- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2014 United StatesPublisher:Wiley Treat, Claire C.; Wollheim, Wilfred M.; Varner, Ruth K.; Grandy, Andrew S.; Talbot, J.; Frolking, Stephen E.;doi: 10.1111/gcb.12572
pmid: 24616169
AbstractControls on the fate of ~277 Pg of soil organic carbon (C) stored in permafrost peatland soils remain poorly understood despite the potential for a significant positive feedback to climate change. Our objective was to quantify the temperature, moisture, organic matter, and microbial controls on soil organic carbon (SOC) losses following permafrost thaw in peat soils across Alaska. We compared the carbon dioxide (CO2) and methane (CH4) emissions from peat samples collected at active layer and permafrost depths when incubated aerobically and anaerobically at −5, −0.5, +4, and +20 °C. Temperature had a strong, positive effect on C emissions; global warming potential (GWP) was >3× larger at 20 °C than at 4 °C. Anaerobic conditions significantly reduced CO2 emissions and GWP by 47% at 20 °C but did not have a significant effect at −0.5 °C. Net anaerobic CH4 production over 30 days was 7.1 ± 2.8 μg CH4‐C gC−1 at 20 °C. Cumulative CO2 emissions were related to organic matter chemistry and best predicted by the relative abundance of polysaccharides and proteins (R2 = 0.81) in SOC. Carbon emissions (CO2‐C + CH4‐C) from the active layer depth peat ranged from 77% larger to not significantly different than permafrost depths and varied depending on the peat type and peat decomposition stage rather than thermal state. Potential SOC losses with warming depend not only on the magnitude of temperature increase and hydrology but also organic matter quality, permafrost history, and vegetation dynamics, which will ultimately determine net radiative forcing due to permafrost thaw.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of New Hampshire: Scholars RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of New Hampshire: Scholars RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12572&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 169 citations 169 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of New Hampshire: Scholars RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of New Hampshire: Scholars RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12572&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Sweden, Sweden, United Kingdom, United Kingdom, Sweden, Denmark, Norway, SwedenPublisher:Springer Science and Business Media LLC Funded by:EC | INTERACTEC| INTERACTZofia Rączkowska; Jing Tang; Jing Tang; Lena Ström; Ruth K. Varner; Didac Pascual; Riikka Rinnan; Anders Michelsen; Torben R. Christensen; Marina Becher; Christer Jonasson; Ellen Dorrepaal; Urban Emanuelsson; Jonas Åkerman; Terry V. Callaghan; Terry V. Callaghan; Dan Hammarlund; Reiner Giesler; Philip A. Wookey; Margareta Johansson; Andreas Persson; Hongxiao Jin; Hongxiao Jin; Edward Hanna; Annika Hofgaard; Jonatan Klaminder; David Olefeldt; Cecilia Johansson; Jan Karlsson; Erik Lundin; Gareth K. Phoenix;AbstractArctic and subarctic ecosystems are experiencing substantial changes in hydrology, vegetation, permafrost conditions, and carbon cycling, in response to climatic change and other anthropogenic drivers, and these changes are likely to continue over this century. The total magnitude of these changes results from multiple interactions among these drivers. Field measurements can address the overall responses to different changing drivers, but are less capable of quantifying the interactions among them. Currently, a comprehensive assessment of the drivers of ecosystem changes, and the magnitude of their direct and indirect impacts on subarctic ecosystems, is missing. The Torneträsk area, in the Swedish subarctic, has an unrivalled history of environmental observation over 100 years, and is one of the most studied sites in the Arctic. In this study, we summarize and rank the drivers of ecosystem change in the Torneträsk area, and propose research priorities identified, by expert assessment, to improve predictions of ecosystem changes. The research priorities identified include understanding impacts on ecosystems brought on by altered frequency and intensity of winter warming events, evapotranspiration rates, rainfall, duration of snow cover and lake-ice, changed soil moisture, and droughts. This case study can help us understand the ongoing ecosystem changes occurring in the Torneträsk area, and contribute to improve predictions of future ecosystem changes at a larger scale. This understanding will provide the basis for the future mitigation and adaptation plans needed in a changing climate.
CORE arrow_drop_down COREArticle . 2021License: CC BYFull-Text: https://eprints.whiterose.ac.uk/165701/1/Pascual2020_Article_TheMissingPiecesForBetterFutur.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2021License: CC BYFull-Text: https://eprints.whiterose.ac.uk/165701/1/Pascual2020_Article_TheMissingPiecesForBetterFutur.pdfData sources: CORE (RIOXX-UK Aggregator)University of Stirling: Stirling Digital Research RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/1893/31737Data sources: Bielefeld Academic Search Engine (BASE)Online Research Database In TechnologyArticle . 2021Data sources: Online Research Database In TechnologyCopenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemPublikationer från Umeå universitetArticle . 2021 . Peer-reviewedData sources: Publikationer från Umeå universitetPublikationer från Uppsala UniversitetArticle . 2020 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-020-01381-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down COREArticle . 2021License: CC BYFull-Text: https://eprints.whiterose.ac.uk/165701/1/Pascual2020_Article_TheMissingPiecesForBetterFutur.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2021License: CC BYFull-Text: https://eprints.whiterose.ac.uk/165701/1/Pascual2020_Article_TheMissingPiecesForBetterFutur.pdfData sources: CORE (RIOXX-UK Aggregator)University of Stirling: Stirling Digital Research RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/1893/31737Data sources: Bielefeld Academic Search Engine (BASE)Online Research Database In TechnologyArticle . 2021Data sources: Online Research Database In TechnologyCopenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemPublikationer från Umeå universitetArticle . 2021 . Peer-reviewedData sources: Publikationer från Umeå universitetPublikationer från Uppsala UniversitetArticle . 2020 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-020-01381-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Springer Science and Business Media LLC Funded by:NSF | NSF Postdoctoral Fellowsh..., FCT | LA 2, NIH | Cancer Center Support Gra... +2 projectsNSF| NSF Postdoctoral Fellowship in Biology FY 2021: Determining the mechanism that drive assembly in belowground microbial decomposer systems ,FCT| LA 2 ,NIH| Cancer Center Support Grant ,NSF| Nitrogen fixation and its coupling to methane dynamics in the peat moss (Sphagnum) phytobiome of northern peatlands ,NSF| Collaborative Research: New Roles for Reactive Oxygen Species in Mediating Carbon Fluxes at the Terrestrial-Aquatic InterfaceAuthors: Emily K. Bechtold; Jared B. Ellenbogen; Jorge A. Villa; Djennyfer K. de Melo Ferreira; +10 AuthorsEmily K. Bechtold; Jared B. Ellenbogen; Jorge A. Villa; Djennyfer K. de Melo Ferreira; Angela M. Oliverio; Joel E. Kostka; Virginia I. Rich; Ruth K. Varner; Sheel Bansal; Eric J. Ward; Gil Bohrer; Mikayla A. Borton; Kelly C. Wrighton; Michael J. Wilkins;pmid: 39843444
pmc: PMC11754854
Abstract Current estimates of wetland contributions to the global methane budget carry high uncertainty, particularly in accurately predicting emissions from high methane-emitting wetlands. Microorganisms mediate methane cycling, yet knowledge of their conservation across wetlands remains scarce. To address this, we integrated 1,118 16S rRNA amplicon datasets (116 new), 305 metagenomes (20 new) that yielded 4,745 medium and high-quality metagenome assembled genomes (MAGs; 617 new), 133 metatranscriptomes, and annual methane flux data across 9 wetlands to create the Multi-Omics for Understanding Climate Change (MUCC) v2.0.0 database. This new resource was leveraged to link microbiome compositional profiles to encoded functions and emissions, with specific focus on methane-cycling populations and the microbial carbon decomposition networks that fuel them. We identified eight methane-cycling genera that were conserved across wetlands, and deciphered wetland specific metabolic interactions across marshes, revealing low methanogen-methanotroph connectivity in high-emitting wetlands. Methanoregula emerged as a hub methanogen across networks and was a strong predictor of methane flux, demonstrating the potential broad relevance of methylotrophic methanogenesis in these ecosystems. Collectively, our findings illuminate trends between microbial decomposition networks and methane flux and provide an extensive publicly available database to advance future wetland research.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-4529259/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-4529259/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United StatesPublisher:IOP Publishing Johnston, Carmel E.; Ewing, Stephanie A.; Harden, Jennifer W.; Varner, Ruth K.; Wickland, Kimberly P.; Koch, Joshua C.; Fuller, Christopher C.; Manies, Kristen; Jorgenson, M. Torre;Permafrost soils store over half of global soil carbon (C), and northern frozen peatlands store about 10% of global permafrost C. With thaw, inundation of high latitude lowland peatlands typically increases the surface-atmosphere flux of methane (CH _4 ), a potent greenhouse gas. To examine the effects of lowland permafrost thaw over millennial timescales, we measured carbon dioxide (CO _2 ) and CH _4 exchange along sites that constitute a ∼1000 yr thaw chronosequence of thermokarst collapse bogs and adjacent fen locations at Innoko Flats Wildlife Refuge in western Alaska. Peak CH _4 exchange in July (123 ± 71 mg CH _4 –C m ^−2 d ^−1 ) was observed in features that have been thawed for 30 to 70 (<100) yr, where soils were warmer than at more recently thawed sites (14 to 21 yr; emitting 1.37 ± 0.67 mg CH _4 –C m ^−2 d ^−1 in July) and had shallower water tables than at older sites (200 to 1400 yr; emitting 6.55 ± 2.23 mg CH _4 –C m ^−2 d ^−1 in July). Carbon lost via CH _4 efflux during the growing season at these intermediate age sites was 8% of uptake by net ecosystem exchange. Our results provide evidence that CH _4 emissions following lowland permafrost thaw are enhanced over decadal time scales, but limited over millennia. Over larger spatial scales, adjacent fen systems may contribute sustained CH _4 emission, CO _2 uptake, and DOC export. We argue that over timescales of decades to centuries, thaw features in high-latitude lowland peatlands, particularly those developed on poorly drained mineral substrates, are a key locus of elevated CH _4 emission to the atmosphere that must be considered for a complete understanding of high latitude CH _4 dynamics.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/9/8/085004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/9/8/085004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 FinlandPublisher:American Geophysical Union (AGU) Funded by:NSF | BII-Implementation: The E..., NSF | NSF Postdoctoral Fellowsh...NSF| BII-Implementation: The EMERGE Institute: Identifying EMergent Ecosystem Responses through Genes-to-Ecosystems Integration ,NSF| NSF Postdoctoral Fellowship in Biology FY 2021: Integrating microbial dynamics into methane models for northern peatland and post-glacial lakesMcKenzie A. Kuhn; Ruth K. Varner; Carmody K. McCalley; Clarice R. Perryman; Mika Aurela; Sophia A. Burke; Jeffrey P. Chanton; Patrick M. Crill; Jessica DelGreco; Jia Deng; Liam Heffernan; Christina Herrick; Suzanne B. Hodgkins; Cheristy P. Jones; Sari Juutinen; Evan S. Kane; Louis J. Lamit; Tuula Larmola; Erik Lilleskov; David Olefeldt; Michael W. Palace; Virginia I. Rich; Christopher Schulze; Joanne H. Shorter; Franklin B. Sullivan; Oliver Sonnentag; Merritt R. Turetsky; Mark P. Waldrop;doi: 10.1029/2023jg007837
AbstractNorthern peatlands are a globally significant source of methane (CH4), and emissions are projected to increase due to warming and permafrost loss. Understanding the microbial mechanisms behind patterns in CH4 production in peatlands will be key to predicting annual emissions changes, with stable carbon isotopes (δ13C‐CH4) being a powerful tool for characterizing these drivers. Given that δ13C‐CH4 is used in top‐down atmospheric inversion models to partition sources, our ability to model CH4 production pathways and associated δ13C‐CH4 values is critical. We sought to characterize the role of environmental conditions, including hydrologic and vegetation patterns associated with permafrost thaw, on δ13C‐CH4 values from high‐latitude peatlands. We measured porewater and emitted CH4 stable isotopes, pH, and vegetation composition from five boreal‐Arctic peatlands. Porewater δ13C‐CH4 was strongly associated with peatland type, with δ13C enriched values obtained from more minerotrophic fens (−61.2 ± 9.1‰) compared to permafrost‐free bogs (−74.1 ± 9.4‰) and raised permafrost bogs (−81.6 ± 11.5‰). Variation in porewater δ13C‐CH4 was best explained by sedge cover, CH4 concentration, and the interactive effect of peatland type and pH (r2 = 0.50, p < 0.001). Emitted δ13C‐CH4 varied greatly but was positively correlated with porewater δ13C‐CH4. We calculated a mixed atmospheric δ13C‐CH4 value for northern peatlands of −65.3 ± 7‰ and show that this value is more sensitive to landscape drying than wetting under permafrost thaw scenarios. Our results suggest northern peatland δ13C‐CH4 values are likely to shift in the future which has important implications for source partitioning in atmospheric inversion models.
Natural Resources In... arrow_drop_down Natural Resources Institute Finland: JukuriArticleLicense: CC BYFull-Text: https://jukuri.luke.fi/handle/10024/555110Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research BiogeosciencesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2024 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023jg007837&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Natural Resources In... arrow_drop_down Natural Resources Institute Finland: JukuriArticleLicense: CC BYFull-Text: https://jukuri.luke.fi/handle/10024/555110Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research BiogeosciencesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2024 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023jg007837&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | BII-Implementation: The E..., ARC | ARC Future Fellowships - ...NSF| BII-Implementation: The EMERGE Institute: Identifying EMergent Ecosystem Responses through Genes-to-Ecosystems Integration ,ARC| ARC Future Fellowships - Grant ID: FT210100521Zhen Li; William J. Riley; Gianna L. Marschmann; Ulas Karaoz; Ian A. Shirley; Qiong Wu; Nicholas J. Bouskill; Kuang-Yu Chang; Patrick M. Crill; Robert F. Grant; Eric King; Scott R. Saleska; Matthew B. Sullivan; Jinyun Tang; Ruth K. Varner; Ben J. Woodcroft; Kelly C. Wrighton; the EMERGE Biology Integration Institute Coordinators; Eoin L. Brodie;Abstract Microbes drive the biogeochemical cycles of earth systems, yet the long-standing goal of linking emerging genomic information, microbial traits, mechanistic ecosystem models, and projections under climate change has remained elusive despite a wealth of emerging genomic information. Here we developed a general genome-to-ecosystem (G2E) framework for integrating genome-inferred microbial kinetic traits into mechanistic models of terrestrial ecosystems and applied it at a well-studied Arctic wetland by benchmarking predictions against observed greenhouse gas emissions. We found variation in genome-inferred microbial kinetic traits resulted in large differences in simulated annual methane emissions, quantitatively demonstrating that the genomically observable variations in microbial capacity are consequential for ecosystem functioning. Applying microbial community-aggregated traits via genome relative-abundance-weighting gave better methane emissions predictions (i.e., up to 54% decrease in bias) compared to ignoring the observed abundances, highlighting the value of combined trait inferences and abundances. This work provides the first example of integrating microbial functional trait-based genomics, mechanistic and pragmatic trait parameterizations of diverse microbial metabolisms, and mechanistic ecosystem modeling. The generalizable G2E framework will enable use of abundant microbial metagenomics data to improve predictions of microbial interactions in many complex systems, including oceanic microbiomes.
Nature Communication... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2025Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-025-57386-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Nature Communication... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2025Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-025-57386-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 01 Jan 2020 Chile, Spain, Switzerland, United States, United States, Chile, Ireland, United States, Germany, Spain, BelgiumPublisher:Wiley Publicly fundedFunded by:NSF | Collaborative Research: T..., ARC | Discovery Projects - Gran..., University College Dublin +8 projectsNSF| Collaborative Research: The Role of Iron Redox Dynamics in Carbon Losses from Tropical Forest Soils ,ARC| Discovery Projects - Grant ID: DP170102766 ,University College Dublin ,SNSF| Functional diversity and cell-cell communication in biocontrol fluorescent Pseudomonas spp. associated with natural disease- suppressiveness of soils ,SNSF| Towards the rational design of molecular glue degraders ,SNSF| ICOS-CH Phase 2 ,NSF| Collaborative Research: Tree Species Effects on Ecosystem Processes in Lowland Costa Rica ,ARC| Discovery Projects - Grant ID: DP160102452 ,NSF| Collaborative Research: Effects of Species on Forest Carbon Balances in Lowland Costa Rica ,NSF| Collaborative Research: ABI Development: The PEcAn Project: A Community Platform for Ecological Forecasting ,ARC| Woodland response to elevated CO2 in free air carbon dioxide enrichment: does phosphorus limit the sink for Carbon?Mirco Migliavacca; Christoph S. Vogel; Thomas Wutzler; Russell L. Scott; Mioko Ataka; Jason P. Kaye; Järvi Järveoja; Kadmiel Maseyk; Ben Bond-Lamberty; K. C. Mathes; Joseph Verfaillie; Catriona A. Macdonald; Kentaro Takagi; Jennifer Goedhart Nietz; Eric A. Davidson; Susan E. Trumbore; Melanie A. Mayes; Elise Pendall; Carolyn Monika Görres; Christine S. O’Connell; Christine S. O’Connell; Masahito Ueyama; Cecilio Oyonarte; Mats Nilsson; Christopher M. Gough; Jorge F. Perez-Quezada; Mariah S. Carbone; Ruth K. Varner; Omar Gutiérrez del Arroyo; Junliang Zou; Alexandre A. Renchon; Nina Buchmann; Shih-Chieh Chang; Anya M. Hopple; Anya M. Hopple; Munemasa Teramoto; Stephanie C. Pennington; Jin-Sheng He; Yuji Kominami; Jillian W. Gregg; Enrique P. Sánchez-Cañete; James W. Raich; Greg Winston; Juying Wu; Ulli Seibt; Marguerite Mauritz; Zhuo Pang; Hamidreza Norouzi; Peter S. Curtis; Ankur R. Desai; Rodrigo Vargas; Bruce Osborne; Jinsong Wang; Scott T. Miller; Avni Malhotra; Asko Noormets; Whendee L. Silver; Mark G. Tjoelker; Tana E. Wood; T. A. Black; Michael Gavazzi; Haiming Kan; Matthias Peichl; Tarek S. El-Madany; Nadine K. Ruehr; Steve McNulty; H. Hughes; Jiye Zeng; Daphne Szutu; Richard P. Phillips; Claire L. Phillips; Wu Sun; Rachhpal S. Jassal; Patrick M. Crill; Amir AghaKouchak; Quan Zhang; Matthew Saunders; D. S. Christianson; Masahiro Takagi; Kathleen Savage; Jinshi Jian; Chelcy Ford Miniat; John E. Drake; Guofang Miao; Samaneh Ashraf; Naishen Liang; Tianshan Zha; Michael L. Goulden; Marion Schrumpf; Takashi Hirano; Debjani Sihi; Juan J. Armesto; David A. Lipson; M. Altaf Arain; Dennis D. Baldocchi; Hassan Anjileli;doi: 10.1111/gcb.15353 , 10.60692/ejg8a-yd340 , 10.5445/ir/1000125998 , 10.3929/ethz-b-000446726 , 10.60692/wvgem-qyh85
pmid: 33026137
pmc: PMC7756728
doi: 10.1111/gcb.15353 , 10.60692/ejg8a-yd340 , 10.5445/ir/1000125998 , 10.3929/ethz-b-000446726 , 10.60692/wvgem-qyh85
pmid: 33026137
pmc: PMC7756728
AbstractGlobally, soils store two to three times as much carbon as currently resides in the atmosphere, and it is critical to understand how soil greenhouse gas (GHG) emissions and uptake will respond to ongoing climate change. In particular, the soil‐to‐atmosphere CO2 flux, commonly though imprecisely termed soil respiration (RS), is one of the largest carbon fluxes in the Earth system. An increasing number of high‐frequency RS measurements (typically, from an automated system with hourly sampling) have been made over the last two decades; an increasing number of methane measurements are being made with such systems as well. Such high frequency data are an invaluable resource for understanding GHG fluxes, but lack a central database or repository. Here we describe the lightweight, open‐source COSORE (COntinuous SOil REspiration) database and software, that focuses on automated, continuous and long‐term GHG flux datasets, and is intended to serve as a community resource for earth sciences, climate change syntheses and model evaluation. Contributed datasets are mapped to a single, consistent standard, with metadata on contributors, geographic location, measurement conditions and ancillary data. The design emphasizes the importance of reproducibility, scientific transparency and open access to data. While being oriented towards continuously measured RS, the database design accommodates other soil‐atmosphere measurements (e.g. ecosystem respiration, chamber‐measured net ecosystem exchange, methane fluxes) as well as experimental treatments (heterotrophic only, etc.). We give brief examples of the types of analyses possible using this new community resource and describe its accompanying R software package.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020Full-Text: http://oro.open.ac.uk/73137/1/73137.pdfData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2020License: CC BYFull-Text: https://escholarship.org/uc/item/2qm6h6tpData sources: Bielefeld Academic Search Engine (BASE)University College Dublin: Research Repository UCDArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10197/12610Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universidad de Chile: Repositorio académicoArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institutional Repository Universiteit AntwerpenArticle . 2020Data sources: Institutional Repository Universiteit AntwerpeneScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDFull-Text: https://doi.org/10.1111/gcb.15353Data sources: Recolector de Ciencia Abierta, RECOLECTAriUAL - Repositorio Institucional de la Universidad de Almería (Spain)Article . 2024License: CC BY NC NDFull-Text: https://doi.org/10.1111/gcb.15353Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020Full-Text: http://oro.open.ac.uk/73137/1/73137.pdfData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2020License: CC BYFull-Text: https://escholarship.org/uc/item/2qm6h6tpData sources: Bielefeld Academic Search Engine (BASE)University College Dublin: Research Repository UCDArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10197/12610Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universidad de Chile: Repositorio académicoArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institutional Repository Universiteit AntwerpenArticle . 2020Data sources: Institutional Repository Universiteit AntwerpeneScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDFull-Text: https://doi.org/10.1111/gcb.15353Data sources: Recolector de Ciencia Abierta, RECOLECTAriUAL - Repositorio Institucional de la Universidad de Almería (Spain)Article . 2024License: CC BY NC NDFull-Text: https://doi.org/10.1111/gcb.15353Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:American Geophysical Union (AGU) Funded by:NSF | BII-Implementation: The E...NSF| BII-Implementation: The EMERGE Institute: Identifying EMergent Ecosystem Responses through Genes-to-Ecosystems IntegrationM. E. Holmes; P. M. Crill; W. C. Burnett; C. K. McCalley; R. M. Wilson; S. Frolking; K.‐Y. Chang; W. J. Riley; R. K. Varner; S. B. Hodgkins; A. P. McNichol; S. R. Saleska; V. I. Rich; J. P. Chanton;doi: 10.1029/2021gb007113
handle: 1912/28236
AbstractStordalen Mire is a peatland in the discontinuous permafrost zone in arctic Sweden that exhibits a habitat gradient from permafrost palsa, to Sphagnum bog underlain by permafrost, to Eriophorum‐dominated fully thawed fen. We used three independent approaches to evaluate the annual, multi‐decadal, and millennial apparent carbon accumulation rates (aCAR) across this gradient: seven years of direct semi‐continuous measurement of CO2 and CH4 exchange, and 21 core profiles for 210Pb and 14C peat dating. Year‐round chamber measurements indicated net carbon balance of −13 ± 8, −49 ± 15, and −91 ± 43 g C m−2 y−1 for the years 2012–2018 in palsa, bog, and fen, respectively. Methane emission offset 2%, 7%, and 17% of the CO2 uptake rate across this gradient. Recent aCAR indicates higher C accumulation rates in surface peats in the palsa and bog compared to current CO2 fluxes, but these assessments are more similar in the fen. aCAR increased from low millennial‐scale levels (17–29 g C m−2 y−1) to moderate aCAR of the past century (72–81 g C m−2 y−1) to higher recent aCAR of 90–147 g C m−2 y−1. Recent permafrost collapse, greater inundation and vegetation response has made the landscape a stronger CO2 sink, but this CO2 sink is increasingly offset by rising CH4 emissions, dominated by modern carbon as determined by 14C. The higher CH4 emissions result in higher net CO2‐equivalent emissions, indicating that radiative forcing of this mire and similar permafrost ecosystems will exert a warming influence on future climate.
Global Biogeochemica... arrow_drop_down Global Biogeochemical CyclesArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2021gb007113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Biogeochemica... arrow_drop_down Global Biogeochemical CyclesArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2021gb007113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 United StatesPublisher:American Geophysical Union (AGU) Funded by:EC | GHG-LAKEEC| GHG-LAKEWik, Martin; Thornton, Brett F.; Bastviken, David; MacIntyre, Sally; Varner, Ruth K.; Crill, Patrick M.;doi: 10.1002/2013gl058510
AbstractEmission of methane (CH4) from surface waters is often dominated by ebullition (bubbling), a transport mode with high‐spatiotemporal variability. Based on new and extensive CH4 ebullition data, we demonstrate striking correlations (r2 between 0.92 and 0.997) when comparing seasonal bubble CH4 flux from three shallow subarctic lakes to four readily measurable proxies of incoming energy flux and daily flux magnitudes to surface sediment temperature (r2 between 0.86 and 0.94). Our results after continuous multiyear sampling suggest that CH4 ebullition is a predictable process, and that heat flux into the lakes is the dominant driver of gas production and release. Future changes in the energy received by lakes and ponds due to shorter ice‐covered seasons will predictably alter the ebullitive CH4 flux from freshwater systems across northern landscapes. This finding is critical for our understanding of the dynamics of radiatively important trace gas sources and associated climate feedback.
Geophysical Research... arrow_drop_down Geophysical Research LettersArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1002/2013...Other literature typeData sources: European Union Open Data PortalUniversity of New Hampshire: Scholars RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2013gl058510&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 99 citations 99 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Geophysical Research... arrow_drop_down Geophysical Research LettersArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1002/2013...Other literature typeData sources: European Union Open Data PortalUniversity of New Hampshire: Scholars RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2013gl058510&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014 United StatesPublisher:Wiley Treat, Claire C.; Wollheim, Wilfred M.; Varner, Ruth K.; Grandy, Andrew S.; Talbot, J.; Frolking, Stephen E.;doi: 10.1111/gcb.12572
pmid: 24616169
AbstractControls on the fate of ~277 Pg of soil organic carbon (C) stored in permafrost peatland soils remain poorly understood despite the potential for a significant positive feedback to climate change. Our objective was to quantify the temperature, moisture, organic matter, and microbial controls on soil organic carbon (SOC) losses following permafrost thaw in peat soils across Alaska. We compared the carbon dioxide (CO2) and methane (CH4) emissions from peat samples collected at active layer and permafrost depths when incubated aerobically and anaerobically at −5, −0.5, +4, and +20 °C. Temperature had a strong, positive effect on C emissions; global warming potential (GWP) was >3× larger at 20 °C than at 4 °C. Anaerobic conditions significantly reduced CO2 emissions and GWP by 47% at 20 °C but did not have a significant effect at −0.5 °C. Net anaerobic CH4 production over 30 days was 7.1 ± 2.8 μg CH4‐C gC−1 at 20 °C. Cumulative CO2 emissions were related to organic matter chemistry and best predicted by the relative abundance of polysaccharides and proteins (R2 = 0.81) in SOC. Carbon emissions (CO2‐C + CH4‐C) from the active layer depth peat ranged from 77% larger to not significantly different than permafrost depths and varied depending on the peat type and peat decomposition stage rather than thermal state. Potential SOC losses with warming depend not only on the magnitude of temperature increase and hydrology but also organic matter quality, permafrost history, and vegetation dynamics, which will ultimately determine net radiative forcing due to permafrost thaw.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of New Hampshire: Scholars RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of New Hampshire: Scholars RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12572&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 169 citations 169 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of New Hampshire: Scholars RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of New Hampshire: Scholars RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12572&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Sweden, Sweden, United Kingdom, United Kingdom, Sweden, Denmark, Norway, SwedenPublisher:Springer Science and Business Media LLC Funded by:EC | INTERACTEC| INTERACTZofia Rączkowska; Jing Tang; Jing Tang; Lena Ström; Ruth K. Varner; Didac Pascual; Riikka Rinnan; Anders Michelsen; Torben R. Christensen; Marina Becher; Christer Jonasson; Ellen Dorrepaal; Urban Emanuelsson; Jonas Åkerman; Terry V. Callaghan; Terry V. Callaghan; Dan Hammarlund; Reiner Giesler; Philip A. Wookey; Margareta Johansson; Andreas Persson; Hongxiao Jin; Hongxiao Jin; Edward Hanna; Annika Hofgaard; Jonatan Klaminder; David Olefeldt; Cecilia Johansson; Jan Karlsson; Erik Lundin; Gareth K. Phoenix;AbstractArctic and subarctic ecosystems are experiencing substantial changes in hydrology, vegetation, permafrost conditions, and carbon cycling, in response to climatic change and other anthropogenic drivers, and these changes are likely to continue over this century. The total magnitude of these changes results from multiple interactions among these drivers. Field measurements can address the overall responses to different changing drivers, but are less capable of quantifying the interactions among them. Currently, a comprehensive assessment of the drivers of ecosystem changes, and the magnitude of their direct and indirect impacts on subarctic ecosystems, is missing. The Torneträsk area, in the Swedish subarctic, has an unrivalled history of environmental observation over 100 years, and is one of the most studied sites in the Arctic. In this study, we summarize and rank the drivers of ecosystem change in the Torneträsk area, and propose research priorities identified, by expert assessment, to improve predictions of ecosystem changes. The research priorities identified include understanding impacts on ecosystems brought on by altered frequency and intensity of winter warming events, evapotranspiration rates, rainfall, duration of snow cover and lake-ice, changed soil moisture, and droughts. This case study can help us understand the ongoing ecosystem changes occurring in the Torneträsk area, and contribute to improve predictions of future ecosystem changes at a larger scale. This understanding will provide the basis for the future mitigation and adaptation plans needed in a changing climate.
CORE arrow_drop_down COREArticle . 2021License: CC BYFull-Text: https://eprints.whiterose.ac.uk/165701/1/Pascual2020_Article_TheMissingPiecesForBetterFutur.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2021License: CC BYFull-Text: https://eprints.whiterose.ac.uk/165701/1/Pascual2020_Article_TheMissingPiecesForBetterFutur.pdfData sources: CORE (RIOXX-UK Aggregator)University of Stirling: Stirling Digital Research RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/1893/31737Data sources: Bielefeld Academic Search Engine (BASE)Online Research Database In TechnologyArticle . 2021Data sources: Online Research Database In TechnologyCopenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemPublikationer från Umeå universitetArticle . 2021 . Peer-reviewedData sources: Publikationer från Umeå universitetPublikationer från Uppsala UniversitetArticle . 2020 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-020-01381-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down COREArticle . 2021License: CC BYFull-Text: https://eprints.whiterose.ac.uk/165701/1/Pascual2020_Article_TheMissingPiecesForBetterFutur.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2021License: CC BYFull-Text: https://eprints.whiterose.ac.uk/165701/1/Pascual2020_Article_TheMissingPiecesForBetterFutur.pdfData sources: CORE (RIOXX-UK Aggregator)University of Stirling: Stirling Digital Research RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/1893/31737Data sources: Bielefeld Academic Search Engine (BASE)Online Research Database In TechnologyArticle . 2021Data sources: Online Research Database In TechnologyCopenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemPublikationer från Umeå universitetArticle . 2021 . Peer-reviewedData sources: Publikationer från Umeå universitetPublikationer från Uppsala UniversitetArticle . 2020 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-020-01381-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Springer Science and Business Media LLC Funded by:NSF | NSF Postdoctoral Fellowsh..., FCT | LA 2, NIH | Cancer Center Support Gra... +2 projectsNSF| NSF Postdoctoral Fellowship in Biology FY 2021: Determining the mechanism that drive assembly in belowground microbial decomposer systems ,FCT| LA 2 ,NIH| Cancer Center Support Grant ,NSF| Nitrogen fixation and its coupling to methane dynamics in the peat moss (Sphagnum) phytobiome of northern peatlands ,NSF| Collaborative Research: New Roles for Reactive Oxygen Species in Mediating Carbon Fluxes at the Terrestrial-Aquatic InterfaceAuthors: Emily K. Bechtold; Jared B. Ellenbogen; Jorge A. Villa; Djennyfer K. de Melo Ferreira; +10 AuthorsEmily K. Bechtold; Jared B. Ellenbogen; Jorge A. Villa; Djennyfer K. de Melo Ferreira; Angela M. Oliverio; Joel E. Kostka; Virginia I. Rich; Ruth K. Varner; Sheel Bansal; Eric J. Ward; Gil Bohrer; Mikayla A. Borton; Kelly C. Wrighton; Michael J. Wilkins;pmid: 39843444
pmc: PMC11754854
Abstract Current estimates of wetland contributions to the global methane budget carry high uncertainty, particularly in accurately predicting emissions from high methane-emitting wetlands. Microorganisms mediate methane cycling, yet knowledge of their conservation across wetlands remains scarce. To address this, we integrated 1,118 16S rRNA amplicon datasets (116 new), 305 metagenomes (20 new) that yielded 4,745 medium and high-quality metagenome assembled genomes (MAGs; 617 new), 133 metatranscriptomes, and annual methane flux data across 9 wetlands to create the Multi-Omics for Understanding Climate Change (MUCC) v2.0.0 database. This new resource was leveraged to link microbiome compositional profiles to encoded functions and emissions, with specific focus on methane-cycling populations and the microbial carbon decomposition networks that fuel them. We identified eight methane-cycling genera that were conserved across wetlands, and deciphered wetland specific metabolic interactions across marshes, revealing low methanogen-methanotroph connectivity in high-emitting wetlands. Methanoregula emerged as a hub methanogen across networks and was a strong predictor of methane flux, demonstrating the potential broad relevance of methylotrophic methanogenesis in these ecosystems. Collectively, our findings illuminate trends between microbial decomposition networks and methane flux and provide an extensive publicly available database to advance future wetland research.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-4529259/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-4529259/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United StatesPublisher:IOP Publishing Johnston, Carmel E.; Ewing, Stephanie A.; Harden, Jennifer W.; Varner, Ruth K.; Wickland, Kimberly P.; Koch, Joshua C.; Fuller, Christopher C.; Manies, Kristen; Jorgenson, M. Torre;Permafrost soils store over half of global soil carbon (C), and northern frozen peatlands store about 10% of global permafrost C. With thaw, inundation of high latitude lowland peatlands typically increases the surface-atmosphere flux of methane (CH _4 ), a potent greenhouse gas. To examine the effects of lowland permafrost thaw over millennial timescales, we measured carbon dioxide (CO _2 ) and CH _4 exchange along sites that constitute a ∼1000 yr thaw chronosequence of thermokarst collapse bogs and adjacent fen locations at Innoko Flats Wildlife Refuge in western Alaska. Peak CH _4 exchange in July (123 ± 71 mg CH _4 –C m ^−2 d ^−1 ) was observed in features that have been thawed for 30 to 70 (<100) yr, where soils were warmer than at more recently thawed sites (14 to 21 yr; emitting 1.37 ± 0.67 mg CH _4 –C m ^−2 d ^−1 in July) and had shallower water tables than at older sites (200 to 1400 yr; emitting 6.55 ± 2.23 mg CH _4 –C m ^−2 d ^−1 in July). Carbon lost via CH _4 efflux during the growing season at these intermediate age sites was 8% of uptake by net ecosystem exchange. Our results provide evidence that CH _4 emissions following lowland permafrost thaw are enhanced over decadal time scales, but limited over millennia. Over larger spatial scales, adjacent fen systems may contribute sustained CH _4 emission, CO _2 uptake, and DOC export. We argue that over timescales of decades to centuries, thaw features in high-latitude lowland peatlands, particularly those developed on poorly drained mineral substrates, are a key locus of elevated CH _4 emission to the atmosphere that must be considered for a complete understanding of high latitude CH _4 dynamics.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/9/8/085004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/9/8/085004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 FinlandPublisher:American Geophysical Union (AGU) Funded by:NSF | BII-Implementation: The E..., NSF | NSF Postdoctoral Fellowsh...NSF| BII-Implementation: The EMERGE Institute: Identifying EMergent Ecosystem Responses through Genes-to-Ecosystems Integration ,NSF| NSF Postdoctoral Fellowship in Biology FY 2021: Integrating microbial dynamics into methane models for northern peatland and post-glacial lakesMcKenzie A. Kuhn; Ruth K. Varner; Carmody K. McCalley; Clarice R. Perryman; Mika Aurela; Sophia A. Burke; Jeffrey P. Chanton; Patrick M. Crill; Jessica DelGreco; Jia Deng; Liam Heffernan; Christina Herrick; Suzanne B. Hodgkins; Cheristy P. Jones; Sari Juutinen; Evan S. Kane; Louis J. Lamit; Tuula Larmola; Erik Lilleskov; David Olefeldt; Michael W. Palace; Virginia I. Rich; Christopher Schulze; Joanne H. Shorter; Franklin B. Sullivan; Oliver Sonnentag; Merritt R. Turetsky; Mark P. Waldrop;doi: 10.1029/2023jg007837
AbstractNorthern peatlands are a globally significant source of methane (CH4), and emissions are projected to increase due to warming and permafrost loss. Understanding the microbial mechanisms behind patterns in CH4 production in peatlands will be key to predicting annual emissions changes, with stable carbon isotopes (δ13C‐CH4) being a powerful tool for characterizing these drivers. Given that δ13C‐CH4 is used in top‐down atmospheric inversion models to partition sources, our ability to model CH4 production pathways and associated δ13C‐CH4 values is critical. We sought to characterize the role of environmental conditions, including hydrologic and vegetation patterns associated with permafrost thaw, on δ13C‐CH4 values from high‐latitude peatlands. We measured porewater and emitted CH4 stable isotopes, pH, and vegetation composition from five boreal‐Arctic peatlands. Porewater δ13C‐CH4 was strongly associated with peatland type, with δ13C enriched values obtained from more minerotrophic fens (−61.2 ± 9.1‰) compared to permafrost‐free bogs (−74.1 ± 9.4‰) and raised permafrost bogs (−81.6 ± 11.5‰). Variation in porewater δ13C‐CH4 was best explained by sedge cover, CH4 concentration, and the interactive effect of peatland type and pH (r2 = 0.50, p < 0.001). Emitted δ13C‐CH4 varied greatly but was positively correlated with porewater δ13C‐CH4. We calculated a mixed atmospheric δ13C‐CH4 value for northern peatlands of −65.3 ± 7‰ and show that this value is more sensitive to landscape drying than wetting under permafrost thaw scenarios. Our results suggest northern peatland δ13C‐CH4 values are likely to shift in the future which has important implications for source partitioning in atmospheric inversion models.
Natural Resources In... arrow_drop_down Natural Resources Institute Finland: JukuriArticleLicense: CC BYFull-Text: https://jukuri.luke.fi/handle/10024/555110Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research BiogeosciencesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2024 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023jg007837&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Natural Resources In... arrow_drop_down Natural Resources Institute Finland: JukuriArticleLicense: CC BYFull-Text: https://jukuri.luke.fi/handle/10024/555110Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research BiogeosciencesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2024 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023jg007837&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | BII-Implementation: The E..., ARC | ARC Future Fellowships - ...NSF| BII-Implementation: The EMERGE Institute: Identifying EMergent Ecosystem Responses through Genes-to-Ecosystems Integration ,ARC| ARC Future Fellowships - Grant ID: FT210100521Zhen Li; William J. Riley; Gianna L. Marschmann; Ulas Karaoz; Ian A. Shirley; Qiong Wu; Nicholas J. Bouskill; Kuang-Yu Chang; Patrick M. Crill; Robert F. Grant; Eric King; Scott R. Saleska; Matthew B. Sullivan; Jinyun Tang; Ruth K. Varner; Ben J. Woodcroft; Kelly C. Wrighton; the EMERGE Biology Integration Institute Coordinators; Eoin L. Brodie;Abstract Microbes drive the biogeochemical cycles of earth systems, yet the long-standing goal of linking emerging genomic information, microbial traits, mechanistic ecosystem models, and projections under climate change has remained elusive despite a wealth of emerging genomic information. Here we developed a general genome-to-ecosystem (G2E) framework for integrating genome-inferred microbial kinetic traits into mechanistic models of terrestrial ecosystems and applied it at a well-studied Arctic wetland by benchmarking predictions against observed greenhouse gas emissions. We found variation in genome-inferred microbial kinetic traits resulted in large differences in simulated annual methane emissions, quantitatively demonstrating that the genomically observable variations in microbial capacity are consequential for ecosystem functioning. Applying microbial community-aggregated traits via genome relative-abundance-weighting gave better methane emissions predictions (i.e., up to 54% decrease in bias) compared to ignoring the observed abundances, highlighting the value of combined trait inferences and abundances. This work provides the first example of integrating microbial functional trait-based genomics, mechanistic and pragmatic trait parameterizations of diverse microbial metabolisms, and mechanistic ecosystem modeling. The generalizable G2E framework will enable use of abundant microbial metagenomics data to improve predictions of microbial interactions in many complex systems, including oceanic microbiomes.
Nature Communication... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2025Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-025-57386-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Nature Communication... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2025Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-025-57386-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 01 Jan 2020 Chile, Spain, Switzerland, United States, United States, Chile, Ireland, United States, Germany, Spain, BelgiumPublisher:Wiley Publicly fundedFunded by:NSF | Collaborative Research: T..., ARC | Discovery Projects - Gran..., University College Dublin +8 projectsNSF| Collaborative Research: The Role of Iron Redox Dynamics in Carbon Losses from Tropical Forest Soils ,ARC| Discovery Projects - Grant ID: DP170102766 ,University College Dublin ,SNSF| Functional diversity and cell-cell communication in biocontrol fluorescent Pseudomonas spp. associated with natural disease- suppressiveness of soils ,SNSF| Towards the rational design of molecular glue degraders ,SNSF| ICOS-CH Phase 2 ,NSF| Collaborative Research: Tree Species Effects on Ecosystem Processes in Lowland Costa Rica ,ARC| Discovery Projects - Grant ID: DP160102452 ,NSF| Collaborative Research: Effects of Species on Forest Carbon Balances in Lowland Costa Rica ,NSF| Collaborative Research: ABI Development: The PEcAn Project: A Community Platform for Ecological Forecasting ,ARC| Woodland response to elevated CO2 in free air carbon dioxide enrichment: does phosphorus limit the sink for Carbon?Mirco Migliavacca; Christoph S. Vogel; Thomas Wutzler; Russell L. Scott; Mioko Ataka; Jason P. Kaye; Järvi Järveoja; Kadmiel Maseyk; Ben Bond-Lamberty; K. C. Mathes; Joseph Verfaillie; Catriona A. Macdonald; Kentaro Takagi; Jennifer Goedhart Nietz; Eric A. Davidson; Susan E. Trumbore; Melanie A. Mayes; Elise Pendall; Carolyn Monika Görres; Christine S. O’Connell; Christine S. O’Connell; Masahito Ueyama; Cecilio Oyonarte; Mats Nilsson; Christopher M. Gough; Jorge F. Perez-Quezada; Mariah S. Carbone; Ruth K. Varner; Omar Gutiérrez del Arroyo; Junliang Zou; Alexandre A. Renchon; Nina Buchmann; Shih-Chieh Chang; Anya M. Hopple; Anya M. Hopple; Munemasa Teramoto; Stephanie C. Pennington; Jin-Sheng He; Yuji Kominami; Jillian W. Gregg; Enrique P. Sánchez-Cañete; James W. Raich; Greg Winston; Juying Wu; Ulli Seibt; Marguerite Mauritz; Zhuo Pang; Hamidreza Norouzi; Peter S. Curtis; Ankur R. Desai; Rodrigo Vargas; Bruce Osborne; Jinsong Wang; Scott T. Miller; Avni Malhotra; Asko Noormets; Whendee L. Silver; Mark G. Tjoelker; Tana E. Wood; T. A. Black; Michael Gavazzi; Haiming Kan; Matthias Peichl; Tarek S. El-Madany; Nadine K. Ruehr; Steve McNulty; H. Hughes; Jiye Zeng; Daphne Szutu; Richard P. Phillips; Claire L. Phillips; Wu Sun; Rachhpal S. Jassal; Patrick M. Crill; Amir AghaKouchak; Quan Zhang; Matthew Saunders; D. S. Christianson; Masahiro Takagi; Kathleen Savage; Jinshi Jian; Chelcy Ford Miniat; John E. Drake; Guofang Miao; Samaneh Ashraf; Naishen Liang; Tianshan Zha; Michael L. Goulden; Marion Schrumpf; Takashi Hirano; Debjani Sihi; Juan J. Armesto; David A. Lipson; M. Altaf Arain; Dennis D. Baldocchi; Hassan Anjileli;doi: 10.1111/gcb.15353 , 10.60692/ejg8a-yd340 , 10.5445/ir/1000125998 , 10.3929/ethz-b-000446726 , 10.60692/wvgem-qyh85
pmid: 33026137
pmc: PMC7756728
doi: 10.1111/gcb.15353 , 10.60692/ejg8a-yd340 , 10.5445/ir/1000125998 , 10.3929/ethz-b-000446726 , 10.60692/wvgem-qyh85
pmid: 33026137
pmc: PMC7756728
AbstractGlobally, soils store two to three times as much carbon as currently resides in the atmosphere, and it is critical to understand how soil greenhouse gas (GHG) emissions and uptake will respond to ongoing climate change. In particular, the soil‐to‐atmosphere CO2 flux, commonly though imprecisely termed soil respiration (RS), is one of the largest carbon fluxes in the Earth system. An increasing number of high‐frequency RS measurements (typically, from an automated system with hourly sampling) have been made over the last two decades; an increasing number of methane measurements are being made with such systems as well. Such high frequency data are an invaluable resource for understanding GHG fluxes, but lack a central database or repository. Here we describe the lightweight, open‐source COSORE (COntinuous SOil REspiration) database and software, that focuses on automated, continuous and long‐term GHG flux datasets, and is intended to serve as a community resource for earth sciences, climate change syntheses and model evaluation. Contributed datasets are mapped to a single, consistent standard, with metadata on contributors, geographic location, measurement conditions and ancillary data. The design emphasizes the importance of reproducibility, scientific transparency and open access to data. While being oriented towards continuously measured RS, the database design accommodates other soil‐atmosphere measurements (e.g. ecosystem respiration, chamber‐measured net ecosystem exchange, methane fluxes) as well as experimental treatments (heterotrophic only, etc.). We give brief examples of the types of analyses possible using this new community resource and describe its accompanying R software package.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020Full-Text: http://oro.open.ac.uk/73137/1/73137.pdfData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2020License: CC BYFull-Text: https://escholarship.org/uc/item/2qm6h6tpData sources: Bielefeld Academic Search Engine (BASE)University College Dublin: Research Repository UCDArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10197/12610Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universidad de Chile: Repositorio académicoArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institutional Repository Universiteit AntwerpenArticle . 2020Data sources: Institutional Repository Universiteit AntwerpeneScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDFull-Text: https://doi.org/10.1111/gcb.15353Data sources: Recolector de Ciencia Abierta, RECOLECTAriUAL - Repositorio Institucional de la Universidad de Almería (Spain)Article . 2024License: CC BY NC NDFull-Text: https://doi.org/10.1111/gcb.15353Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020Full-Text: http://oro.open.ac.uk/73137/1/73137.pdfData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2020License: CC BYFull-Text: https://escholarship.org/uc/item/2qm6h6tpData sources: Bielefeld Academic Search Engine (BASE)University College Dublin: Research Repository UCDArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10197/12610Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universidad de Chile: Repositorio académicoArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institutional Repository Universiteit AntwerpenArticle . 2020Data sources: Institutional Repository Universiteit AntwerpeneScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDFull-Text: https://doi.org/10.1111/gcb.15353Data sources: Recolector de Ciencia Abierta, RECOLECTAriUAL - Repositorio Institucional de la Universidad de Almería (Spain)Article . 2024License: CC BY NC NDFull-Text: https://doi.org/10.1111/gcb.15353Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:American Geophysical Union (AGU) Funded by:NSF | BII-Implementation: The E...NSF| BII-Implementation: The EMERGE Institute: Identifying EMergent Ecosystem Responses through Genes-to-Ecosystems IntegrationM. E. Holmes; P. M. Crill; W. C. Burnett; C. K. McCalley; R. M. Wilson; S. Frolking; K.‐Y. Chang; W. J. Riley; R. K. Varner; S. B. Hodgkins; A. P. McNichol; S. R. Saleska; V. I. Rich; J. P. Chanton;doi: 10.1029/2021gb007113
handle: 1912/28236
AbstractStordalen Mire is a peatland in the discontinuous permafrost zone in arctic Sweden that exhibits a habitat gradient from permafrost palsa, to Sphagnum bog underlain by permafrost, to Eriophorum‐dominated fully thawed fen. We used three independent approaches to evaluate the annual, multi‐decadal, and millennial apparent carbon accumulation rates (aCAR) across this gradient: seven years of direct semi‐continuous measurement of CO2 and CH4 exchange, and 21 core profiles for 210Pb and 14C peat dating. Year‐round chamber measurements indicated net carbon balance of −13 ± 8, −49 ± 15, and −91 ± 43 g C m−2 y−1 for the years 2012–2018 in palsa, bog, and fen, respectively. Methane emission offset 2%, 7%, and 17% of the CO2 uptake rate across this gradient. Recent aCAR indicates higher C accumulation rates in surface peats in the palsa and bog compared to current CO2 fluxes, but these assessments are more similar in the fen. aCAR increased from low millennial‐scale levels (17–29 g C m−2 y−1) to moderate aCAR of the past century (72–81 g C m−2 y−1) to higher recent aCAR of 90–147 g C m−2 y−1. Recent permafrost collapse, greater inundation and vegetation response has made the landscape a stronger CO2 sink, but this CO2 sink is increasingly offset by rising CH4 emissions, dominated by modern carbon as determined by 14C. The higher CH4 emissions result in higher net CO2‐equivalent emissions, indicating that radiative forcing of this mire and similar permafrost ecosystems will exert a warming influence on future climate.
Global Biogeochemica... arrow_drop_down Global Biogeochemical CyclesArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2021gb007113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Biogeochemica... arrow_drop_down Global Biogeochemical CyclesArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2021gb007113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 United StatesPublisher:American Geophysical Union (AGU) Funded by:EC | GHG-LAKEEC| GHG-LAKEWik, Martin; Thornton, Brett F.; Bastviken, David; MacIntyre, Sally; Varner, Ruth K.; Crill, Patrick M.;doi: 10.1002/2013gl058510
AbstractEmission of methane (CH4) from surface waters is often dominated by ebullition (bubbling), a transport mode with high‐spatiotemporal variability. Based on new and extensive CH4 ebullition data, we demonstrate striking correlations (r2 between 0.92 and 0.997) when comparing seasonal bubble CH4 flux from three shallow subarctic lakes to four readily measurable proxies of incoming energy flux and daily flux magnitudes to surface sediment temperature (r2 between 0.86 and 0.94). Our results after continuous multiyear sampling suggest that CH4 ebullition is a predictable process, and that heat flux into the lakes is the dominant driver of gas production and release. Future changes in the energy received by lakes and ponds due to shorter ice‐covered seasons will predictably alter the ebullitive CH4 flux from freshwater systems across northern landscapes. This finding is critical for our understanding of the dynamics of radiatively important trace gas sources and associated climate feedback.
Geophysical Research... arrow_drop_down Geophysical Research LettersArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1002/2013...Other literature typeData sources: European Union Open Data PortalUniversity of New Hampshire: Scholars RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2013gl058510&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 99 citations 99 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Geophysical Research... arrow_drop_down Geophysical Research LettersArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1002/2013...Other literature typeData sources: European Union Open Data PortalUniversity of New Hampshire: Scholars RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2013gl058510&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu