingdomPublisher:MDPI AG Funded by:EC | ADVANTAGEEC| ADVANTAGEAuthors: Gautham Krishnadas; Aristides Kiprakis;Demand response (DR) is an integral component of smart grid operations that offers the necessary flexibility to support its decarbonisation. In incentive-based DR programs, deviations from the scheduled DR capacity affect the grid’s energy balance and result in revenue losses for the DR participants. This issue aggravates with increasing DR delivery from participants such as large consumer buildings who have limited standard methods to follow for DR capacity scheduling. Load curtailment based DR capacity availability from such consumers can be forecasted reliably with the help of supervised machine learning (ML) models. This study demonstrates the development of data-driven ML based total and flexible load forecast models for a retail building. The ML model development tasks such as data pre-processing, training-testing dataset preparation, cross-validation, algorithm selection, hyperparameter optimisation, feature ranking, model selection and model evaluation are guided by deployment-centric design criteria such as reliability, computational efficiency and scalability. Based on the selected performance metrics, the day-ahead and week-ahead ML based load forecast models developed for the retail building are shown to outperform the timeseries persistence models used for benchmarking. Furthermore, the deployment of these models for DR capacity scheduling is proposed as an ML pipeline that can be realised with the help of ML workflows, computational resources as well as systems for monitoring and visualisation. The ML pipeline ensures faster, cost-effective and large-scale deployment of forecast models that support reliable DR capacity scheduling without affecting the grid’s energy balance. Minimisation of revenue losses encourages increased DR participation from large consumer buildings, ensuring further flexibility in the smart grid.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/7/1848/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13071848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/7/1848/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13071848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Sohail Sarwar; Desen Kirli; Michael M. C. Merlin; Aristides E. Kiprakis;doi: 10.3390/en15238851
A fundamental strategy for utilizing green energy from renewable sources to tackle global warming is the microgrid (MG). Due to the predominance of AC microgrids in the existing power system and the substantial increase in DC power generation and DC load demand, the development of AC/DC hybrid microgrids (HMG) is inevitable. Despite increased theoretical efficiency and minimized AC/DC/AC conversion losses, uncertain loading, grid outages, and intermittent complexion of renewables have increased the complexity, which poses a significant threat toward system stability in an HMG. As a result, the amount of research on the stability, management, and control of HMG is growing exponentially, which makes it imperative to recognize existing problems and emerging trends. In this survey, several strategies from the most recent literature developed to address the challenges of HMG are reviewed. Power flow analysis, power sharing (energy management), local and global control of DGs, and a brief examination of the complexity of HMG’s protection plans make up the four elements of the review technique in this article. During critical analysis, the test system employed for validation is also taken into consideration. A comprehensive review of the literature demonstrates that MILP is a frequently employed technique for the supervisory control of HMG, whereas tweaking bidirectional converter control is the most common approach in the literature to achieve efficient power sharing. Finally, this review identified the limitations, undiscovered challenges, and major hurdles that need to be addressed in order to develop a sustainable control and management scheme for stable multimode HMG operation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15238851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15238851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Sohail Sarwar; Desen Kirli; Michael M. C. Merlin; Aristides E. Kiprakis;doi: 10.3390/en15238851
A fundamental strategy for utilizing green energy from renewable sources to tackle global warming is the microgrid (MG). Due to the predominance of AC microgrids in the existing power system and the substantial increase in DC power generation and DC load demand, the development of AC/DC hybrid microgrids (HMG) is inevitable. Despite increased theoretical efficiency and minimized AC/DC/AC conversion losses, uncertain loading, grid outages, and intermittent complexion of renewables have increased the complexity, which poses a significant threat toward system stability in an HMG. As a result, the amount of research on the stability, management, and control of HMG is growing exponentially, which makes it imperative to recognize existing problems and emerging trends. In this survey, several strategies from the most recent literature developed to address the challenges of HMG are reviewed. Power flow analysis, power sharing (energy management), local and global control of DGs, and a brief examination of the complexity of HMG’s protection plans make up the four elements of the review technique in this article. During critical analysis, the test system employed for validation is also taken into consideration. A comprehensive review of the literature demonstrates that MILP is a frequently employed technique for the supervisory control of HMG, whereas tweaking bidirectional converter control is the most common approach in the literature to achieve efficient power sharing. Finally, this review identified the limitations, undiscovered challenges, and major hurdles that need to be addressed in order to develop a sustainable control and management scheme for stable multimode HMG operation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15238851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15238851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United KingdomPublisher:Institute of Electrical and Electronics Engineers (IEEE) George Tsagarakis; R. Camilla Thomson; Adam J. Collin; Gareth P. Harrison; Aristides E. Kiprakis; Stephen McLaughlin;A detailed study of the potential impact of low-voltage (LV) residential demand-side management (DSM) on the cost and greenhouse gas (GHG) emissions is presented. The proposed optimization algorithm is used to shift noncritical residential loads, with the wet load category used as a case study, in order to minimize the total daily cost and emissions due to generation. This study shows that it is possible to reshape the total power demand and reduce the corresponding cost and emissions to some extent. It is also shown that, when the baseload generating mix is dominated by coal-fired generation, the daily profiles of GHG emissions and cost conflict, such that further optimization of the cost leads to an increase in emissions.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Industry ApplicationsArticle . 2016 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tia.2016.2516478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Industry ApplicationsArticle . 2016 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tia.2016.2516478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United KingdomPublisher:Institute of Electrical and Electronics Engineers (IEEE) George Tsagarakis; R. Camilla Thomson; Adam J. Collin; Gareth P. Harrison; Aristides E. Kiprakis; Stephen McLaughlin;A detailed study of the potential impact of low-voltage (LV) residential demand-side management (DSM) on the cost and greenhouse gas (GHG) emissions is presented. The proposed optimization algorithm is used to shift noncritical residential loads, with the wet load category used as a case study, in order to minimize the total daily cost and emissions due to generation. This study shows that it is possible to reshape the total power demand and reduce the corresponding cost and emissions to some extent. It is also shown that, when the baseload generating mix is dominated by coal-fired generation, the daily profiles of GHG emissions and cost conflict, such that further optimization of the cost leads to an increase in emissions.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Industry ApplicationsArticle . 2016 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tia.2016.2516478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Industry ApplicationsArticle . 2016 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tia.2016.2516478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu