- home
- Advanced Search
- Energy Research
- 2021-2025
- Energy Research
- 2021-2025
description Publicationkeyboard_double_arrow_right Article 2023Publisher:Copernicus GmbH Funded by:EC | REFLECTEC| REFLECTAlessio Leins; Danaé Bregnard; Andrea Vieth-Hillebrand; Stefanie Poetz; Florian Eichinger; Guillaume Cailleau; Pilar Junier; Simona Regenspurg;doi: 10.5194/bg-2023-159
Abstract. Dissolved organic matter and microorganisms were analyzed along the flow path of a geothermal facility in Austria. Various analytical methods were used to characterize and differentiate between natural and synthetic organic matter, characterize the microbial community composition, and determine the implications of microorganisms in an operating a geothermal site. Dissolved organic carbon (DOC) concentrations were in the range of 8.4–10.3 mg C L−1 and typically decreased from the production to the injection side. Carbonate scalings are avoided in the facility by the injection of a chemical scaling inhibitor within the production well at 500 m depth. It was calculated that the inhibitor contributes approximately 1 mg C L−1 DOC to the produced fluids. Ion chromatography (IC), liquid chromatography – organic carbon detection (LC-OCD) and Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) in negative electrospray ionization (ESI(−)) and positive atmospheric pressure photoionization (APPI(+)) mode were applied to the fluid samples to characterize the dissolved organic matter (DOM) composition and distinguish between the inhibitor and the natural DOM. Depending on the applied ionization mode, FT-ICR-MS results show that between 31 % and 65 % of the macromolecular formulas detected in the fluid samples seem to originate from the inhibitor. However, the DOM is mainly composed of low molecular weight acids (LMWA), especially acetate with up to 7.4 mg C L−1. The microbial community composition varied along the flowpath with dominant phyla being Firmicutes, Proteobacteria, and Thermotogae. Based on the microorganisms found in the sample, the metabolic pathways have been assessed. Acetate might be produced by microorganisms through various fermentation processes (e.g. from lysine, pyruvate and hexitol). Assessing the presence and interaction of organic compounds and microorganisms in geothermal fluids provides a broader understanding of processes within the geothermal facility. This understanding could be beneficial for the efficient use of a geothermal power plant.
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/bg-202...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-2023-159&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/bg-202...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-2023-159&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report 2022 GermanyPublisher:GFZ German Research Centre for Geosciences Funded by:EC | REFLECTEC| REFLECTFischer, Hartmut; Bregnard, Danaé; Leins, Alessio; Vieth-Hillebrand, Andrea; Regenspurg, Simona; Junier, Pilar;The evaluation of the effect of organic compounds and microorganisms in formation and precipitation of colloids using artificial brines was performed by TNO using selected organic compounds based on the analysis of sampled fluids corresponding to the information gathered on the sites by GFZ. The same was done with biofilms prepared with microorganisms (Thermaerobacter sp., Penicilium citrinum) isolated from geothermal stations by UNINE. All carboxylic acids tested had an inhibiting effect on the precipitation of calcium carbonate. The biofilm components seem to develop intense interaction with the ions, nuclei and/or crystals formed during the executed experiments. In the presence of biofilms, the transformation of the intrinsically formed vaterite morphology to equilibrium calcite morphologies is delayed or hindered and scaling was inhibited.
GFZpublic (German Re... arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Report . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48440/gfz.4.8.2022.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert GFZpublic (German Re... arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Report . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48440/gfz.4.8.2022.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023Publisher:Copernicus GmbH Funded by:EC | REFLECTEC| REFLECTAlessio Leins; Danaé Bregnard; Andrea Vieth-Hillebrand; Stefanie Poetz; Florian Eichinger; Guillaume Cailleau; Pilar Junier; Simona Regenspurg;doi: 10.5194/bg-2023-159
Abstract. Dissolved organic matter and microorganisms were analyzed along the flow path of a geothermal facility in Austria. Various analytical methods were used to characterize and differentiate between natural and synthetic organic matter, characterize the microbial community composition, and determine the implications of microorganisms in an operating a geothermal site. Dissolved organic carbon (DOC) concentrations were in the range of 8.4–10.3 mg C L−1 and typically decreased from the production to the injection side. Carbonate scalings are avoided in the facility by the injection of a chemical scaling inhibitor within the production well at 500 m depth. It was calculated that the inhibitor contributes approximately 1 mg C L−1 DOC to the produced fluids. Ion chromatography (IC), liquid chromatography – organic carbon detection (LC-OCD) and Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) in negative electrospray ionization (ESI(−)) and positive atmospheric pressure photoionization (APPI(+)) mode were applied to the fluid samples to characterize the dissolved organic matter (DOM) composition and distinguish between the inhibitor and the natural DOM. Depending on the applied ionization mode, FT-ICR-MS results show that between 31 % and 65 % of the macromolecular formulas detected in the fluid samples seem to originate from the inhibitor. However, the DOM is mainly composed of low molecular weight acids (LMWA), especially acetate with up to 7.4 mg C L−1. The microbial community composition varied along the flowpath with dominant phyla being Firmicutes, Proteobacteria, and Thermotogae. Based on the microorganisms found in the sample, the metabolic pathways have been assessed. Acetate might be produced by microorganisms through various fermentation processes (e.g. from lysine, pyruvate and hexitol). Assessing the presence and interaction of organic compounds and microorganisms in geothermal fluids provides a broader understanding of processes within the geothermal facility. This understanding could be beneficial for the efficient use of a geothermal power plant.
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/bg-202...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-2023-159&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/bg-202...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-2023-159&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report 2022 GermanyPublisher:GFZ German Research Centre for Geosciences Funded by:EC | REFLECTEC| REFLECTFischer, Hartmut; Bregnard, Danaé; Leins, Alessio; Vieth-Hillebrand, Andrea; Regenspurg, Simona; Junier, Pilar;The evaluation of the effect of organic compounds and microorganisms in formation and precipitation of colloids using artificial brines was performed by TNO using selected organic compounds based on the analysis of sampled fluids corresponding to the information gathered on the sites by GFZ. The same was done with biofilms prepared with microorganisms (Thermaerobacter sp., Penicilium citrinum) isolated from geothermal stations by UNINE. All carboxylic acids tested had an inhibiting effect on the precipitation of calcium carbonate. The biofilm components seem to develop intense interaction with the ions, nuclei and/or crystals formed during the executed experiments. In the presence of biofilms, the transformation of the intrinsically formed vaterite morphology to equilibrium calcite morphologies is delayed or hindered and scaling was inhibited.
GFZpublic (German Re... arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Report . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48440/gfz.4.8.2022.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert GFZpublic (German Re... arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Report . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48440/gfz.4.8.2022.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu