- home
- Advanced Search
Filters
Year range
-chevron_right GOCountry
Source
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020 Denmark, FrancePublisher:Oxford University Press (OUP) Funded by:EC | AGREENSKILLS, EC | HUMAN MICROBIOTA, ANR | MGPEC| AGREENSKILLS ,EC| HUMAN MICROBIOTA ,ANR| MGPNicolas Terrapon; Jing Wang; Ziyi Yang; Vincent Lombard; Yuliaxis Ramayo-Caldas; Lise Madsen; Huanming Yang; Fang Li; Junhua Li; Jordi Estellé; Bernard Henrissat; Bernard Henrissat; Jing Guo; Cécile Martin; Jiyang Li; Emmanuelle Maguin; Fangming Yang; Xun Xu; Karsten Kristiansen; Bing Chen; Gabrielle Potocki-Véronèse; Diego P. Morgavi; Shanmei Tang; Milka Popova; Stanislav D Ehrlich; Stanislav D Ehrlich; Hui Zhang; Huanzi Zhong; Weineng Chen;Abstract Background The rumen microbiota provides essential services to its host and, through its role in ruminant production, contributes to human nutrition and food security. A thorough knowledge of the genetic potential of rumen microbes will provide opportunities for improving the sustainability of ruminant production systems. The availability of gene reference catalogs from gut microbiomes has advanced the understanding of the role of the microbiota in health and disease in humans and other mammals. In this work, we established a catalog of reference prokaryote genes from the bovine rumen. Results Using deep metagenome sequencing we identified 13,825,880 non-redundant prokaryote genes from the bovine rumen. Compared to human, pig, and mouse gut metagenome catalogs, the rumen is larger and richer in functions and microbial species associated with the degradation of plant cell wall material and production of methane. Genes encoding enzymes catalyzing the breakdown of plant polysaccharides showed a particularly high richness that is otherwise impossible to infer from available genomes or shallow metagenomics sequencing. The catalog expands the dataset of carbohydrate-degrading enzymes described in the rumen. Using an independent dataset from a group of 77 cattle fed 4 common dietary regimes, we found that only <0.1% of genes were shared by all animals, which contrast with a large overlap for functions, i.e., 63% for KEGG functions. Different diets induced differences in the relative abundance rather than the presence or absence of genes, which explains the great adaptability of cattle to rapidly adjust to dietary changes. Conclusions These data bring new insights into functions, carbohydrate-degrading enzymes, and microbes of the rumen to complement the available information on microbial genomes. The catalog is a significant biological resource enabling deeper understanding of phenotypes and biological processes and will be expanded as new data are made available.
HAL-INSA Toulouse arrow_drop_down HAL-INSA ToulouseArticle . 2020License: CC BYFull-Text: https://hal.inrae.fr/hal-02860679v1/documentData sources: HAL-INSA ToulouseHyper Article en LigneArticle . 2020License: CC BYFull-Text: https://hal.inrae.fr/hal-02860679/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2020License: CC BYFull-Text: https://hal.inrae.fr/hal-02860679/documentRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/gigascience/giaa057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 54 citations 54 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert HAL-INSA Toulouse arrow_drop_down HAL-INSA ToulouseArticle . 2020License: CC BYFull-Text: https://hal.inrae.fr/hal-02860679v1/documentData sources: HAL-INSA ToulouseHyper Article en LigneArticle . 2020License: CC BYFull-Text: https://hal.inrae.fr/hal-02860679/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2020License: CC BYFull-Text: https://hal.inrae.fr/hal-02860679/documentRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/gigascience/giaa057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 SwedenPublisher:Oxford University Press (OUP) Funded by:EC | HUMAN MICROBIOTAEC| HUMAN MICROBIOTAPranjul Shah; Olov Svartström; Ino de Bruijn; Nicolas Terrapon; Nicolas Terrapon; Anders F. Andersson; Emilie E. L. Muller; Ann-Marie Dalin; Bernard Henrissat; Bernard Henrissat; Bernard Henrissat; Johannes Alneberg; Jonas Malmsten; Jonas Malmsten; Paul Wilmes; Vincent Lombard; Vincent Lombard; Henrik Aspeborg;Abstract The moose (Alces alces) is a ruminant that harvests energy from fiber-rich lignocellulose material through carbohydrate-active enzymes (CAZymes) produced by its rumen microbes. We applied shotgun metagenomics to rumen contents from six moose to obtain insights into this microbiome. Following binning, 99 metagenome-assembled genomes (MAGs) belonging to 11 prokaryotic phyla were reconstructed and characterized based on phylogeny and CAZyme profile. The taxonomy of these MAGs reflected the overall composition of the metagenome, with dominance of the phyla Bacteroidetes and Firmicutes. Unlike in other ruminants, Spirochaetes constituted a significant proportion of the community and our analyses indicate that the corresponding strains are primarily pectin digesters. Pectin-degrading genes were also common in MAGs of Ruminococcus, Fibrobacteres and Bacteroidetes and were overall overrepresented in the moose microbiome compared with other ruminants. Phylogenomic analyses revealed several clades within the Bacteriodetes without previously characterized genomes. Several of these MAGs encoded a large numbers of dockerins, a module usually associated with cellulosomes. The Bacteroidetes dockerins were often linked to CAZymes and sometimes encoded inside polysaccharide utilization loci, which has never been reported before. The almost 100 CAZyme-annotated genomes reconstructed in this study provide an in-depth view of an efficient lignocellulose-degrading microbiome and prospects for developing enzyme technology for biorefineries.
The ISME Journal arrow_drop_down The ISME JournalArticle . 2017 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ismej.2017.108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 113 citations 113 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The ISME Journal arrow_drop_down The ISME JournalArticle . 2017 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ismej.2017.108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 Denmark, FrancePublisher:Oxford University Press (OUP) Funded by:EC | AGREENSKILLS, EC | HUMAN MICROBIOTA, ANR | MGPEC| AGREENSKILLS ,EC| HUMAN MICROBIOTA ,ANR| MGPNicolas Terrapon; Jing Wang; Ziyi Yang; Vincent Lombard; Yuliaxis Ramayo-Caldas; Lise Madsen; Huanming Yang; Fang Li; Junhua Li; Jordi Estellé; Bernard Henrissat; Bernard Henrissat; Jing Guo; Cécile Martin; Jiyang Li; Emmanuelle Maguin; Fangming Yang; Xun Xu; Karsten Kristiansen; Bing Chen; Gabrielle Potocki-Véronèse; Diego P. Morgavi; Shanmei Tang; Milka Popova; Stanislav D Ehrlich; Stanislav D Ehrlich; Hui Zhang; Huanzi Zhong; Weineng Chen;Abstract Background The rumen microbiota provides essential services to its host and, through its role in ruminant production, contributes to human nutrition and food security. A thorough knowledge of the genetic potential of rumen microbes will provide opportunities for improving the sustainability of ruminant production systems. The availability of gene reference catalogs from gut microbiomes has advanced the understanding of the role of the microbiota in health and disease in humans and other mammals. In this work, we established a catalog of reference prokaryote genes from the bovine rumen. Results Using deep metagenome sequencing we identified 13,825,880 non-redundant prokaryote genes from the bovine rumen. Compared to human, pig, and mouse gut metagenome catalogs, the rumen is larger and richer in functions and microbial species associated with the degradation of plant cell wall material and production of methane. Genes encoding enzymes catalyzing the breakdown of plant polysaccharides showed a particularly high richness that is otherwise impossible to infer from available genomes or shallow metagenomics sequencing. The catalog expands the dataset of carbohydrate-degrading enzymes described in the rumen. Using an independent dataset from a group of 77 cattle fed 4 common dietary regimes, we found that only <0.1% of genes were shared by all animals, which contrast with a large overlap for functions, i.e., 63% for KEGG functions. Different diets induced differences in the relative abundance rather than the presence or absence of genes, which explains the great adaptability of cattle to rapidly adjust to dietary changes. Conclusions These data bring new insights into functions, carbohydrate-degrading enzymes, and microbes of the rumen to complement the available information on microbial genomes. The catalog is a significant biological resource enabling deeper understanding of phenotypes and biological processes and will be expanded as new data are made available.
HAL-INSA Toulouse arrow_drop_down HAL-INSA ToulouseArticle . 2020License: CC BYFull-Text: https://hal.inrae.fr/hal-02860679v1/documentData sources: HAL-INSA ToulouseHyper Article en LigneArticle . 2020License: CC BYFull-Text: https://hal.inrae.fr/hal-02860679/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2020License: CC BYFull-Text: https://hal.inrae.fr/hal-02860679/documentRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/gigascience/giaa057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 54 citations 54 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert HAL-INSA Toulouse arrow_drop_down HAL-INSA ToulouseArticle . 2020License: CC BYFull-Text: https://hal.inrae.fr/hal-02860679v1/documentData sources: HAL-INSA ToulouseHyper Article en LigneArticle . 2020License: CC BYFull-Text: https://hal.inrae.fr/hal-02860679/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2020License: CC BYFull-Text: https://hal.inrae.fr/hal-02860679/documentRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/gigascience/giaa057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 SwedenPublisher:Oxford University Press (OUP) Funded by:EC | HUMAN MICROBIOTAEC| HUMAN MICROBIOTAPranjul Shah; Olov Svartström; Ino de Bruijn; Nicolas Terrapon; Nicolas Terrapon; Anders F. Andersson; Emilie E. L. Muller; Ann-Marie Dalin; Bernard Henrissat; Bernard Henrissat; Bernard Henrissat; Johannes Alneberg; Jonas Malmsten; Jonas Malmsten; Paul Wilmes; Vincent Lombard; Vincent Lombard; Henrik Aspeborg;Abstract The moose (Alces alces) is a ruminant that harvests energy from fiber-rich lignocellulose material through carbohydrate-active enzymes (CAZymes) produced by its rumen microbes. We applied shotgun metagenomics to rumen contents from six moose to obtain insights into this microbiome. Following binning, 99 metagenome-assembled genomes (MAGs) belonging to 11 prokaryotic phyla were reconstructed and characterized based on phylogeny and CAZyme profile. The taxonomy of these MAGs reflected the overall composition of the metagenome, with dominance of the phyla Bacteroidetes and Firmicutes. Unlike in other ruminants, Spirochaetes constituted a significant proportion of the community and our analyses indicate that the corresponding strains are primarily pectin digesters. Pectin-degrading genes were also common in MAGs of Ruminococcus, Fibrobacteres and Bacteroidetes and were overall overrepresented in the moose microbiome compared with other ruminants. Phylogenomic analyses revealed several clades within the Bacteriodetes without previously characterized genomes. Several of these MAGs encoded a large numbers of dockerins, a module usually associated with cellulosomes. The Bacteroidetes dockerins were often linked to CAZymes and sometimes encoded inside polysaccharide utilization loci, which has never been reported before. The almost 100 CAZyme-annotated genomes reconstructed in this study provide an in-depth view of an efficient lignocellulose-degrading microbiome and prospects for developing enzyme technology for biorefineries.
The ISME Journal arrow_drop_down The ISME JournalArticle . 2017 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ismej.2017.108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 113 citations 113 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The ISME Journal arrow_drop_down The ISME JournalArticle . 2017 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ismej.2017.108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu