- home
- Advanced Search
Filters
Year range
-chevron_right GOCountry
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: H..., NSF | Collaborative Research: H..., NSF | Quantifying the contribut... +3 projectsNSF| Collaborative Research: He-CO2-N2 Isotopes and Dissolved Gases in Groundwaters of the Costa Rica Fore-arc Margin ,NSF| Collaborative Research: He-CO2-N2 Isotopes and Dissolved Gases in Groundwaters of the Costa Rica Fore-arc Margin ,NSF| Quantifying the contribution of the deep biosphere in the marine sediment carbon cycle using deep-sea sediment cores from the Baltic Sea ,NSF| Collaborative Research: Resolving Mantle, Crustal and Slab Fluxes to Arc Magmatism in Central America Using Geothermal Fluids and Volcanic Rocks ,NSF| Chlorine Isotope Geochemistry of Volcanic Systems ,NSF| A PETROLOGICAL AND NITROGEN ISOTOPE STUDY OF CRUSTAL RECYCLING THROUGH TIMEMonserrat Cascante; M. di Carlo; Mayuko Nakagawa; Francesco Smedile; Francesco Smedile; Shuhei Ono; Elena Manini; Stephen J. Turner; Donato Giovannelli; Peter H. Barry; Peter H. Barry; P. Beaudry; Harold C. Miller; Francesco Regoli; Kayla Iacovino; Justin T. Kulongoski; Daniel R. Hummer; Michael E. Martinez; A. Battaglia; Sushmita Patwardhan; G. González; David R. Hilton; Mustafa Yücel; Tehnuka Ilanko; Giuseppe d’Errico; Giuseppe d’Errico; Sæmundur A. Halldórsson; Esteban Gazel; Karen G. Lloyd; Carlos Ramírez; Matthew O. Schrenk; Y. Alpizar Segura; Tobias Fischer; C. A. Pratt; Chris J. Ballentine; Taryn Lopez; J. M. de Moor; Giulio Bini; Costantino Vetriani; Daniele Fattorini; Katherine M. Fullerton;Carbon and other volatiles in the form of gases, fluids or mineral phases are transported from Earth's surface into the mantle at convergent margins, where the oceanic crust subducts beneath the continental crust. The efficiency of this transfer has profound implications for the nature and scale of geochemical heterogeneities in Earth's deep mantle and shallow crustal reservoirs, as well as Earth's oxidation state. However, the proportions of volatiles released from the forearc and backarc are not well constrained compared to fluxes from the volcanic arc front. Here we use helium and carbon isotope data from deeply sourced springs along two cross-arc transects to show that about 91 per cent of carbon released from the slab and mantle beneath the Costa Rican forearc is sequestered within the crust by calcite deposition. Around an additional three per cent is incorporated into the biomass through microbial chemolithoautotrophy, whereby microbes assimilate inorganic carbon into biomass. We estimate that between 1.2 × 10
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-019-1131-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 106 citations 106 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 3visibility views 3 download downloads 245 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-019-1131-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:PANGAEA Seltzer, Alan; Ng, Jessica; Aeschbach, Werner; Kipfer, Rolf; Kulongoski, Justin T; Severinghaus, Jeffrey P; Stute, Martin; Wieser, Martin; Deshpande, R D; Van Khoi, Le; Schlosser, Peter; Love, Andy; Herczeg, Andrew; Clark, Jordan F; Simpson, Jim;This data set includes noble gas measurements and modeled recharge temperatures from 32 separate groundwater studies, each analyzed using the same consistent framework and set of noble gas temperature models (CE, PR, and OD models). Along with noble gas data and modeled temperatures are site information (coordinates, recharge elevation), groundwater age data, modern recharge temperatures, other model outputs (excess air, fractionation), and uncertainties for all variables of interest. These data were used to estimate LGM-Late Holocene temperature differences from each site and, together, for the large-scale low-latitude, low-elevation land surface. Please cite the dataset with the data citation and the paper citation Seltzer et al., 2021.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2021License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.929176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2021License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.929176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United StatesPublisher:Springer Science and Business Media LLC Alan M. Seltzer; Jessica Ng; Werner Aeschbach; Rolf Kipfer; Justin T. Kulongoski; Jeffrey P. Severinghaus; Martin Stute;pmid: 33981051
The magnitude of global cooling during the Last Glacial Maximum (LGM, the coldest multimillennial interval of the last glacial period) is an important constraint for evaluating estimates of Earth's climate sensitivity1,2. Reliable LGM temperatures come from high-latitude ice cores3,4, but substantial disagreement exists between proxy records in the low latitudes1,5-8, where quantitative low-elevation records on land are scarce. Filling this data gap, noble gases in ancient groundwater record past land surface temperatures through a direct physical relationship that is rooted in their temperature-dependent solubility in water9,10. Dissolved noble gases are suitable tracers of LGM temperature because of their complete insensitivity to biological and chemical processes and the ubiquity of LGM-aged groundwater around the globe11,12. However, although several individual noble gas studies have found substantial tropical LGM cooling13-16, they have used different methodologies and provide limited spatial coverage. Here we use noble gases in groundwater to show that the low-altitude, low-to-mid-latitude land surface (45 degrees south to 35 degrees north) cooled by 5.8 ± 0.6 degrees Celsius (mean ± 95% confidence interval) during the LGM. Our analysis includes four decades of groundwater noble gas data from six continents, along with new records from the tropics, all of which were interpreted using the same physical framework. Our land-based result broadly supports a recent reconstruction based on marine proxy data assimilation1 that suggested greater climate sensitivity than previous estimates5-7.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-021-03467-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 72 citations 72 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-021-03467-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: H..., NSF | Collaborative Research: H..., NSF | Quantifying the contribut... +3 projectsNSF| Collaborative Research: He-CO2-N2 Isotopes and Dissolved Gases in Groundwaters of the Costa Rica Fore-arc Margin ,NSF| Collaborative Research: He-CO2-N2 Isotopes and Dissolved Gases in Groundwaters of the Costa Rica Fore-arc Margin ,NSF| Quantifying the contribution of the deep biosphere in the marine sediment carbon cycle using deep-sea sediment cores from the Baltic Sea ,NSF| Collaborative Research: Resolving Mantle, Crustal and Slab Fluxes to Arc Magmatism in Central America Using Geothermal Fluids and Volcanic Rocks ,NSF| Chlorine Isotope Geochemistry of Volcanic Systems ,NSF| A PETROLOGICAL AND NITROGEN ISOTOPE STUDY OF CRUSTAL RECYCLING THROUGH TIMEMonserrat Cascante; M. di Carlo; Mayuko Nakagawa; Francesco Smedile; Francesco Smedile; Shuhei Ono; Elena Manini; Stephen J. Turner; Donato Giovannelli; Peter H. Barry; Peter H. Barry; P. Beaudry; Harold C. Miller; Francesco Regoli; Kayla Iacovino; Justin T. Kulongoski; Daniel R. Hummer; Michael E. Martinez; A. Battaglia; Sushmita Patwardhan; G. González; David R. Hilton; Mustafa Yücel; Tehnuka Ilanko; Giuseppe d’Errico; Giuseppe d’Errico; Sæmundur A. Halldórsson; Esteban Gazel; Karen G. Lloyd; Carlos Ramírez; Matthew O. Schrenk; Y. Alpizar Segura; Tobias Fischer; C. A. Pratt; Chris J. Ballentine; Taryn Lopez; J. M. de Moor; Giulio Bini; Costantino Vetriani; Daniele Fattorini; Katherine M. Fullerton;Carbon and other volatiles in the form of gases, fluids or mineral phases are transported from Earth's surface into the mantle at convergent margins, where the oceanic crust subducts beneath the continental crust. The efficiency of this transfer has profound implications for the nature and scale of geochemical heterogeneities in Earth's deep mantle and shallow crustal reservoirs, as well as Earth's oxidation state. However, the proportions of volatiles released from the forearc and backarc are not well constrained compared to fluxes from the volcanic arc front. Here we use helium and carbon isotope data from deeply sourced springs along two cross-arc transects to show that about 91 per cent of carbon released from the slab and mantle beneath the Costa Rican forearc is sequestered within the crust by calcite deposition. Around an additional three per cent is incorporated into the biomass through microbial chemolithoautotrophy, whereby microbes assimilate inorganic carbon into biomass. We estimate that between 1.2 × 10
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-019-1131-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 106 citations 106 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 3visibility views 3 download downloads 245 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-019-1131-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:PANGAEA Seltzer, Alan; Ng, Jessica; Aeschbach, Werner; Kipfer, Rolf; Kulongoski, Justin T; Severinghaus, Jeffrey P; Stute, Martin; Wieser, Martin; Deshpande, R D; Van Khoi, Le; Schlosser, Peter; Love, Andy; Herczeg, Andrew; Clark, Jordan F; Simpson, Jim;This data set includes noble gas measurements and modeled recharge temperatures from 32 separate groundwater studies, each analyzed using the same consistent framework and set of noble gas temperature models (CE, PR, and OD models). Along with noble gas data and modeled temperatures are site information (coordinates, recharge elevation), groundwater age data, modern recharge temperatures, other model outputs (excess air, fractionation), and uncertainties for all variables of interest. These data were used to estimate LGM-Late Holocene temperature differences from each site and, together, for the large-scale low-latitude, low-elevation land surface. Please cite the dataset with the data citation and the paper citation Seltzer et al., 2021.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2021License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.929176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2021License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.929176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United StatesPublisher:Springer Science and Business Media LLC Alan M. Seltzer; Jessica Ng; Werner Aeschbach; Rolf Kipfer; Justin T. Kulongoski; Jeffrey P. Severinghaus; Martin Stute;pmid: 33981051
The magnitude of global cooling during the Last Glacial Maximum (LGM, the coldest multimillennial interval of the last glacial period) is an important constraint for evaluating estimates of Earth's climate sensitivity1,2. Reliable LGM temperatures come from high-latitude ice cores3,4, but substantial disagreement exists between proxy records in the low latitudes1,5-8, where quantitative low-elevation records on land are scarce. Filling this data gap, noble gases in ancient groundwater record past land surface temperatures through a direct physical relationship that is rooted in their temperature-dependent solubility in water9,10. Dissolved noble gases are suitable tracers of LGM temperature because of their complete insensitivity to biological and chemical processes and the ubiquity of LGM-aged groundwater around the globe11,12. However, although several individual noble gas studies have found substantial tropical LGM cooling13-16, they have used different methodologies and provide limited spatial coverage. Here we use noble gases in groundwater to show that the low-altitude, low-to-mid-latitude land surface (45 degrees south to 35 degrees north) cooled by 5.8 ± 0.6 degrees Celsius (mean ± 95% confidence interval) during the LGM. Our analysis includes four decades of groundwater noble gas data from six continents, along with new records from the tropics, all of which were interpreted using the same physical framework. Our land-based result broadly supports a recent reconstruction based on marine proxy data assimilation1 that suggested greater climate sensitivity than previous estimates5-7.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-021-03467-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 72 citations 72 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-021-03467-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu