- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 06 Apr 2020 Norway, Canada, United Kingdom, CanadaPublisher:Wiley Rees, W Gareth; Hofgaard, Annika; Boudreau, Stéphane; Cairns, David M; Harper, Karen; Mamet, Steven; Mathisen, Ingrid; Swirad, Zuzanna; Tutubalina, Olga;AbstractRecent climate warming and scenarios for further warming have led to expectations of rapid movement of ecological boundaries. Here we focus on the circumarctic forest–tundra ecotone (FTE), which represents an important bioclimatic zone with feedbacks from forest advance and corresponding tundra disappearance (up to 50% loss predicted this century) driving widespread ecological and climatic changes. We address FTE advance and climate history relations over the 20th century, using FTE response data from 151 sites across the circumarctic area and site‐specific climate data. Specifically, we investigate spatial uniformity of FTE advance, statistical associations with 20th century climate trends, and whether advance rates match climate change velocities (CCVs). Study sites diverged into four regions (Eastern Canada; Central and Western Canada and Alaska; Siberia; and Western Eurasia) based on their climate history, although all were characterized by similar qualitative patterns of behaviour (with about half of the sites showing advancing behaviour). The main associations between climate trend variables and behaviour indicate the importance of precipitation rather than temperature for both qualitative and quantitative behaviours, and the importance of non‐growing season as well as growing season months. Poleward latitudinal advance rates differed significantly among regions, being smallest in Eastern Canada (~10 m/year) and largest in Western Eurasia (~100 m/year). These rates were 1–2 orders of magnitude smaller than expected if vegetation distribution remained in equilibrium with climate. The many biotic and abiotic factors influencing FTE behaviour make poleward advance rates matching predicted 21st century CCVs (~103–104 m/year) unlikely. The lack of empirical evidence for swift forest relocation and the discrepancy between CCV and FTE response contradict equilibrium model‐based assumptions and warrant caution when assessing global‐change‐related biotic and abiotic implications, including land–atmosphere feedbacks and carbon sequestration.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 92 citations 92 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Canada, Canada, NorwayPublisher:Wiley Steven D. Mamet; Steven D. Mamet; Xanthe J. Walker; Xanthe J. Walker; Gregory H. R. Henry; Luise Hermanutz; Geneviève Dufour-Tremblay; Ryan G. Jameson; G. Peter Kershaw; Andrew J. Trant; Andrew J. Trant; Carissa D. Brown; Carissa D. Brown; Annika Hofgaard; Karen A. Harper; Stéphane Boudreau; L. G. Isaeva; Jill F. Johnstone; Jill F. Johnstone;doi: 10.1111/ecog.03733
handle: 11250/2559512
The fundamental niche of many species is shifting with climate change, especially in sub‐arctic ecosystems with pronounced recent warming. Ongoing warming in sub‐arctic regions should lessen environmental constraints on tree growth and reproduction, leading to increased success of trees colonising tundra. Nevertheless, variable responses of treeline ecotones have been documented in association with warming temperatures. One explanation for time lags between increasingly favourable environmental conditions and treeline ecotone movement is reproductive limitations caused by low seed availability. Our objective was to assess the reproductive constraints of the dominant tree species at the treeline ecotone in the circumpolar north. We sampled reproductive structures of trees (cones and catkins) and stand attributes across circumarctic treeline ecotones. We used generalized linear mixed models to estimate the sensitivity of seed production and the availability of viable seed to regional climate, stand structure, and species‐specific characteristics. Both seed production and viability of available seed were strongly driven by specific, sequential seasonal climatic conditions, but in different ways. Seed production was greatest when growing seasons with more growing degree days coincided with years with high precipitation. Two consecutive years with more growing degree days and low precipitation resulted in low seed production. Seasonal climate effects on the viability of available seed depended on the physical characteristics of the reproductive structures. Large‐coned and ‐seeded species take more time to develop mature embryos and were therefore more sensitive to increases in growing degree days in the year of flowering and embryo development. Our findings suggest that both moisture stress and abbreviated growing seasons can have a notable negative influence on the production and viability of available seed at treeline. Our synthesis revealed that constraints on predispersal reproduction within the treeline ecotone might create a considerable time lag for range expansion of tree populations into tundra ecosystems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ecog.03733&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ecog.03733&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Embargo end date: 18 Jul 2018 SwitzerlandPublisher:Springer Science and Business Media LLC Esther R. Frei; Eva Bianchi; Giulietta Bernareggi; Peter Bebi; Melissa A. Dawes; Carissa D. Brown; Andrew J. Trant; Steven D. Mamet; Christian Rixen;AbstractTreeline responses to climate change ultimately depend on successful seedling recruitment, which requires dispersal of viable seeds and establishment of individual propagules in novel environments. In this study, we evaluated the effects of several abiotic and biotic drivers of early tree seedling recruitment across an alpine treeline ecotone. In two consecutive years, we sowed seeds of low- and high-elevation provenances of Larix decidua (European larch) and Picea abies (Norway spruce) below, at, and above the current treeline into intact vegetation and into open microsites with artificially removed surface vegetation, as well as into plots protected from seed predators and herbivores. Seedling emergence and early establishment in treatment and in control plots were monitored over two years. Tree seedling emergence occurred at and several hundred metres above the current treeline when viable seeds and suitable microsites for germination were available. However, dense vegetation cover at lower elevations and winter mortality at higher elevations particularly limited early recruitment. Post-dispersal predation, species, and provenance also affected emergence and early establishment. This study demonstrates the importance of understanding multiple abiotic and biotic drivers of early seedling recruitment that should be incorporated into predictions of treeline dynamics under climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-018-28808-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-018-28808-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Wiley Steven D. Mamet; Eric G. Lamb; Mitsuaki Ota; Steven D. Siciliano; Amanda L. Muller; Sarah P. Hardy;doi: 10.1002/ecy.1908
pmid: 28547813
AbstractMoisture is critical for plant success in polar deserts but not by the obvious pathway of reduced water stress. We hypothesized that an indirect, nutrient‐linked, pathway resulting from unique water/frozen soil interactions in polar deserts creates nutrient‐rich patches critical for plant growth. These nutrient‐rich patches (diapirs) form deep in High Arctic polar deserts soils from water accumulating at the permafrost freezing front and ultimately rising into the upper soil horizons through cryoturbated convective landforms (frost boils). To determine if diapirs provide an enhanced source of plant‐available N for Salix arctica (Arctic willow), we characterized soil, root, stem, and leaf 15N natural abundance across 24 diapir and non‐diapir frost boils in a High Arctic granitic semi‐desert. When diapir horizons were available, S. arctica increased its subsurface (i.e., diapir) N uptake and plant root biomass doubled within diapir. Plant uptake of enriched 15N injected into organic rich soil patches was 2.5‐fold greater in diapir than in non‐diapir frost boils. S. arctica percent cover was often higher (7.3 ± 1.0 [mean ± SE]) on diapiric frost boils, compared to frost boils without diapirs (4.4 ± 0.7), potentially reflecting the additional 20% nitrogen available in the subsurface of diapiric frost boils. Selective N acquisition from diapirs is a mechanism by which soil moisture indirectly enhances plant growth. Our work suggests that diapirs may be one mechanism contributing to Arctic greening by shrub expansion.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.1908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.1908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Canadian Science Publishing M. Morison; N.J. Casson; S. Mamet; J. Davenport; T. Livingston; L.A. Fishback; H. White; A. Windsor;Amplified warming in subarctic regions is having measurable impacts on terrestrial and freshwater ecosystem processes. At the boundary of the discontinuous and continuous permafrost zones, and at the northern extent of the boreal forest, the Hudson Bay Lowlands has experienced, and is projected to continue to experience dramatic rates of climate change in the coming decades. In this review, we explore the impacts of climate change on terrestrial and freshwater ecosystems in the Hudson Bay Lowlands and other environmental processes that mediate these impacts. We surveyed published literature from the region to identify climate indicators associated with impacts on snowpacks, ponds, vegetation, and wood frogs. These climate indicators were calculated using statistically downscaled climate projections, and the potential impacts on ecosystem processes are discussed. While there is a strong trend towards longer and warmer summers, associated changes in the vegetation community mean that snowpacks are not necessarily decreasing, which is important for freshwater ponds dependent on snowmelt recharge. A clear throughline is that the impacts on these ecosystem processes are complex, interconnected, and nonlinear. This review provides a framework for understanding the ways in which climate change has and will affect subarctic regions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1139/facets-2022-0163&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1139/facets-2022-0163&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United StatesPublisher:Elsevier BV Authors: JM Metsaranta; SD Mamet; J Maillet; AG Barr;Abstract Reliable projections of future carbon (C) dynamics are essential to resource management decision making under a changing climate. Additional corroborative data may reduce uncertainty in C flux estimates. Here we use a tree-ring based hybrid biometric modelling approach to estimate annual ecosystem production at jack pine (Pinus banksiana) and aspen (Populus tremuloides and Populus balsamifera) plots co-located with eddy-covariance installations in the boreal forest of Saskatchewan, Canada for a 28 year (1985 to 2012) period. Correspondence between tree-ring and eddy-covariance derived estimates was better for jack pine (14-year overlap, 1999 to 2012) than aspen (16-year overlap, 1997 to 2012), and better for some C fluxes than others. In particular, tree-ring estimates of annual and cumulative net ecosystem production were larger than eddy-covariance derived estimates for the overlapping period. Allometric equations, belowground production, and biomass turnover could neither be confirmed nor ruled out as causes of discrepancy, but a lower stand density and higher carbon use efficiency would together reduce observed differences for aspen. Tree-ring based estimates of biomass increment or net primary production showed good temporal correspondences with both current and previous year eddy-covariance analogues, and net and gross primary production. Similar comparisons for net ecosystem production and heterotrophic respiration had mixed results. This study improves on previous work by comparing independent estimates of the same fluxes quantities and demonstrates the value of tree-ring data for evaluating C flux estimates.
Utah State Universit... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2021License: PDMData sources: Bielefeld Academic Search Engine (BASE)Agricultural and Forest MeteorologyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2021.108469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Utah State Universit... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2021License: PDMData sources: Bielefeld Academic Search Engine (BASE)Agricultural and Forest MeteorologyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2021.108469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 06 Apr 2020 Norway, Canada, United Kingdom, CanadaPublisher:Wiley Rees, W Gareth; Hofgaard, Annika; Boudreau, Stéphane; Cairns, David M; Harper, Karen; Mamet, Steven; Mathisen, Ingrid; Swirad, Zuzanna; Tutubalina, Olga;AbstractRecent climate warming and scenarios for further warming have led to expectations of rapid movement of ecological boundaries. Here we focus on the circumarctic forest–tundra ecotone (FTE), which represents an important bioclimatic zone with feedbacks from forest advance and corresponding tundra disappearance (up to 50% loss predicted this century) driving widespread ecological and climatic changes. We address FTE advance and climate history relations over the 20th century, using FTE response data from 151 sites across the circumarctic area and site‐specific climate data. Specifically, we investigate spatial uniformity of FTE advance, statistical associations with 20th century climate trends, and whether advance rates match climate change velocities (CCVs). Study sites diverged into four regions (Eastern Canada; Central and Western Canada and Alaska; Siberia; and Western Eurasia) based on their climate history, although all were characterized by similar qualitative patterns of behaviour (with about half of the sites showing advancing behaviour). The main associations between climate trend variables and behaviour indicate the importance of precipitation rather than temperature for both qualitative and quantitative behaviours, and the importance of non‐growing season as well as growing season months. Poleward latitudinal advance rates differed significantly among regions, being smallest in Eastern Canada (~10 m/year) and largest in Western Eurasia (~100 m/year). These rates were 1–2 orders of magnitude smaller than expected if vegetation distribution remained in equilibrium with climate. The many biotic and abiotic factors influencing FTE behaviour make poleward advance rates matching predicted 21st century CCVs (~103–104 m/year) unlikely. The lack of empirical evidence for swift forest relocation and the discrepancy between CCV and FTE response contradict equilibrium model‐based assumptions and warrant caution when assessing global‐change‐related biotic and abiotic implications, including land–atmosphere feedbacks and carbon sequestration.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 92 citations 92 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Canada, Canada, NorwayPublisher:Wiley Steven D. Mamet; Steven D. Mamet; Xanthe J. Walker; Xanthe J. Walker; Gregory H. R. Henry; Luise Hermanutz; Geneviève Dufour-Tremblay; Ryan G. Jameson; G. Peter Kershaw; Andrew J. Trant; Andrew J. Trant; Carissa D. Brown; Carissa D. Brown; Annika Hofgaard; Karen A. Harper; Stéphane Boudreau; L. G. Isaeva; Jill F. Johnstone; Jill F. Johnstone;doi: 10.1111/ecog.03733
handle: 11250/2559512
The fundamental niche of many species is shifting with climate change, especially in sub‐arctic ecosystems with pronounced recent warming. Ongoing warming in sub‐arctic regions should lessen environmental constraints on tree growth and reproduction, leading to increased success of trees colonising tundra. Nevertheless, variable responses of treeline ecotones have been documented in association with warming temperatures. One explanation for time lags between increasingly favourable environmental conditions and treeline ecotone movement is reproductive limitations caused by low seed availability. Our objective was to assess the reproductive constraints of the dominant tree species at the treeline ecotone in the circumpolar north. We sampled reproductive structures of trees (cones and catkins) and stand attributes across circumarctic treeline ecotones. We used generalized linear mixed models to estimate the sensitivity of seed production and the availability of viable seed to regional climate, stand structure, and species‐specific characteristics. Both seed production and viability of available seed were strongly driven by specific, sequential seasonal climatic conditions, but in different ways. Seed production was greatest when growing seasons with more growing degree days coincided with years with high precipitation. Two consecutive years with more growing degree days and low precipitation resulted in low seed production. Seasonal climate effects on the viability of available seed depended on the physical characteristics of the reproductive structures. Large‐coned and ‐seeded species take more time to develop mature embryos and were therefore more sensitive to increases in growing degree days in the year of flowering and embryo development. Our findings suggest that both moisture stress and abbreviated growing seasons can have a notable negative influence on the production and viability of available seed at treeline. Our synthesis revealed that constraints on predispersal reproduction within the treeline ecotone might create a considerable time lag for range expansion of tree populations into tundra ecosystems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ecog.03733&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ecog.03733&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Embargo end date: 18 Jul 2018 SwitzerlandPublisher:Springer Science and Business Media LLC Esther R. Frei; Eva Bianchi; Giulietta Bernareggi; Peter Bebi; Melissa A. Dawes; Carissa D. Brown; Andrew J. Trant; Steven D. Mamet; Christian Rixen;AbstractTreeline responses to climate change ultimately depend on successful seedling recruitment, which requires dispersal of viable seeds and establishment of individual propagules in novel environments. In this study, we evaluated the effects of several abiotic and biotic drivers of early tree seedling recruitment across an alpine treeline ecotone. In two consecutive years, we sowed seeds of low- and high-elevation provenances of Larix decidua (European larch) and Picea abies (Norway spruce) below, at, and above the current treeline into intact vegetation and into open microsites with artificially removed surface vegetation, as well as into plots protected from seed predators and herbivores. Seedling emergence and early establishment in treatment and in control plots were monitored over two years. Tree seedling emergence occurred at and several hundred metres above the current treeline when viable seeds and suitable microsites for germination were available. However, dense vegetation cover at lower elevations and winter mortality at higher elevations particularly limited early recruitment. Post-dispersal predation, species, and provenance also affected emergence and early establishment. This study demonstrates the importance of understanding multiple abiotic and biotic drivers of early seedling recruitment that should be incorporated into predictions of treeline dynamics under climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-018-28808-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-018-28808-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Wiley Steven D. Mamet; Eric G. Lamb; Mitsuaki Ota; Steven D. Siciliano; Amanda L. Muller; Sarah P. Hardy;doi: 10.1002/ecy.1908
pmid: 28547813
AbstractMoisture is critical for plant success in polar deserts but not by the obvious pathway of reduced water stress. We hypothesized that an indirect, nutrient‐linked, pathway resulting from unique water/frozen soil interactions in polar deserts creates nutrient‐rich patches critical for plant growth. These nutrient‐rich patches (diapirs) form deep in High Arctic polar deserts soils from water accumulating at the permafrost freezing front and ultimately rising into the upper soil horizons through cryoturbated convective landforms (frost boils). To determine if diapirs provide an enhanced source of plant‐available N for Salix arctica (Arctic willow), we characterized soil, root, stem, and leaf 15N natural abundance across 24 diapir and non‐diapir frost boils in a High Arctic granitic semi‐desert. When diapir horizons were available, S. arctica increased its subsurface (i.e., diapir) N uptake and plant root biomass doubled within diapir. Plant uptake of enriched 15N injected into organic rich soil patches was 2.5‐fold greater in diapir than in non‐diapir frost boils. S. arctica percent cover was often higher (7.3 ± 1.0 [mean ± SE]) on diapiric frost boils, compared to frost boils without diapirs (4.4 ± 0.7), potentially reflecting the additional 20% nitrogen available in the subsurface of diapiric frost boils. Selective N acquisition from diapirs is a mechanism by which soil moisture indirectly enhances plant growth. Our work suggests that diapirs may be one mechanism contributing to Arctic greening by shrub expansion.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.1908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.1908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Canadian Science Publishing M. Morison; N.J. Casson; S. Mamet; J. Davenport; T. Livingston; L.A. Fishback; H. White; A. Windsor;Amplified warming in subarctic regions is having measurable impacts on terrestrial and freshwater ecosystem processes. At the boundary of the discontinuous and continuous permafrost zones, and at the northern extent of the boreal forest, the Hudson Bay Lowlands has experienced, and is projected to continue to experience dramatic rates of climate change in the coming decades. In this review, we explore the impacts of climate change on terrestrial and freshwater ecosystems in the Hudson Bay Lowlands and other environmental processes that mediate these impacts. We surveyed published literature from the region to identify climate indicators associated with impacts on snowpacks, ponds, vegetation, and wood frogs. These climate indicators were calculated using statistically downscaled climate projections, and the potential impacts on ecosystem processes are discussed. While there is a strong trend towards longer and warmer summers, associated changes in the vegetation community mean that snowpacks are not necessarily decreasing, which is important for freshwater ponds dependent on snowmelt recharge. A clear throughline is that the impacts on these ecosystem processes are complex, interconnected, and nonlinear. This review provides a framework for understanding the ways in which climate change has and will affect subarctic regions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1139/facets-2022-0163&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1139/facets-2022-0163&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United StatesPublisher:Elsevier BV Authors: JM Metsaranta; SD Mamet; J Maillet; AG Barr;Abstract Reliable projections of future carbon (C) dynamics are essential to resource management decision making under a changing climate. Additional corroborative data may reduce uncertainty in C flux estimates. Here we use a tree-ring based hybrid biometric modelling approach to estimate annual ecosystem production at jack pine (Pinus banksiana) and aspen (Populus tremuloides and Populus balsamifera) plots co-located with eddy-covariance installations in the boreal forest of Saskatchewan, Canada for a 28 year (1985 to 2012) period. Correspondence between tree-ring and eddy-covariance derived estimates was better for jack pine (14-year overlap, 1999 to 2012) than aspen (16-year overlap, 1997 to 2012), and better for some C fluxes than others. In particular, tree-ring estimates of annual and cumulative net ecosystem production were larger than eddy-covariance derived estimates for the overlapping period. Allometric equations, belowground production, and biomass turnover could neither be confirmed nor ruled out as causes of discrepancy, but a lower stand density and higher carbon use efficiency would together reduce observed differences for aspen. Tree-ring based estimates of biomass increment or net primary production showed good temporal correspondences with both current and previous year eddy-covariance analogues, and net and gross primary production. Similar comparisons for net ecosystem production and heterotrophic respiration had mixed results. This study improves on previous work by comparing independent estimates of the same fluxes quantities and demonstrates the value of tree-ring data for evaluating C flux estimates.
Utah State Universit... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2021License: PDMData sources: Bielefeld Academic Search Engine (BASE)Agricultural and Forest MeteorologyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2021.108469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Utah State Universit... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2021License: PDMData sources: Bielefeld Academic Search Engine (BASE)Agricultural and Forest MeteorologyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2021.108469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu