- home
- Advanced Search
Filters
Year range
-chevron_right GOOrganization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Inna Tryhuba; Anatoliy Tryhuba; Taras Hutsol; Vasyl Lopushniak; Agata Cieszewska; Oleh Andrushkiv; Wiesław Barabasz; Anna Pikulicka; Zbigniew Kowalczyk; Vyacheslav Vasyuk;doi: 10.3390/en17061461
Based on the analysis conducted on the state of theory and practice, the expediency of assessing the relationships between the functional indicators of bioenergy production systems using the organic waste of residential areas is substantiated in the projects of the European Green Deal. It is based on the use of existing results published in scientific works, as well as on the use of methods of system analysis and mathematical modeling. The proposed approach avoids limitations associated with the one-sidedness of sources or subjectivity of data and also ensures complete consideration of various factors affecting the functional indicators of the bioenergy production system from the organic waste of residential areas. Four types of organic waste generated within the territory of residential areas are considered. In our work, we used passive experimental methods to collect data on the functional characteristics of bioenergy production systems, mathematical statistics methods to process and interpret trends in the functional characteristics of bioenergy production systems using municipal organic waste, and mathematical modeling methods to develop mathematical models that reflect the patterns of change in the functional characteristics of bioenergy production systems. The results indicate the presence of dependencies with close correlations. The resulting dependencies can be used to optimize processes and increase the efficiency of bioenergy production. It was found that: (1) yard waste has the highest volume of the total volume of solid organic substances but has a low yield of biogas and low share of methane production; (2) food waste has the highest yield of biogas and, accordingly, the highest share of methane production; (3) mixed organic waste has the lowest volume of the total volume of solid organic substances and the lowest content of volatile organic substances. The amount of electricity and thermal energy production varies by type of organic waste, with mixed organic waste having a higher average amount of electricity production compared to other types of waste. It was established that the production volume of the solid fraction (biofertilizer) is also different for different types of organic waste. Less solid fraction is produced from food waste than from yard waste. The obtained research results are of practical importance for the development of sustainable bioenergy production from organic waste in residential areas during the implementation of the European Green Deal projects. They provide further research on the development of effective models for determining the rational configuration of bioenergy production systems using organic waste for given characteristics of residential areas.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17061461&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17061461&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Inna Tryhuba; Anatoliy Tryhuba; Taras Hutsol; Agata Cieszewska; Oleh Andrushkiv; Szymon Glowacki; Andrzej Bryś; Sergii Slobodian; Weronika Tulej; Mariusz Sojak;doi: 10.3390/en17071786
The article proposes to use machine learning as one of the areas of artificial intelligence to forecast the volume of biogas production from household organic waste. The use of five regression algorithms (Linear Regression, Ridge Regression, Lasso Regression, Random Forest Regression, and Gradient Boosting Regression) to create an effective model for forecasting the volume of biogas production from household organic waste is considered. Based on the comparison of these algorithms by MSE and MAE indicators, the quality of training and their accuracy during forecasting are evaluated. The proposed algorithm for creating a model for forecasting biogas production volumes from household organic waste involves the implementation of 10 main and 3 auxiliary steps. Their advantage is that they aid in the performance of component data analysis, which is carried out based on the method of reducing the dimensionality of the data set, increasing interpretability, and minimizing the risk of data loss. An analysis of 2433 data is was carried out, which characterizes the formation of biogas from food (FW) and yard waste (YW) according to four features. Data preparation is performed using the Jupyter Notebook environment in Python. We select five machine learning algorithms to substantiate an effective model for forecasting volumes of biogas production from household organic waste. On the basis of the conducted research, the main advantages and disadvantages of the used algorithms for building forecasting models of biogas production volumes from household organic waste are determined. It is found that two models, “Random Forest Regressor” and “Gradient Boosting Regressor”, show the best accuracy indicators. The other three models (Linear Regression, Ridge Regression, Lasso Regression) are inferior in accuracy and were not considered further. To determine the accuracy of the “Random Forest Regressor” and “Gradient Boosting Regressor” models, we choose the MSE and MAE indicators. The Random Forest Regressor model is found to be a more accurate model compared to the Gradient Boosting Regressor. This is confirmed by the fact that the MSE of the “Random Forest Regressor” model on the training data set is 7.14 times smaller than that of the “Gradient Boosting Regressor” model. At the same time, MAE is 2.67 times smaller in the “Random Forest Regressor” model than in the “Gradient Boosting Regressor” model. The MSE and MAE of both models are worse on the test data set, which indicates overtraining tendencies. The Gradient Boosting Regressor model has worse MSE and MAE than the Random Forest Regressor model on both the training and test data sets. It is established that the model based on the “Random Forest Regressor” algorithm is the most effective for forecasting the volume of biogas production from household organic waste. It provides MAE = 0.088 on test data and the smallest absolute errors in predictions. Further systematic improvement of the “Random Forest Regressor” model for forecasting biogas production volumes from household organic waste based on new data will ensure its accuracy and maintain competitive advantages.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17071786&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17071786&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Inna Tryhuba; Taras Hutsol; Anatoliy Tryhuba; Agata Cieszewska; Nataliia Kovalenko; Krzysztof Mudryk; Szymon Glowacki; Andrzej Bryś; Weronika Tulej; Mariusz Sojak;doi: 10.3390/su152215922
The purpose of this work is to substantiate the approach to assessing the state of organic waste generation by households of a given community, which is based on passive production observations and intellectual analysis of statistical data, which ensures consideration of the factors and features of organic waste generation, as well as the development of qualitative models for forecasting their receipt. To achieve the goal, the following tasks were solved: the analysis of the state of organic waste generation by households in the EU countries was performed; an approach to assessing the state of organic waste generation by households of a given community is proposed; based on the use of the proposed approach, and models for assessing the state of organic waste generation of households in a given community were substantiated. The hypothesis of the study is to substantiate and use an approach to assessing the generation of organic waste by households in individual communities, based on the method of association learning and search for association rules, which will identify factors that have a significant impact on the volume of organic waste generated by households, the consideration of which will improve the accuracy of forecasting models and improve the quality of management of the processes of collection and processing of this waste in communities. The research methodology used allows for the use of data mining, probability theory, mathematical statistics, machine learning technology, and the Associative Rule Learning (ARL) method. Based on the use of a reasonable algorithm, they identify key trends and relationships between the factors of organic waste generation in communities in different countries, which is the basis for creating accurate models for predicting the volume of collection and processing of this waste in communities. The study found that the largest number of households produced organic waste per capita in the range of 0.14–0.25 kg/person. At the same time, most households have from two to four residents and are located on the adjoining territory from 350 m2 to 680 m2. Based on the method of learning associative rules, it was found that there are no close correlations between individual factors that determine the daily volume of organic waste generation by households per capita. The highest correlation coefficient between the type of housing and the income level of household residents is 0.13. The number of residents and the occupied area of the adjacent territory have the greatest impact on the daily volume of organic waste generated by households per capita. The substantiated associative rules of relationships, as well as the diagrams of relationships between factors, have helped to identify those factors that have the greatest impact on the volume of organic waste generation. They are the basis for creating accurate models for predicting the volume of collection and planning the processing of this waste in communities. Based on the proposed approach, Python 3.9 software was developed. It makes it possible to quickly carry out calculations and perform a quantitative assessment of the state of organic waste generation by households of a given community according to the specified rules of association between the volumes of organic waste generation and their factors. The results of the study are the basis for the further development of models for accurate forecasting of the collection and planning of the processing of organic waste from households in communities.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su152215922&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su152215922&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Inna Tryhuba; Anatoliy Tryhuba; Taras Hutsol; Vasyl Lopushniak; Agata Cieszewska; Oleh Andrushkiv; Wiesław Barabasz; Anna Pikulicka; Zbigniew Kowalczyk; Vyacheslav Vasyuk;doi: 10.3390/en17061461
Based on the analysis conducted on the state of theory and practice, the expediency of assessing the relationships between the functional indicators of bioenergy production systems using the organic waste of residential areas is substantiated in the projects of the European Green Deal. It is based on the use of existing results published in scientific works, as well as on the use of methods of system analysis and mathematical modeling. The proposed approach avoids limitations associated with the one-sidedness of sources or subjectivity of data and also ensures complete consideration of various factors affecting the functional indicators of the bioenergy production system from the organic waste of residential areas. Four types of organic waste generated within the territory of residential areas are considered. In our work, we used passive experimental methods to collect data on the functional characteristics of bioenergy production systems, mathematical statistics methods to process and interpret trends in the functional characteristics of bioenergy production systems using municipal organic waste, and mathematical modeling methods to develop mathematical models that reflect the patterns of change in the functional characteristics of bioenergy production systems. The results indicate the presence of dependencies with close correlations. The resulting dependencies can be used to optimize processes and increase the efficiency of bioenergy production. It was found that: (1) yard waste has the highest volume of the total volume of solid organic substances but has a low yield of biogas and low share of methane production; (2) food waste has the highest yield of biogas and, accordingly, the highest share of methane production; (3) mixed organic waste has the lowest volume of the total volume of solid organic substances and the lowest content of volatile organic substances. The amount of electricity and thermal energy production varies by type of organic waste, with mixed organic waste having a higher average amount of electricity production compared to other types of waste. It was established that the production volume of the solid fraction (biofertilizer) is also different for different types of organic waste. Less solid fraction is produced from food waste than from yard waste. The obtained research results are of practical importance for the development of sustainable bioenergy production from organic waste in residential areas during the implementation of the European Green Deal projects. They provide further research on the development of effective models for determining the rational configuration of bioenergy production systems using organic waste for given characteristics of residential areas.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17061461&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17061461&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Inna Tryhuba; Anatoliy Tryhuba; Taras Hutsol; Agata Cieszewska; Oleh Andrushkiv; Szymon Glowacki; Andrzej Bryś; Sergii Slobodian; Weronika Tulej; Mariusz Sojak;doi: 10.3390/en17071786
The article proposes to use machine learning as one of the areas of artificial intelligence to forecast the volume of biogas production from household organic waste. The use of five regression algorithms (Linear Regression, Ridge Regression, Lasso Regression, Random Forest Regression, and Gradient Boosting Regression) to create an effective model for forecasting the volume of biogas production from household organic waste is considered. Based on the comparison of these algorithms by MSE and MAE indicators, the quality of training and their accuracy during forecasting are evaluated. The proposed algorithm for creating a model for forecasting biogas production volumes from household organic waste involves the implementation of 10 main and 3 auxiliary steps. Their advantage is that they aid in the performance of component data analysis, which is carried out based on the method of reducing the dimensionality of the data set, increasing interpretability, and minimizing the risk of data loss. An analysis of 2433 data is was carried out, which characterizes the formation of biogas from food (FW) and yard waste (YW) according to four features. Data preparation is performed using the Jupyter Notebook environment in Python. We select five machine learning algorithms to substantiate an effective model for forecasting volumes of biogas production from household organic waste. On the basis of the conducted research, the main advantages and disadvantages of the used algorithms for building forecasting models of biogas production volumes from household organic waste are determined. It is found that two models, “Random Forest Regressor” and “Gradient Boosting Regressor”, show the best accuracy indicators. The other three models (Linear Regression, Ridge Regression, Lasso Regression) are inferior in accuracy and were not considered further. To determine the accuracy of the “Random Forest Regressor” and “Gradient Boosting Regressor” models, we choose the MSE and MAE indicators. The Random Forest Regressor model is found to be a more accurate model compared to the Gradient Boosting Regressor. This is confirmed by the fact that the MSE of the “Random Forest Regressor” model on the training data set is 7.14 times smaller than that of the “Gradient Boosting Regressor” model. At the same time, MAE is 2.67 times smaller in the “Random Forest Regressor” model than in the “Gradient Boosting Regressor” model. The MSE and MAE of both models are worse on the test data set, which indicates overtraining tendencies. The Gradient Boosting Regressor model has worse MSE and MAE than the Random Forest Regressor model on both the training and test data sets. It is established that the model based on the “Random Forest Regressor” algorithm is the most effective for forecasting the volume of biogas production from household organic waste. It provides MAE = 0.088 on test data and the smallest absolute errors in predictions. Further systematic improvement of the “Random Forest Regressor” model for forecasting biogas production volumes from household organic waste based on new data will ensure its accuracy and maintain competitive advantages.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17071786&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17071786&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Inna Tryhuba; Taras Hutsol; Anatoliy Tryhuba; Agata Cieszewska; Nataliia Kovalenko; Krzysztof Mudryk; Szymon Glowacki; Andrzej Bryś; Weronika Tulej; Mariusz Sojak;doi: 10.3390/su152215922
The purpose of this work is to substantiate the approach to assessing the state of organic waste generation by households of a given community, which is based on passive production observations and intellectual analysis of statistical data, which ensures consideration of the factors and features of organic waste generation, as well as the development of qualitative models for forecasting their receipt. To achieve the goal, the following tasks were solved: the analysis of the state of organic waste generation by households in the EU countries was performed; an approach to assessing the state of organic waste generation by households of a given community is proposed; based on the use of the proposed approach, and models for assessing the state of organic waste generation of households in a given community were substantiated. The hypothesis of the study is to substantiate and use an approach to assessing the generation of organic waste by households in individual communities, based on the method of association learning and search for association rules, which will identify factors that have a significant impact on the volume of organic waste generated by households, the consideration of which will improve the accuracy of forecasting models and improve the quality of management of the processes of collection and processing of this waste in communities. The research methodology used allows for the use of data mining, probability theory, mathematical statistics, machine learning technology, and the Associative Rule Learning (ARL) method. Based on the use of a reasonable algorithm, they identify key trends and relationships between the factors of organic waste generation in communities in different countries, which is the basis for creating accurate models for predicting the volume of collection and processing of this waste in communities. The study found that the largest number of households produced organic waste per capita in the range of 0.14–0.25 kg/person. At the same time, most households have from two to four residents and are located on the adjoining territory from 350 m2 to 680 m2. Based on the method of learning associative rules, it was found that there are no close correlations between individual factors that determine the daily volume of organic waste generation by households per capita. The highest correlation coefficient between the type of housing and the income level of household residents is 0.13. The number of residents and the occupied area of the adjacent territory have the greatest impact on the daily volume of organic waste generated by households per capita. The substantiated associative rules of relationships, as well as the diagrams of relationships between factors, have helped to identify those factors that have the greatest impact on the volume of organic waste generation. They are the basis for creating accurate models for predicting the volume of collection and planning the processing of this waste in communities. Based on the proposed approach, Python 3.9 software was developed. It makes it possible to quickly carry out calculations and perform a quantitative assessment of the state of organic waste generation by households of a given community according to the specified rules of association between the volumes of organic waste generation and their factors. The results of the study are the basis for the further development of models for accurate forecasting of the collection and planning of the processing of organic waste from households in communities.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su152215922&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su152215922&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu