- home
- Advanced Search
Filters
Year range
-chevron_right GOOrganization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Hassan A. Hassan; Emad A. Abdeldaym; Mohamed Aboelghar; Noha Morsy; Dmitry E. Kucher; Nazih Y. Rebouh; Abdelraouf M. Ali;doi: 10.3390/su152216048
Foliar feeding has been confirmed to be the fastest way of dealing with nutrient deficiencies and increasing the yield and quality of crop products. The synthesis of chlorophyll and photosynthesis are directly related to magnesium (Mg), which operates in the improvement of plant tissues and enhances the appearance of plants. This study aimed to analyze the correlation between two biophysical variables, including the leaf area index (LAI), the fraction of absorbed photosynthetically active radiation (FAPAR), and seven spectral vegetation indices. The spectral indices under investigation were Atmospherically Resistant Vegetation Index (ARVI), Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), Disease–Water Stress Index (DSWI), Modified Chlorophyll Absorption Ratio Index (MCARI), the Red-Edge Inflection Point Index (REIP), and Pigment-Specific Simple Ratio (PSSRa). These indices were derived from Sentinel-2 data to investigate the impact of applying foliar applications of Mg from various sources in the production of green-onion crops. The biophysical variables were derived using field measurements and Sentinel-2 data under the effects of different sources of Mg foliar sprays. The correlation coefficient between field-measured LAI and remotely sensed, calculated LAI was 0.72 in two seasons. Concerning FAPAR, it was found that the correlation between remotely sensed calculated FAPAR and field-measured FAPAR was 0.66 in the first season and 0.89 in the second season. The magnesium oxide nanoparticle (nMgO) treatments resulted in significantly higher yields than the different treatments of foliar applications. The LAI and FAPAR variables showed a positive correlation with yield in the first season (October) and in the second season (March). Yield in treatment by nMgO varied significantly from that in the other treatments, ranging from 69-ton ha−1 in the first season to 74.9-ton ha−1 in the second season. Linear regression between LAI and PSSRa showed the highest correlation coefficient (0.90) compared with other vegetation indices in the first season. In the same season, the highest correlation coefficient (0.94) was found between FAPAR and PSSRa. In the second season, the highest accuracy to the estimate LAI was found in the correlation between MCARI and PSSRa, with correlation coefficients of 0.9 and 0.91, respectively. In the second season, the highest accuracy to the estimate FAPAR was found with the correlation between PSSRa, ARVI, and NDVI, with correlation coefficients 0.97 and 0.96, respectively. The highest correlation coefficients between vegetation indices and yield were found with ARVI and NDVI in the first season, and only with NDVI in the second season.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su152216048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su152216048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Italy, Russian FederationPublisher:MDPI AG Authors: Ahmed A. El Baroudy; Abdelraouf. M. Ali; Elsayed Said Mohamed; Farahat S. Moghanm; +9 AuthorsAhmed A. El Baroudy; Abdelraouf. M. Ali; Elsayed Said Mohamed; Farahat S. Moghanm; Mohamed S. Shokr; Igor Savin; Anton Poddubsky; Zheli Ding; Ahmed M.S. Kheir; Ali A. Aldosari; Abdelaziz Elfadaly; Peter Dokukin; Rosa Lasaponara;doi: 10.3390/su12229653
Today, the global food security is one of the most pressing issues for humanity, and, according to Food and Agriculture Organisation (FAO), the increasing demand for food is likely to grow by 70% until 2050. In this current condition and future scenario, the agricultural production is a critical factor for global food security and for facing the food security challenge, with specific reference to many African countries, where a large quantities of rice are imported from other continents. According to FAO, to face the Africa’s inability to reach self-sufficiency in rice, it is urgent “to redress to stem the trend of over-reliance on imports and to satisfy the increasing demand for rice in areas where the potential of local production resources is exploited at very low levels” The present study was undertaken to design a new method for land evaluation based on soil quality indicators and remote sensing data, to assess and map soil suitability for rice crop. Results from the investigations, performed in some areas in the northern part of the Nile Delta, were compared with the most common approaches, two parametric (the square root, Storie methods) and two qualitative (ALES and MicrioLEIS) methods. From the qualitative point of view, the results showed that: (i) all the models provided partly similar outputs related to the soil quality assessments, so that the distinction using the crop productivity played an important role, and (ii) outputs from the soil suitability models were consistent with both the satellite Sentinel-2 Normalize Difference Vegetation Indices (NDVI) during the crop growth and the yield production. From the quantitative point of view, the comparison of the results from the diverse approaches well fit each other, and the model, herein proposed, provided the highest performance. As a whole, a significant increasing in R2 values was provided by the model herein proposed, with R2 equal to 0.92, followed by MicroLES, Storie, ALES and Root as R2 with value equal to 0.87, 0.86, 0.84 and 0.84, respectively, with increasing percentage in R2 equal to 5%, 6% and 8%, respectively. Furthermore, the proposed model illustrated that around (i) 44.44% of the total soils of the study area are highly suitable, (ii) 44% are moderately suitable, and (iii) approximately 11.56% are unsuitable for rice due to their adverse physical and chemical soil properties. The approach herein presented can be promptly re-applied in arid region and the quantitative results obtained can be used by decision makers and regional governments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12229653&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 47 citations 47 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12229653&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Hassan A. Hassan; Emad A. Abdeldaym; Mohamed Aboelghar; Noha Morsy; Dmitry E. Kucher; Nazih Y. Rebouh; Abdelraouf M. Ali;doi: 10.3390/su152216048
Foliar feeding has been confirmed to be the fastest way of dealing with nutrient deficiencies and increasing the yield and quality of crop products. The synthesis of chlorophyll and photosynthesis are directly related to magnesium (Mg), which operates in the improvement of plant tissues and enhances the appearance of plants. This study aimed to analyze the correlation between two biophysical variables, including the leaf area index (LAI), the fraction of absorbed photosynthetically active radiation (FAPAR), and seven spectral vegetation indices. The spectral indices under investigation were Atmospherically Resistant Vegetation Index (ARVI), Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), Disease–Water Stress Index (DSWI), Modified Chlorophyll Absorption Ratio Index (MCARI), the Red-Edge Inflection Point Index (REIP), and Pigment-Specific Simple Ratio (PSSRa). These indices were derived from Sentinel-2 data to investigate the impact of applying foliar applications of Mg from various sources in the production of green-onion crops. The biophysical variables were derived using field measurements and Sentinel-2 data under the effects of different sources of Mg foliar sprays. The correlation coefficient between field-measured LAI and remotely sensed, calculated LAI was 0.72 in two seasons. Concerning FAPAR, it was found that the correlation between remotely sensed calculated FAPAR and field-measured FAPAR was 0.66 in the first season and 0.89 in the second season. The magnesium oxide nanoparticle (nMgO) treatments resulted in significantly higher yields than the different treatments of foliar applications. The LAI and FAPAR variables showed a positive correlation with yield in the first season (October) and in the second season (March). Yield in treatment by nMgO varied significantly from that in the other treatments, ranging from 69-ton ha−1 in the first season to 74.9-ton ha−1 in the second season. Linear regression between LAI and PSSRa showed the highest correlation coefficient (0.90) compared with other vegetation indices in the first season. In the same season, the highest correlation coefficient (0.94) was found between FAPAR and PSSRa. In the second season, the highest accuracy to the estimate LAI was found in the correlation between MCARI and PSSRa, with correlation coefficients of 0.9 and 0.91, respectively. In the second season, the highest accuracy to the estimate FAPAR was found with the correlation between PSSRa, ARVI, and NDVI, with correlation coefficients 0.97 and 0.96, respectively. The highest correlation coefficients between vegetation indices and yield were found with ARVI and NDVI in the first season, and only with NDVI in the second season.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su152216048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su152216048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Italy, Russian FederationPublisher:MDPI AG Authors: Ahmed A. El Baroudy; Abdelraouf. M. Ali; Elsayed Said Mohamed; Farahat S. Moghanm; +9 AuthorsAhmed A. El Baroudy; Abdelraouf. M. Ali; Elsayed Said Mohamed; Farahat S. Moghanm; Mohamed S. Shokr; Igor Savin; Anton Poddubsky; Zheli Ding; Ahmed M.S. Kheir; Ali A. Aldosari; Abdelaziz Elfadaly; Peter Dokukin; Rosa Lasaponara;doi: 10.3390/su12229653
Today, the global food security is one of the most pressing issues for humanity, and, according to Food and Agriculture Organisation (FAO), the increasing demand for food is likely to grow by 70% until 2050. In this current condition and future scenario, the agricultural production is a critical factor for global food security and for facing the food security challenge, with specific reference to many African countries, where a large quantities of rice are imported from other continents. According to FAO, to face the Africa’s inability to reach self-sufficiency in rice, it is urgent “to redress to stem the trend of over-reliance on imports and to satisfy the increasing demand for rice in areas where the potential of local production resources is exploited at very low levels” The present study was undertaken to design a new method for land evaluation based on soil quality indicators and remote sensing data, to assess and map soil suitability for rice crop. Results from the investigations, performed in some areas in the northern part of the Nile Delta, were compared with the most common approaches, two parametric (the square root, Storie methods) and two qualitative (ALES and MicrioLEIS) methods. From the qualitative point of view, the results showed that: (i) all the models provided partly similar outputs related to the soil quality assessments, so that the distinction using the crop productivity played an important role, and (ii) outputs from the soil suitability models were consistent with both the satellite Sentinel-2 Normalize Difference Vegetation Indices (NDVI) during the crop growth and the yield production. From the quantitative point of view, the comparison of the results from the diverse approaches well fit each other, and the model, herein proposed, provided the highest performance. As a whole, a significant increasing in R2 values was provided by the model herein proposed, with R2 equal to 0.92, followed by MicroLES, Storie, ALES and Root as R2 with value equal to 0.87, 0.86, 0.84 and 0.84, respectively, with increasing percentage in R2 equal to 5%, 6% and 8%, respectively. Furthermore, the proposed model illustrated that around (i) 44.44% of the total soils of the study area are highly suitable, (ii) 44% are moderately suitable, and (iii) approximately 11.56% are unsuitable for rice due to their adverse physical and chemical soil properties. The approach herein presented can be promptly re-applied in arid region and the quantitative results obtained can be used by decision makers and regional governments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12229653&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 47 citations 47 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12229653&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu