- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020 GermanyPublisher:Royal Society of Chemistry (RSC) Funded by:DFGDFGChristoph J. Brabec; Fei Guo; Fei Guo; Linxiang Zeng; Linxiang Zeng; Karen Forberich; Shi Chen; Yaohua Mai;doi: 10.1039/d0ee02575e
This review highlights the importance of controlling the crystallization dynamics for the deposition of high-quality photovoltaic perovskite layers on larger-area coatings.
Juelich Shared Elect... arrow_drop_down Energy & Environmental ScienceArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee02575e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 88 citations 88 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Juelich Shared Elect... arrow_drop_down Energy & Environmental ScienceArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee02575e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:American Chemical Society (ACS) Weiguang Kong; Wang Li; Changwen Liu; Hui Liu; Jun Miao; Weijun Wang; Shi Chen; Manman Hu; Dedi Li; Abbas Amini; Shaopeng Yang; Jianbo Wang; Baomin Xu; Chun Cheng;pmid: 30673271
High-efficiency hole transport layer free perovskite solar cells (HTL-free PSCs) with economical and simplified device structure can greatly facilitate the commercialization of PSCs. However, eliminating the key HTL in PSCs results usually in a severe efficiency loss and poor carrier transfer due to the energy-level mismatching at the indium tin oxide (ITO)/perovskite interface. In this study, we solve this issue by introducing an organic monomolecular layer (ML) to raise the effective work function of ITO with the assistance of an interface dipole created by Sn-N bonds. The energy-level alignment at the ITO/perovskite interface is optimized with a barrier-free contact, which favors efficient charge transfer and suppressed nonradiative carrier recombination. The HTL-free PSCs based on the ML-modified ITO yield an efficiency of 19.4%, much higher than those of HTL-free PSCs on bare ITO (10.26%), comparable to state-of-the-art PSCs with a HTL. This study provides an in-depth understanding of the mechanism of interfacial energy-level alignment and facilitates the design of advanced interfacial materials for simplified and efficient PSC devices.
ACS Nano arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsnano.8b07627&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu52 citations 52 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert ACS Nano arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsnano.8b07627&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:American Chemical Society (ACS) Nan Shen; Shi Chen; Run Shi; Shuzhang Niu; Abbas Amini; Chun Cheng;handle: 1959.7/uws:60916
The critical challenge for the practical applications of VO2-based smart windows is to nucleate and propagate the phase transformation in the ambient condition while maintaining a balance between solar energy regulation and visible light transmittance. Doping proves effective in the modification of the thermochromic performance in VO2 but always causes unfavorable degradation accompanied with the significant reduction of phase transition temperature. Joule heating has been introduced in VO2-based devices to activate the metal-insulator transition (MIT) at ambient temperature. A synergy between these two strategies is necessary to achieve a well-balanced performance of VO2 films at the appropriate temperature. Here, we systematically investigate the thermochromic properties of tungsten (W)-doped VO2 composite films with Joule heating triggered MIT. The phase transition temperature of VO2 is effectively decreased by 21.6 °C per at. % W, and the balanced luminous transmittance (Tlum = 50.8%) and solar energy modulation ability (ΔTsol = 11.4%) are achieved at 0.6 at. % W doping. Importantly, as a synergetic result of W doping and hysteresis behavior of MIT in VO2, the optimal infrared blocking performance can be retained at a reduced cost of energy consumption and at the ambient temperature down to 47 °C. This is comparable to the glass window temperature in the summer in subtropical and tropical regions. This result suggests quite low and even zero energy consumption to maintain the optimal infrared blocking performance of VO2 films. This study provides a practical and advanced setup for operable and efficient smart windows in ambient conditions.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ACS Applied Electronic MaterialsArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaelm.1c00550&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ACS Applied Electronic MaterialsArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaelm.1c00550&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 GermanyPublisher:Royal Society of Chemistry (RSC) Funded by:DFGDFGChristoph J. Brabec; Fei Guo; Fei Guo; Linxiang Zeng; Linxiang Zeng; Karen Forberich; Shi Chen; Yaohua Mai;doi: 10.1039/d0ee02575e
This review highlights the importance of controlling the crystallization dynamics for the deposition of high-quality photovoltaic perovskite layers on larger-area coatings.
Juelich Shared Elect... arrow_drop_down Energy & Environmental ScienceArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee02575e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 88 citations 88 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Juelich Shared Elect... arrow_drop_down Energy & Environmental ScienceArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee02575e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:American Chemical Society (ACS) Weiguang Kong; Wang Li; Changwen Liu; Hui Liu; Jun Miao; Weijun Wang; Shi Chen; Manman Hu; Dedi Li; Abbas Amini; Shaopeng Yang; Jianbo Wang; Baomin Xu; Chun Cheng;pmid: 30673271
High-efficiency hole transport layer free perovskite solar cells (HTL-free PSCs) with economical and simplified device structure can greatly facilitate the commercialization of PSCs. However, eliminating the key HTL in PSCs results usually in a severe efficiency loss and poor carrier transfer due to the energy-level mismatching at the indium tin oxide (ITO)/perovskite interface. In this study, we solve this issue by introducing an organic monomolecular layer (ML) to raise the effective work function of ITO with the assistance of an interface dipole created by Sn-N bonds. The energy-level alignment at the ITO/perovskite interface is optimized with a barrier-free contact, which favors efficient charge transfer and suppressed nonradiative carrier recombination. The HTL-free PSCs based on the ML-modified ITO yield an efficiency of 19.4%, much higher than those of HTL-free PSCs on bare ITO (10.26%), comparable to state-of-the-art PSCs with a HTL. This study provides an in-depth understanding of the mechanism of interfacial energy-level alignment and facilitates the design of advanced interfacial materials for simplified and efficient PSC devices.
ACS Nano arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsnano.8b07627&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu52 citations 52 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert ACS Nano arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsnano.8b07627&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:American Chemical Society (ACS) Nan Shen; Shi Chen; Run Shi; Shuzhang Niu; Abbas Amini; Chun Cheng;handle: 1959.7/uws:60916
The critical challenge for the practical applications of VO2-based smart windows is to nucleate and propagate the phase transformation in the ambient condition while maintaining a balance between solar energy regulation and visible light transmittance. Doping proves effective in the modification of the thermochromic performance in VO2 but always causes unfavorable degradation accompanied with the significant reduction of phase transition temperature. Joule heating has been introduced in VO2-based devices to activate the metal-insulator transition (MIT) at ambient temperature. A synergy between these two strategies is necessary to achieve a well-balanced performance of VO2 films at the appropriate temperature. Here, we systematically investigate the thermochromic properties of tungsten (W)-doped VO2 composite films with Joule heating triggered MIT. The phase transition temperature of VO2 is effectively decreased by 21.6 °C per at. % W, and the balanced luminous transmittance (Tlum = 50.8%) and solar energy modulation ability (ΔTsol = 11.4%) are achieved at 0.6 at. % W doping. Importantly, as a synergetic result of W doping and hysteresis behavior of MIT in VO2, the optimal infrared blocking performance can be retained at a reduced cost of energy consumption and at the ambient temperature down to 47 °C. This is comparable to the glass window temperature in the summer in subtropical and tropical regions. This result suggests quite low and even zero energy consumption to maintain the optimal infrared blocking performance of VO2 films. This study provides a practical and advanced setup for operable and efficient smart windows in ambient conditions.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ACS Applied Electronic MaterialsArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaelm.1c00550&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ACS Applied Electronic MaterialsArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaelm.1c00550&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu