- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Authors: Hongyan Zhang; Majid Khayatnezhad; Afshin Davarpanah;doi: 10.1002/ese3.938
AbstractNew advancements in unconventional oil reservoirs to enhance cumulative oil production are essential for petroleum industries to develop new oilfields. Carbon dioxide injection (CO2) is considered one of the most functional enhanced oil recovery (EOR) methods, especially in shale reservoirs, regarding their low permeability of pores and cracks. This paper aims to experimentally investigate the crucial factors such as shale particle size, pressure, and temperature on the CO2 adsorption that can be used as a useful guideline for developing unconventional hydrocarbon reservoirs. Thereby, pressure increase would be an essential parameter to increase CO2 storage capacity; however, temperature increase has a reverse pattern and has caused to decrease the CO2 storage capacity. The essence of the oil recovery factor from shale reservoirs is another crucial factor that depends on the pressure, temperature, and soaking time factors. CO2 injection would be a proper (EOR) method to increase the oil recovery factor for higher pressures and temperatures. Therefore, the applicability of CO2 injection in shale reservoirs could provide efficient results rather than other EOR techniques.
Energy Science &... arrow_drop_down Energy Science & EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ese3.938&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Science &... arrow_drop_down Energy Science & EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ese3.938&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Authors: Hongyan Zhang; Majid Khayatnezhad; Afshin Davarpanah;doi: 10.1002/ese3.938
AbstractNew advancements in unconventional oil reservoirs to enhance cumulative oil production are essential for petroleum industries to develop new oilfields. Carbon dioxide injection (CO2) is considered one of the most functional enhanced oil recovery (EOR) methods, especially in shale reservoirs, regarding their low permeability of pores and cracks. This paper aims to experimentally investigate the crucial factors such as shale particle size, pressure, and temperature on the CO2 adsorption that can be used as a useful guideline for developing unconventional hydrocarbon reservoirs. Thereby, pressure increase would be an essential parameter to increase CO2 storage capacity; however, temperature increase has a reverse pattern and has caused to decrease the CO2 storage capacity. The essence of the oil recovery factor from shale reservoirs is another crucial factor that depends on the pressure, temperature, and soaking time factors. CO2 injection would be a proper (EOR) method to increase the oil recovery factor for higher pressures and temperatures. Therefore, the applicability of CO2 injection in shale reservoirs could provide efficient results rather than other EOR techniques.
Energy Science &... arrow_drop_down Energy Science & EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ese3.938&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Science &... arrow_drop_down Energy Science & EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ese3.938&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Springer Science and Business Media LLC Authors: Mehdi Mazarei; Afshin Davarpanah; Amirhossein Ebadati; Behnam Mirshekari;Abstract Due to the increasing demand for gas consumption during cold seasons, it is a sense of urgency to provide a reliable resource for gas supply during these periods. The objectives of this comprehensive research entail reservoir core analysis, reservoir fluid study, investigation and optimization of improved condensate recovery during gas storage processes in one of Iranian-depleted fractured gas condensate reservoir. We have attempted to make a balance among reservoir petrophysical and operational characteristics such as production rate, ultimate reservoir pressure after production, cumulative condensate production, number of wells and the required time periods for the reservoir depletion, to obtain an optimum condition for the gas storage process. It’s a foregone conclusion that the quality of management decision-making regarding reservoir depletion, maximum gas recovery and natural gas condensate production subsequently optimize at the minimum pressure drop. Furthermore, according to the simulation analysis, pipeline gas injection may lead to condensate recovery improvement.
Journal of Petroleum... arrow_drop_down Journal of Petroleum Exploration and Production TechnologiesArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Petroleum Exploration and Production TechnologiesArticleLicense: CC BYData sources: UnpayWallJournal of Petroleum Exploration and Production TechnologiesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13202-018-0470-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 65 citations 65 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Petroleum... arrow_drop_down Journal of Petroleum Exploration and Production TechnologiesArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Petroleum Exploration and Production TechnologiesArticleLicense: CC BYData sources: UnpayWallJournal of Petroleum Exploration and Production TechnologiesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13202-018-0470-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Springer Science and Business Media LLC Authors: Mehdi Mazarei; Afshin Davarpanah; Amirhossein Ebadati; Behnam Mirshekari;Abstract Due to the increasing demand for gas consumption during cold seasons, it is a sense of urgency to provide a reliable resource for gas supply during these periods. The objectives of this comprehensive research entail reservoir core analysis, reservoir fluid study, investigation and optimization of improved condensate recovery during gas storage processes in one of Iranian-depleted fractured gas condensate reservoir. We have attempted to make a balance among reservoir petrophysical and operational characteristics such as production rate, ultimate reservoir pressure after production, cumulative condensate production, number of wells and the required time periods for the reservoir depletion, to obtain an optimum condition for the gas storage process. It’s a foregone conclusion that the quality of management decision-making regarding reservoir depletion, maximum gas recovery and natural gas condensate production subsequently optimize at the minimum pressure drop. Furthermore, according to the simulation analysis, pipeline gas injection may lead to condensate recovery improvement.
Journal of Petroleum... arrow_drop_down Journal of Petroleum Exploration and Production TechnologiesArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Petroleum Exploration and Production TechnologiesArticleLicense: CC BYData sources: UnpayWallJournal of Petroleum Exploration and Production TechnologiesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13202-018-0470-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 65 citations 65 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Petroleum... arrow_drop_down Journal of Petroleum Exploration and Production TechnologiesArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Petroleum Exploration and Production TechnologiesArticleLicense: CC BYData sources: UnpayWallJournal of Petroleum Exploration and Production TechnologiesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13202-018-0470-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:SAGE Publications Authors: Amirhossein Ebadati; Erfan Akbari; Afshin Davarpanah;Alternative injection of gas as slugs with water slugs, or alternative water gas injection, is the conventional technique for improving the recovery factor due to its high potential for mobilizing the residual oil in place in the reservoirs and to control gas mobility. The water alternating gas methodology is a combination of two oil recovery procedures: gas injection and waterflooding. The principal parameters that must be evaluated in water alternating gas injection in laboratory scale are reservoir heterogeneity, rock type, and fluid properties. In the current investigation, a feasibility study has been performed to analyze the five various scenarios of enhanced oil recovery techniques and compare them experimentally. The laboratory experiments are done for one of the Iranian reservoirs which have been subjected to waterflooding for several years, and the amount of recovery factor for water flooding is about 42%. The results of this study illustrate that water alternating gas injection and hot water alternating gas injection exert a profound impact on the amount of recovery factor. Moreover, the primary purpose of this study is to assess the application of alternative hot water and hot carbon dioxide gas injections in the conventional and fractured reservoir model.
Energy Exploration &... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0144598718815247&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 48 citations 48 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Exploration &... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0144598718815247&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:SAGE Publications Authors: Amirhossein Ebadati; Erfan Akbari; Afshin Davarpanah;Alternative injection of gas as slugs with water slugs, or alternative water gas injection, is the conventional technique for improving the recovery factor due to its high potential for mobilizing the residual oil in place in the reservoirs and to control gas mobility. The water alternating gas methodology is a combination of two oil recovery procedures: gas injection and waterflooding. The principal parameters that must be evaluated in water alternating gas injection in laboratory scale are reservoir heterogeneity, rock type, and fluid properties. In the current investigation, a feasibility study has been performed to analyze the five various scenarios of enhanced oil recovery techniques and compare them experimentally. The laboratory experiments are done for one of the Iranian reservoirs which have been subjected to waterflooding for several years, and the amount of recovery factor for water flooding is about 42%. The results of this study illustrate that water alternating gas injection and hot water alternating gas injection exert a profound impact on the amount of recovery factor. Moreover, the primary purpose of this study is to assess the application of alternative hot water and hot carbon dioxide gas injections in the conventional and fractured reservoir model.
Energy Exploration &... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0144598718815247&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 48 citations 48 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Exploration &... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0144598718815247&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Springer Science and Business Media LLC Authors: Afshin Davarpanah; Behnam Mirshekari;The sufficient energy to transfer the crude oil to the surficial wellbore facilities would be reduced dramatically which was done by CO2, especially for heavy and super-heavy oil reservoirs. The objective of this comprehensive study is to measure the considerable influence of CO2 solubility on the recovery factor, density, viscosity at different pressures and temperatures. According to the results of this study, recovery factor at the pressure of 0.2 MPa and 0.5 MPa experienced the lowest recovery factor among other pressures. They were about 38.37% and 43.81% after the injection of about 15 pore volumes of CO2. For the pressures of 1 MPa, 2 MPa, 3 MPa, and 4 MPa, at the first stages of CO2 injection (up to 3 pore volumes of CO2 injection), the recovery factor experienced the same value. Since then, by the increase in pressure from 1 to 4 MPa, the recovery factor was increased slightly. Moreover, recovery factor at the temperature of 333 K was measured about 34.5%. The measured recovery factor for other temperatures was 40.17%, 47.68%, 51.97%, 58.42%, and 63.54% at the temperature of 363 K, 393 K, 423 K, 453 K, and 483 K, respectively. On the other hand, the density of heavy oil which was saturated with CO2 was decreased with the increase in pressure and temperature and the higher temperatures caused the lower effect on the viscosity and density of heavy oil. Consequently, the dissolution of CO2 had decreased the heavy oil viscosity in the higher temperatures and pressures, and due to the increase in pressure and temperature, the heavy oil recovery factor was increased. Furthermore, the recovery factor for the 70 mL min−1 of CO2 injection was lower than the 700 mL min−1 of CO2 injection.
Journal of Thermal A... arrow_drop_down Journal of Thermal Analysis and CalorimetryArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10973-019-08498-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu62 citations 62 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Thermal A... arrow_drop_down Journal of Thermal Analysis and CalorimetryArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10973-019-08498-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Springer Science and Business Media LLC Authors: Afshin Davarpanah; Behnam Mirshekari;The sufficient energy to transfer the crude oil to the surficial wellbore facilities would be reduced dramatically which was done by CO2, especially for heavy and super-heavy oil reservoirs. The objective of this comprehensive study is to measure the considerable influence of CO2 solubility on the recovery factor, density, viscosity at different pressures and temperatures. According to the results of this study, recovery factor at the pressure of 0.2 MPa and 0.5 MPa experienced the lowest recovery factor among other pressures. They were about 38.37% and 43.81% after the injection of about 15 pore volumes of CO2. For the pressures of 1 MPa, 2 MPa, 3 MPa, and 4 MPa, at the first stages of CO2 injection (up to 3 pore volumes of CO2 injection), the recovery factor experienced the same value. Since then, by the increase in pressure from 1 to 4 MPa, the recovery factor was increased slightly. Moreover, recovery factor at the temperature of 333 K was measured about 34.5%. The measured recovery factor for other temperatures was 40.17%, 47.68%, 51.97%, 58.42%, and 63.54% at the temperature of 363 K, 393 K, 423 K, 453 K, and 483 K, respectively. On the other hand, the density of heavy oil which was saturated with CO2 was decreased with the increase in pressure and temperature and the higher temperatures caused the lower effect on the viscosity and density of heavy oil. Consequently, the dissolution of CO2 had decreased the heavy oil viscosity in the higher temperatures and pressures, and due to the increase in pressure and temperature, the heavy oil recovery factor was increased. Furthermore, the recovery factor for the 70 mL min−1 of CO2 injection was lower than the 700 mL min−1 of CO2 injection.
Journal of Thermal A... arrow_drop_down Journal of Thermal Analysis and CalorimetryArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10973-019-08498-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu62 citations 62 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Thermal A... arrow_drop_down Journal of Thermal Analysis and CalorimetryArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10973-019-08498-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Informa UK Limited Authors: Razmjoo, Armin; Sumper, Andreas; Davarpanah, Afshin;handle: 2117/176579
Electrical production for residential areas is one of the most important goals of SDGs (17 UN goal) and UN-Habitat III (14 goals) that can be achieved by renewable energy. Now, renewable energy is a significant issue that must be considered seriously as a policy and in order to achieve energy sustainability on a global scale especially in whole developing countries. Also, since the role of renewable energy in sustainable development is remarkable, thus this article presents a comprehensive discussion of energy sustainability for urban areas with related energy indicators and technical analysis of a Hybrid Power System to show the importance of renewable energy to gain energy sustainability. This paper presents the feasibility of using PV-DG hybrid systems as the reliable energy by an economic and technical analysis in one of the southern cities of Iran use of HOMER software. Regarding the high average of solar radiation that is about 5.4 kWh/m2/d in Chabahar city, technical analysis of this system demonstrates that this city has a high capacity to producing the electrical energy via PV-diesel hybrid system with total electrical production amount of 10,575 kWh/yr from PV (8,447 kWh/yr) and Diesel system (2,128 kWh/yr). For do this work at the first, the required data is gathered from the meteorological organization of Iran and then technical and economic analysis is conducted with the Homer software. This study regarding the high potential of solar energy of Chabahar city shows that to achieve development especially in the energy sustainability field needs to implementing proper actions such as enough investment on clean energy and using renewable energy for electrical production.
Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Energy Sources Part A Recovery Utilization and Environmental EffectsArticleLicense: CC BY NC NDData sources: UnpayWallRecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2020License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCEnergy Sources Part A Recovery Utilization and Environmental EffectsArticle . 2019 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15567036.2019.1602215&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 88 citations 88 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 45visibility views 45 download downloads 627 Powered bymore_vert Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Energy Sources Part A Recovery Utilization and Environmental EffectsArticleLicense: CC BY NC NDData sources: UnpayWallRecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2020License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCEnergy Sources Part A Recovery Utilization and Environmental EffectsArticle . 2019 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15567036.2019.1602215&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Informa UK Limited Authors: Razmjoo, Armin; Sumper, Andreas; Davarpanah, Afshin;handle: 2117/176579
Electrical production for residential areas is one of the most important goals of SDGs (17 UN goal) and UN-Habitat III (14 goals) that can be achieved by renewable energy. Now, renewable energy is a significant issue that must be considered seriously as a policy and in order to achieve energy sustainability on a global scale especially in whole developing countries. Also, since the role of renewable energy in sustainable development is remarkable, thus this article presents a comprehensive discussion of energy sustainability for urban areas with related energy indicators and technical analysis of a Hybrid Power System to show the importance of renewable energy to gain energy sustainability. This paper presents the feasibility of using PV-DG hybrid systems as the reliable energy by an economic and technical analysis in one of the southern cities of Iran use of HOMER software. Regarding the high average of solar radiation that is about 5.4 kWh/m2/d in Chabahar city, technical analysis of this system demonstrates that this city has a high capacity to producing the electrical energy via PV-diesel hybrid system with total electrical production amount of 10,575 kWh/yr from PV (8,447 kWh/yr) and Diesel system (2,128 kWh/yr). For do this work at the first, the required data is gathered from the meteorological organization of Iran and then technical and economic analysis is conducted with the Homer software. This study regarding the high potential of solar energy of Chabahar city shows that to achieve development especially in the energy sustainability field needs to implementing proper actions such as enough investment on clean energy and using renewable energy for electrical production.
Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Energy Sources Part A Recovery Utilization and Environmental EffectsArticleLicense: CC BY NC NDData sources: UnpayWallRecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2020License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCEnergy Sources Part A Recovery Utilization and Environmental EffectsArticle . 2019 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15567036.2019.1602215&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 88 citations 88 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 45visibility views 45 download downloads 627 Powered bymore_vert Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Energy Sources Part A Recovery Utilization and Environmental EffectsArticleLicense: CC BY NC NDData sources: UnpayWallRecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2020License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCEnergy Sources Part A Recovery Utilization and Environmental EffectsArticle . 2019 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15567036.2019.1602215&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 AustraliaPublisher:Springer Science and Business Media LLC Authors: A. Armin Razmjoo; Afshin Davarpanah; Amirhossein zargarian;handle: 11541.2/138404
The aim of this study is an economic and technical analysis of a hybrid system in the Semirom city of Iran that is performed by a technical-economic analysis on combined utilization of solar-wind and diesel system. In this study HOMER software is utilized for economic assessment and optimization. At first, the related meteorological data gathered and then using Homer software the calculation was carried out. This city has good potential for solar and wind energy. The solar radiation ranges of Semirom city is from 2.88 to 7.78 kWh/m2/d, and the wind speed ranges are from 2.9 to 5.3 m/s. Solar and wind analyses on Semirom show that this city have great potential in solar and wind energy generation because this city has a proper position to receive sun solar and has high potential in wind speed for wind power generation. Regarding this study and due to high potential in solar and wind energy in Semirom, investments on renewable energy sector of this city will be economically justified.
Technology and Econo... arrow_drop_down Technology and Economics of Smart Grids and Sustainable EnergyArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2019 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40866-019-0063-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Technology and Econo... arrow_drop_down Technology and Economics of Smart Grids and Sustainable EnergyArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2019 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40866-019-0063-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 AustraliaPublisher:Springer Science and Business Media LLC Authors: A. Armin Razmjoo; Afshin Davarpanah; Amirhossein zargarian;handle: 11541.2/138404
The aim of this study is an economic and technical analysis of a hybrid system in the Semirom city of Iran that is performed by a technical-economic analysis on combined utilization of solar-wind and diesel system. In this study HOMER software is utilized for economic assessment and optimization. At first, the related meteorological data gathered and then using Homer software the calculation was carried out. This city has good potential for solar and wind energy. The solar radiation ranges of Semirom city is from 2.88 to 7.78 kWh/m2/d, and the wind speed ranges are from 2.9 to 5.3 m/s. Solar and wind analyses on Semirom show that this city have great potential in solar and wind energy generation because this city has a proper position to receive sun solar and has high potential in wind speed for wind power generation. Regarding this study and due to high potential in solar and wind energy in Semirom, investments on renewable energy sector of this city will be economically justified.
Technology and Econo... arrow_drop_down Technology and Economics of Smart Grids and Sustainable EnergyArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2019 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40866-019-0063-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Technology and Econo... arrow_drop_down Technology and Economics of Smart Grids and Sustainable EnergyArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2019 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40866-019-0063-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 AustraliaPublisher:MDPI AG Rahmad Syah; Afshin Davarpanah; Marischa Elveny; Ashish Kumar Karmaker; Mahyuddin K. M. Nasution; Md. Alamgir Hossain;handle: 10072/408239
This paper proposes a novel hybrid forecasting model with three main parts to accurately forecast daily electricity prices. In the first part, where data are divided into high- and low-frequency data using the fractional wavelet transform, the best data with the highest relevancy are selected, using a feature selection algorithm. The second part is based on a nonlinear support vector network and auto-regressive integrated moving average (ARIMA) method for better training the previous values of electricity prices. The third part optimally adjusts the proposed support vector machine parameters with an error-base objective function, using the improved grey wolf and particle swarm optimization. The proposed method is applied to forecast electricity markets, and the results obtained are analyzed with the help of the criteria based on the forecast errors. The results demonstrate the high accuracy in the MAPE index of forecasting the electricity price, which is about 91% as compared to other forecasting methods.
Electronics arrow_drop_down ElectronicsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2079-9292/10/18/2214/pdfData sources: Multidisciplinary Digital Publishing InstituteGriffith University: Griffith Research OnlineArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10072/408239Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electronics10182214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Electronics arrow_drop_down ElectronicsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2079-9292/10/18/2214/pdfData sources: Multidisciplinary Digital Publishing InstituteGriffith University: Griffith Research OnlineArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10072/408239Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electronics10182214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 AustraliaPublisher:MDPI AG Rahmad Syah; Afshin Davarpanah; Marischa Elveny; Ashish Kumar Karmaker; Mahyuddin K. M. Nasution; Md. Alamgir Hossain;handle: 10072/408239
This paper proposes a novel hybrid forecasting model with three main parts to accurately forecast daily electricity prices. In the first part, where data are divided into high- and low-frequency data using the fractional wavelet transform, the best data with the highest relevancy are selected, using a feature selection algorithm. The second part is based on a nonlinear support vector network and auto-regressive integrated moving average (ARIMA) method for better training the previous values of electricity prices. The third part optimally adjusts the proposed support vector machine parameters with an error-base objective function, using the improved grey wolf and particle swarm optimization. The proposed method is applied to forecast electricity markets, and the results obtained are analyzed with the help of the criteria based on the forecast errors. The results demonstrate the high accuracy in the MAPE index of forecasting the electricity price, which is about 91% as compared to other forecasting methods.
Electronics arrow_drop_down ElectronicsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2079-9292/10/18/2214/pdfData sources: Multidisciplinary Digital Publishing InstituteGriffith University: Griffith Research OnlineArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10072/408239Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electronics10182214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Electronics arrow_drop_down ElectronicsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2079-9292/10/18/2214/pdfData sources: Multidisciplinary Digital Publishing InstituteGriffith University: Griffith Research OnlineArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10072/408239Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electronics10182214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Wiley Soroush Farahbakhsh; Kamran Valizadeh; Mojtaba Zarei; Amirhossein zargarian; Amir Bateni; Afshin Davarpanah; Afshin Davarpanah; Araz Alizadeh;doi: 10.1002/ese3.514
handle: 11541.2/140824
AbstractNon‐Newtonian fluids are considered to those types of fluids that do not follow Newton's law of viscosity where viscosity would change in either more solid or liquid. The objective of this study, a parametric simulation, was performed to investigate the considerable influence of non‐Newtonian fluids on different parameters on spiral tubes. Firstly, governing equations have derived by computational fluid dynamics methods to compare the laminar and turbulent flows. Then, the turbulent flow, the non‐Newtonian flow, power law flow, and cross models are simulated according to the boundary conditions. Consequently, for the Reynolds range of 600‐2500, increasing the Reynolds number decreases the friction coefficient. It is observed that in slow flow, there is no significant difference between the results of cross and power law models. The distribution of velocity profile has slight variation at the pipe outlet for Reynolds 9000 and 20 000. In other words, the flow is constant in developed region inside the spiral pipe. Moreover, the investigation of pressure drop inside the pipe revealed that regarding the increase in Reynolds number, the friction coefficient decreases. In spiral tubes, due to the presence of secondary currents, the friction coefficient is higher than the direct tube.
Energy Science &... arrow_drop_down Energy Science & EngineeringArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2020 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ese3.514&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 43 citations 43 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Science &... arrow_drop_down Energy Science & EngineeringArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2020 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ese3.514&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Wiley Soroush Farahbakhsh; Kamran Valizadeh; Mojtaba Zarei; Amirhossein zargarian; Amir Bateni; Afshin Davarpanah; Afshin Davarpanah; Araz Alizadeh;doi: 10.1002/ese3.514
handle: 11541.2/140824
AbstractNon‐Newtonian fluids are considered to those types of fluids that do not follow Newton's law of viscosity where viscosity would change in either more solid or liquid. The objective of this study, a parametric simulation, was performed to investigate the considerable influence of non‐Newtonian fluids on different parameters on spiral tubes. Firstly, governing equations have derived by computational fluid dynamics methods to compare the laminar and turbulent flows. Then, the turbulent flow, the non‐Newtonian flow, power law flow, and cross models are simulated according to the boundary conditions. Consequently, for the Reynolds range of 600‐2500, increasing the Reynolds number decreases the friction coefficient. It is observed that in slow flow, there is no significant difference between the results of cross and power law models. The distribution of velocity profile has slight variation at the pipe outlet for Reynolds 9000 and 20 000. In other words, the flow is constant in developed region inside the spiral pipe. Moreover, the investigation of pressure drop inside the pipe revealed that regarding the increase in Reynolds number, the friction coefficient decreases. In spiral tubes, due to the presence of secondary currents, the friction coefficient is higher than the direct tube.
Energy Science &... arrow_drop_down Energy Science & EngineeringArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2020 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ese3.514&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 43 citations 43 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Science &... arrow_drop_down Energy Science & EngineeringArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2020 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ese3.514&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 ColombiaPublisher:MDPI AG Authors: Rahmad Syah; Seyed Mehdi Alizadeh; Karina Shamilyevna Nurgalieva; John William Grimaldo Guerrero; +4 AuthorsRahmad Syah; Seyed Mehdi Alizadeh; Karina Shamilyevna Nurgalieva; John William Grimaldo Guerrero; Mahyuddin K. M. Nasution; Afshin Davarpanah; Dadan Ramdan; Ahmed Sayed M. Metwally;doi: 10.3390/su132111606
handle: 11323/8984
Supercritical carbon dioxide injection in tight reservoirs is an efficient and prominent enhanced gas recovery method, as it can be more mobilized in low-permeable reservoirs due to its molecular size. This paper aimed to perform a set of laboratory experiments to evaluate the impacts of permeability and water saturation on enhanced gas recovery, carbon dioxide storage capacity, and carbon dioxide content during supercritical carbon dioxide injection. It is observed that supercritical carbon dioxide provides a higher gas recovery increase after the gas depletion drive mechanism is carried out in low permeable core samples. This corresponds to the feasible mobilization of the supercritical carbon dioxide phase through smaller pores. The maximum gas recovery increase for core samples with 0.1 mD is about 22.5%, while gas recovery increase has lower values with the increase in permeability. It is about 19.8%, 15.3%, 12.1%, and 10.9% for core samples with 0.22, 0.36, 0.54, and 0.78 mD permeability, respectively. Moreover, higher water saturations would be a crucial factor in the gas recovery enhancement, especially in the final pore volume injection, as it can increase the supercritical carbon dioxide dissolving in water, leading to more displacement efficiency. The minimum carbon dioxide storage for 0.1 mD core samples is about 50%, while it is about 38% for tight core samples with the permeability of 0.78 mD. By decreasing water saturation from 0.65 to 0.15, less volume of supercritical carbon dioxide is involved in water, and therefore, carbon dioxide storage capacity increases. This is indicative of a proper gas displacement front in lower water saturation and higher gas recovery factor. The findings of this study can help for a better understanding of the gas production mechanism and crucial parameters that affect gas recovery from tight reservoirs.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing InstituteREDICUC - Repositorio Universidad de La CostaArticle . 2021Full-Text: https://hdl.handle.net/11323/8984Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132111606&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing InstituteREDICUC - Repositorio Universidad de La CostaArticle . 2021Full-Text: https://hdl.handle.net/11323/8984Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132111606&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 ColombiaPublisher:MDPI AG Authors: Rahmad Syah; Seyed Mehdi Alizadeh; Karina Shamilyevna Nurgalieva; John William Grimaldo Guerrero; +4 AuthorsRahmad Syah; Seyed Mehdi Alizadeh; Karina Shamilyevna Nurgalieva; John William Grimaldo Guerrero; Mahyuddin K. M. Nasution; Afshin Davarpanah; Dadan Ramdan; Ahmed Sayed M. Metwally;doi: 10.3390/su132111606
handle: 11323/8984
Supercritical carbon dioxide injection in tight reservoirs is an efficient and prominent enhanced gas recovery method, as it can be more mobilized in low-permeable reservoirs due to its molecular size. This paper aimed to perform a set of laboratory experiments to evaluate the impacts of permeability and water saturation on enhanced gas recovery, carbon dioxide storage capacity, and carbon dioxide content during supercritical carbon dioxide injection. It is observed that supercritical carbon dioxide provides a higher gas recovery increase after the gas depletion drive mechanism is carried out in low permeable core samples. This corresponds to the feasible mobilization of the supercritical carbon dioxide phase through smaller pores. The maximum gas recovery increase for core samples with 0.1 mD is about 22.5%, while gas recovery increase has lower values with the increase in permeability. It is about 19.8%, 15.3%, 12.1%, and 10.9% for core samples with 0.22, 0.36, 0.54, and 0.78 mD permeability, respectively. Moreover, higher water saturations would be a crucial factor in the gas recovery enhancement, especially in the final pore volume injection, as it can increase the supercritical carbon dioxide dissolving in water, leading to more displacement efficiency. The minimum carbon dioxide storage for 0.1 mD core samples is about 50%, while it is about 38% for tight core samples with the permeability of 0.78 mD. By decreasing water saturation from 0.65 to 0.15, less volume of supercritical carbon dioxide is involved in water, and therefore, carbon dioxide storage capacity increases. This is indicative of a proper gas displacement front in lower water saturation and higher gas recovery factor. The findings of this study can help for a better understanding of the gas production mechanism and crucial parameters that affect gas recovery from tight reservoirs.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing InstituteREDICUC - Repositorio Universidad de La CostaArticle . 2021Full-Text: https://hdl.handle.net/11323/8984Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132111606&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing InstituteREDICUC - Repositorio Universidad de La CostaArticle . 2021Full-Text: https://hdl.handle.net/11323/8984Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132111606&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Afshin Davarpanah; Behnam Mirshekari;handle: 10419/243549
Drilling thin oil layers regarding the high expenditures is always considered as the debate issue in petroleum industries to invest. Oil rim reservoirs are one kind unconventional reservoirs which are occupied with a strong aquifer and a big gas cap that provided complex conditions for producing reserve oil. The purpose of this study is to simulate the six different injectivity scenarios for one of the Iranian’s oilfield to select the optimum scenario which has the most oil production. In these injectivity scenarios, different gas–oil ratios, water cut, and drilling new wells were considered in the simulator to compare each of them in more detail. Consequently, scenario 6 has the optimum volume of field oil production regarding the drilling of one horizontal well and three vertical well. That is to say that, horizontal wells due to the higher contact with the thin oil layers have led to more oil production rate and it is recommended to drill the wells in this type of reservoir horizontally. Keywords: Oil-rim reservoirs, Field oil production rate, Simulator, Horizontal well, Injectivity scenarios
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2018.10.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2018.10.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Afshin Davarpanah; Behnam Mirshekari;handle: 10419/243549
Drilling thin oil layers regarding the high expenditures is always considered as the debate issue in petroleum industries to invest. Oil rim reservoirs are one kind unconventional reservoirs which are occupied with a strong aquifer and a big gas cap that provided complex conditions for producing reserve oil. The purpose of this study is to simulate the six different injectivity scenarios for one of the Iranian’s oilfield to select the optimum scenario which has the most oil production. In these injectivity scenarios, different gas–oil ratios, water cut, and drilling new wells were considered in the simulator to compare each of them in more detail. Consequently, scenario 6 has the optimum volume of field oil production regarding the drilling of one horizontal well and three vertical well. That is to say that, horizontal wells due to the higher contact with the thin oil layers have led to more oil production rate and it is recommended to drill the wells in this type of reservoir horizontally. Keywords: Oil-rim reservoirs, Field oil production rate, Simulator, Horizontal well, Injectivity scenarios
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2018.10.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2018.10.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Authors: Hongyan Zhang; Majid Khayatnezhad; Afshin Davarpanah;doi: 10.1002/ese3.938
AbstractNew advancements in unconventional oil reservoirs to enhance cumulative oil production are essential for petroleum industries to develop new oilfields. Carbon dioxide injection (CO2) is considered one of the most functional enhanced oil recovery (EOR) methods, especially in shale reservoirs, regarding their low permeability of pores and cracks. This paper aims to experimentally investigate the crucial factors such as shale particle size, pressure, and temperature on the CO2 adsorption that can be used as a useful guideline for developing unconventional hydrocarbon reservoirs. Thereby, pressure increase would be an essential parameter to increase CO2 storage capacity; however, temperature increase has a reverse pattern and has caused to decrease the CO2 storage capacity. The essence of the oil recovery factor from shale reservoirs is another crucial factor that depends on the pressure, temperature, and soaking time factors. CO2 injection would be a proper (EOR) method to increase the oil recovery factor for higher pressures and temperatures. Therefore, the applicability of CO2 injection in shale reservoirs could provide efficient results rather than other EOR techniques.
Energy Science &... arrow_drop_down Energy Science & EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ese3.938&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Science &... arrow_drop_down Energy Science & EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ese3.938&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Authors: Hongyan Zhang; Majid Khayatnezhad; Afshin Davarpanah;doi: 10.1002/ese3.938
AbstractNew advancements in unconventional oil reservoirs to enhance cumulative oil production are essential for petroleum industries to develop new oilfields. Carbon dioxide injection (CO2) is considered one of the most functional enhanced oil recovery (EOR) methods, especially in shale reservoirs, regarding their low permeability of pores and cracks. This paper aims to experimentally investigate the crucial factors such as shale particle size, pressure, and temperature on the CO2 adsorption that can be used as a useful guideline for developing unconventional hydrocarbon reservoirs. Thereby, pressure increase would be an essential parameter to increase CO2 storage capacity; however, temperature increase has a reverse pattern and has caused to decrease the CO2 storage capacity. The essence of the oil recovery factor from shale reservoirs is another crucial factor that depends on the pressure, temperature, and soaking time factors. CO2 injection would be a proper (EOR) method to increase the oil recovery factor for higher pressures and temperatures. Therefore, the applicability of CO2 injection in shale reservoirs could provide efficient results rather than other EOR techniques.
Energy Science &... arrow_drop_down Energy Science & EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ese3.938&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Science &... arrow_drop_down Energy Science & EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ese3.938&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Springer Science and Business Media LLC Authors: Mehdi Mazarei; Afshin Davarpanah; Amirhossein Ebadati; Behnam Mirshekari;Abstract Due to the increasing demand for gas consumption during cold seasons, it is a sense of urgency to provide a reliable resource for gas supply during these periods. The objectives of this comprehensive research entail reservoir core analysis, reservoir fluid study, investigation and optimization of improved condensate recovery during gas storage processes in one of Iranian-depleted fractured gas condensate reservoir. We have attempted to make a balance among reservoir petrophysical and operational characteristics such as production rate, ultimate reservoir pressure after production, cumulative condensate production, number of wells and the required time periods for the reservoir depletion, to obtain an optimum condition for the gas storage process. It’s a foregone conclusion that the quality of management decision-making regarding reservoir depletion, maximum gas recovery and natural gas condensate production subsequently optimize at the minimum pressure drop. Furthermore, according to the simulation analysis, pipeline gas injection may lead to condensate recovery improvement.
Journal of Petroleum... arrow_drop_down Journal of Petroleum Exploration and Production TechnologiesArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Petroleum Exploration and Production TechnologiesArticleLicense: CC BYData sources: UnpayWallJournal of Petroleum Exploration and Production TechnologiesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13202-018-0470-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 65 citations 65 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Petroleum... arrow_drop_down Journal of Petroleum Exploration and Production TechnologiesArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Petroleum Exploration and Production TechnologiesArticleLicense: CC BYData sources: UnpayWallJournal of Petroleum Exploration and Production TechnologiesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13202-018-0470-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Springer Science and Business Media LLC Authors: Mehdi Mazarei; Afshin Davarpanah; Amirhossein Ebadati; Behnam Mirshekari;Abstract Due to the increasing demand for gas consumption during cold seasons, it is a sense of urgency to provide a reliable resource for gas supply during these periods. The objectives of this comprehensive research entail reservoir core analysis, reservoir fluid study, investigation and optimization of improved condensate recovery during gas storage processes in one of Iranian-depleted fractured gas condensate reservoir. We have attempted to make a balance among reservoir petrophysical and operational characteristics such as production rate, ultimate reservoir pressure after production, cumulative condensate production, number of wells and the required time periods for the reservoir depletion, to obtain an optimum condition for the gas storage process. It’s a foregone conclusion that the quality of management decision-making regarding reservoir depletion, maximum gas recovery and natural gas condensate production subsequently optimize at the minimum pressure drop. Furthermore, according to the simulation analysis, pipeline gas injection may lead to condensate recovery improvement.
Journal of Petroleum... arrow_drop_down Journal of Petroleum Exploration and Production TechnologiesArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Petroleum Exploration and Production TechnologiesArticleLicense: CC BYData sources: UnpayWallJournal of Petroleum Exploration and Production TechnologiesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13202-018-0470-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 65 citations 65 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Petroleum... arrow_drop_down Journal of Petroleum Exploration and Production TechnologiesArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Petroleum Exploration and Production TechnologiesArticleLicense: CC BYData sources: UnpayWallJournal of Petroleum Exploration and Production TechnologiesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13202-018-0470-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:SAGE Publications Authors: Amirhossein Ebadati; Erfan Akbari; Afshin Davarpanah;Alternative injection of gas as slugs with water slugs, or alternative water gas injection, is the conventional technique for improving the recovery factor due to its high potential for mobilizing the residual oil in place in the reservoirs and to control gas mobility. The water alternating gas methodology is a combination of two oil recovery procedures: gas injection and waterflooding. The principal parameters that must be evaluated in water alternating gas injection in laboratory scale are reservoir heterogeneity, rock type, and fluid properties. In the current investigation, a feasibility study has been performed to analyze the five various scenarios of enhanced oil recovery techniques and compare them experimentally. The laboratory experiments are done for one of the Iranian reservoirs which have been subjected to waterflooding for several years, and the amount of recovery factor for water flooding is about 42%. The results of this study illustrate that water alternating gas injection and hot water alternating gas injection exert a profound impact on the amount of recovery factor. Moreover, the primary purpose of this study is to assess the application of alternative hot water and hot carbon dioxide gas injections in the conventional and fractured reservoir model.
Energy Exploration &... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0144598718815247&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 48 citations 48 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Exploration &... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0144598718815247&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:SAGE Publications Authors: Amirhossein Ebadati; Erfan Akbari; Afshin Davarpanah;Alternative injection of gas as slugs with water slugs, or alternative water gas injection, is the conventional technique for improving the recovery factor due to its high potential for mobilizing the residual oil in place in the reservoirs and to control gas mobility. The water alternating gas methodology is a combination of two oil recovery procedures: gas injection and waterflooding. The principal parameters that must be evaluated in water alternating gas injection in laboratory scale are reservoir heterogeneity, rock type, and fluid properties. In the current investigation, a feasibility study has been performed to analyze the five various scenarios of enhanced oil recovery techniques and compare them experimentally. The laboratory experiments are done for one of the Iranian reservoirs which have been subjected to waterflooding for several years, and the amount of recovery factor for water flooding is about 42%. The results of this study illustrate that water alternating gas injection and hot water alternating gas injection exert a profound impact on the amount of recovery factor. Moreover, the primary purpose of this study is to assess the application of alternative hot water and hot carbon dioxide gas injections in the conventional and fractured reservoir model.
Energy Exploration &... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0144598718815247&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 48 citations 48 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Exploration &... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0144598718815247&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Springer Science and Business Media LLC Authors: Afshin Davarpanah; Behnam Mirshekari;The sufficient energy to transfer the crude oil to the surficial wellbore facilities would be reduced dramatically which was done by CO2, especially for heavy and super-heavy oil reservoirs. The objective of this comprehensive study is to measure the considerable influence of CO2 solubility on the recovery factor, density, viscosity at different pressures and temperatures. According to the results of this study, recovery factor at the pressure of 0.2 MPa and 0.5 MPa experienced the lowest recovery factor among other pressures. They were about 38.37% and 43.81% after the injection of about 15 pore volumes of CO2. For the pressures of 1 MPa, 2 MPa, 3 MPa, and 4 MPa, at the first stages of CO2 injection (up to 3 pore volumes of CO2 injection), the recovery factor experienced the same value. Since then, by the increase in pressure from 1 to 4 MPa, the recovery factor was increased slightly. Moreover, recovery factor at the temperature of 333 K was measured about 34.5%. The measured recovery factor for other temperatures was 40.17%, 47.68%, 51.97%, 58.42%, and 63.54% at the temperature of 363 K, 393 K, 423 K, 453 K, and 483 K, respectively. On the other hand, the density of heavy oil which was saturated with CO2 was decreased with the increase in pressure and temperature and the higher temperatures caused the lower effect on the viscosity and density of heavy oil. Consequently, the dissolution of CO2 had decreased the heavy oil viscosity in the higher temperatures and pressures, and due to the increase in pressure and temperature, the heavy oil recovery factor was increased. Furthermore, the recovery factor for the 70 mL min−1 of CO2 injection was lower than the 700 mL min−1 of CO2 injection.
Journal of Thermal A... arrow_drop_down Journal of Thermal Analysis and CalorimetryArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10973-019-08498-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu62 citations 62 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Thermal A... arrow_drop_down Journal of Thermal Analysis and CalorimetryArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10973-019-08498-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Springer Science and Business Media LLC Authors: Afshin Davarpanah; Behnam Mirshekari;The sufficient energy to transfer the crude oil to the surficial wellbore facilities would be reduced dramatically which was done by CO2, especially for heavy and super-heavy oil reservoirs. The objective of this comprehensive study is to measure the considerable influence of CO2 solubility on the recovery factor, density, viscosity at different pressures and temperatures. According to the results of this study, recovery factor at the pressure of 0.2 MPa and 0.5 MPa experienced the lowest recovery factor among other pressures. They were about 38.37% and 43.81% after the injection of about 15 pore volumes of CO2. For the pressures of 1 MPa, 2 MPa, 3 MPa, and 4 MPa, at the first stages of CO2 injection (up to 3 pore volumes of CO2 injection), the recovery factor experienced the same value. Since then, by the increase in pressure from 1 to 4 MPa, the recovery factor was increased slightly. Moreover, recovery factor at the temperature of 333 K was measured about 34.5%. The measured recovery factor for other temperatures was 40.17%, 47.68%, 51.97%, 58.42%, and 63.54% at the temperature of 363 K, 393 K, 423 K, 453 K, and 483 K, respectively. On the other hand, the density of heavy oil which was saturated with CO2 was decreased with the increase in pressure and temperature and the higher temperatures caused the lower effect on the viscosity and density of heavy oil. Consequently, the dissolution of CO2 had decreased the heavy oil viscosity in the higher temperatures and pressures, and due to the increase in pressure and temperature, the heavy oil recovery factor was increased. Furthermore, the recovery factor for the 70 mL min−1 of CO2 injection was lower than the 700 mL min−1 of CO2 injection.
Journal of Thermal A... arrow_drop_down Journal of Thermal Analysis and CalorimetryArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10973-019-08498-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu62 citations 62 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Thermal A... arrow_drop_down Journal of Thermal Analysis and CalorimetryArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10973-019-08498-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Informa UK Limited Authors: Razmjoo, Armin; Sumper, Andreas; Davarpanah, Afshin;handle: 2117/176579
Electrical production for residential areas is one of the most important goals of SDGs (17 UN goal) and UN-Habitat III (14 goals) that can be achieved by renewable energy. Now, renewable energy is a significant issue that must be considered seriously as a policy and in order to achieve energy sustainability on a global scale especially in whole developing countries. Also, since the role of renewable energy in sustainable development is remarkable, thus this article presents a comprehensive discussion of energy sustainability for urban areas with related energy indicators and technical analysis of a Hybrid Power System to show the importance of renewable energy to gain energy sustainability. This paper presents the feasibility of using PV-DG hybrid systems as the reliable energy by an economic and technical analysis in one of the southern cities of Iran use of HOMER software. Regarding the high average of solar radiation that is about 5.4 kWh/m2/d in Chabahar city, technical analysis of this system demonstrates that this city has a high capacity to producing the electrical energy via PV-diesel hybrid system with total electrical production amount of 10,575 kWh/yr from PV (8,447 kWh/yr) and Diesel system (2,128 kWh/yr). For do this work at the first, the required data is gathered from the meteorological organization of Iran and then technical and economic analysis is conducted with the Homer software. This study regarding the high potential of solar energy of Chabahar city shows that to achieve development especially in the energy sustainability field needs to implementing proper actions such as enough investment on clean energy and using renewable energy for electrical production.
Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Energy Sources Part A Recovery Utilization and Environmental EffectsArticleLicense: CC BY NC NDData sources: UnpayWallRecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2020License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCEnergy Sources Part A Recovery Utilization and Environmental EffectsArticle . 2019 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15567036.2019.1602215&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 88 citations 88 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 45visibility views 45 download downloads 627 Powered bymore_vert Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Energy Sources Part A Recovery Utilization and Environmental EffectsArticleLicense: CC BY NC NDData sources: UnpayWallRecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2020License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCEnergy Sources Part A Recovery Utilization and Environmental EffectsArticle . 2019 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15567036.2019.1602215&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Informa UK Limited Authors: Razmjoo, Armin; Sumper, Andreas; Davarpanah, Afshin;handle: 2117/176579
Electrical production for residential areas is one of the most important goals of SDGs (17 UN goal) and UN-Habitat III (14 goals) that can be achieved by renewable energy. Now, renewable energy is a significant issue that must be considered seriously as a policy and in order to achieve energy sustainability on a global scale especially in whole developing countries. Also, since the role of renewable energy in sustainable development is remarkable, thus this article presents a comprehensive discussion of energy sustainability for urban areas with related energy indicators and technical analysis of a Hybrid Power System to show the importance of renewable energy to gain energy sustainability. This paper presents the feasibility of using PV-DG hybrid systems as the reliable energy by an economic and technical analysis in one of the southern cities of Iran use of HOMER software. Regarding the high average of solar radiation that is about 5.4 kWh/m2/d in Chabahar city, technical analysis of this system demonstrates that this city has a high capacity to producing the electrical energy via PV-diesel hybrid system with total electrical production amount of 10,575 kWh/yr from PV (8,447 kWh/yr) and Diesel system (2,128 kWh/yr). For do this work at the first, the required data is gathered from the meteorological organization of Iran and then technical and economic analysis is conducted with the Homer software. This study regarding the high potential of solar energy of Chabahar city shows that to achieve development especially in the energy sustainability field needs to implementing proper actions such as enough investment on clean energy and using renewable energy for electrical production.
Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Energy Sources Part A Recovery Utilization and Environmental EffectsArticleLicense: CC BY NC NDData sources: UnpayWallRecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2020License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCEnergy Sources Part A Recovery Utilization and Environmental EffectsArticle . 2019 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15567036.2019.1602215&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 88 citations 88 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 45visibility views 45 download downloads 627 Powered bymore_vert Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Energy Sources Part A Recovery Utilization and Environmental EffectsArticleLicense: CC BY NC NDData sources: UnpayWallRecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2020License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCEnergy Sources Part A Recovery Utilization and Environmental EffectsArticle . 2019 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15567036.2019.1602215&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 AustraliaPublisher:Springer Science and Business Media LLC Authors: A. Armin Razmjoo; Afshin Davarpanah; Amirhossein zargarian;handle: 11541.2/138404
The aim of this study is an economic and technical analysis of a hybrid system in the Semirom city of Iran that is performed by a technical-economic analysis on combined utilization of solar-wind and diesel system. In this study HOMER software is utilized for economic assessment and optimization. At first, the related meteorological data gathered and then using Homer software the calculation was carried out. This city has good potential for solar and wind energy. The solar radiation ranges of Semirom city is from 2.88 to 7.78 kWh/m2/d, and the wind speed ranges are from 2.9 to 5.3 m/s. Solar and wind analyses on Semirom show that this city have great potential in solar and wind energy generation because this city has a proper position to receive sun solar and has high potential in wind speed for wind power generation. Regarding this study and due to high potential in solar and wind energy in Semirom, investments on renewable energy sector of this city will be economically justified.
Technology and Econo... arrow_drop_down Technology and Economics of Smart Grids and Sustainable EnergyArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2019 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40866-019-0063-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Technology and Econo... arrow_drop_down Technology and Economics of Smart Grids and Sustainable EnergyArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2019 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40866-019-0063-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 AustraliaPublisher:Springer Science and Business Media LLC Authors: A. Armin Razmjoo; Afshin Davarpanah; Amirhossein zargarian;handle: 11541.2/138404
The aim of this study is an economic and technical analysis of a hybrid system in the Semirom city of Iran that is performed by a technical-economic analysis on combined utilization of solar-wind and diesel system. In this study HOMER software is utilized for economic assessment and optimization. At first, the related meteorological data gathered and then using Homer software the calculation was carried out. This city has good potential for solar and wind energy. The solar radiation ranges of Semirom city is from 2.88 to 7.78 kWh/m2/d, and the wind speed ranges are from 2.9 to 5.3 m/s. Solar and wind analyses on Semirom show that this city have great potential in solar and wind energy generation because this city has a proper position to receive sun solar and has high potential in wind speed for wind power generation. Regarding this study and due to high potential in solar and wind energy in Semirom, investments on renewable energy sector of this city will be economically justified.
Technology and Econo... arrow_drop_down Technology and Economics of Smart Grids and Sustainable EnergyArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2019 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40866-019-0063-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Technology and Econo... arrow_drop_down Technology and Economics of Smart Grids and Sustainable EnergyArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2019 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40866-019-0063-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 AustraliaPublisher:MDPI AG Rahmad Syah; Afshin Davarpanah; Marischa Elveny; Ashish Kumar Karmaker; Mahyuddin K. M. Nasution; Md. Alamgir Hossain;handle: 10072/408239
This paper proposes a novel hybrid forecasting model with three main parts to accurately forecast daily electricity prices. In the first part, where data are divided into high- and low-frequency data using the fractional wavelet transform, the best data with the highest relevancy are selected, using a feature selection algorithm. The second part is based on a nonlinear support vector network and auto-regressive integrated moving average (ARIMA) method for better training the previous values of electricity prices. The third part optimally adjusts the proposed support vector machine parameters with an error-base objective function, using the improved grey wolf and particle swarm optimization. The proposed method is applied to forecast electricity markets, and the results obtained are analyzed with the help of the criteria based on the forecast errors. The results demonstrate the high accuracy in the MAPE index of forecasting the electricity price, which is about 91% as compared to other forecasting methods.
Electronics arrow_drop_down ElectronicsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2079-9292/10/18/2214/pdfData sources: Multidisciplinary Digital Publishing InstituteGriffith University: Griffith Research OnlineArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10072/408239Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electronics10182214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Electronics arrow_drop_down ElectronicsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2079-9292/10/18/2214/pdfData sources: Multidisciplinary Digital Publishing InstituteGriffith University: Griffith Research OnlineArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10072/408239Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electronics10182214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 AustraliaPublisher:MDPI AG Rahmad Syah; Afshin Davarpanah; Marischa Elveny; Ashish Kumar Karmaker; Mahyuddin K. M. Nasution; Md. Alamgir Hossain;handle: 10072/408239
This paper proposes a novel hybrid forecasting model with three main parts to accurately forecast daily electricity prices. In the first part, where data are divided into high- and low-frequency data using the fractional wavelet transform, the best data with the highest relevancy are selected, using a feature selection algorithm. The second part is based on a nonlinear support vector network and auto-regressive integrated moving average (ARIMA) method for better training the previous values of electricity prices. The third part optimally adjusts the proposed support vector machine parameters with an error-base objective function, using the improved grey wolf and particle swarm optimization. The proposed method is applied to forecast electricity markets, and the results obtained are analyzed with the help of the criteria based on the forecast errors. The results demonstrate the high accuracy in the MAPE index of forecasting the electricity price, which is about 91% as compared to other forecasting methods.
Electronics arrow_drop_down ElectronicsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2079-9292/10/18/2214/pdfData sources: Multidisciplinary Digital Publishing InstituteGriffith University: Griffith Research OnlineArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10072/408239Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electronics10182214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Electronics arrow_drop_down ElectronicsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2079-9292/10/18/2214/pdfData sources: Multidisciplinary Digital Publishing InstituteGriffith University: Griffith Research OnlineArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10072/408239Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electronics10182214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Wiley Soroush Farahbakhsh; Kamran Valizadeh; Mojtaba Zarei; Amirhossein zargarian; Amir Bateni; Afshin Davarpanah; Afshin Davarpanah; Araz Alizadeh;doi: 10.1002/ese3.514
handle: 11541.2/140824
AbstractNon‐Newtonian fluids are considered to those types of fluids that do not follow Newton's law of viscosity where viscosity would change in either more solid or liquid. The objective of this study, a parametric simulation, was performed to investigate the considerable influence of non‐Newtonian fluids on different parameters on spiral tubes. Firstly, governing equations have derived by computational fluid dynamics methods to compare the laminar and turbulent flows. Then, the turbulent flow, the non‐Newtonian flow, power law flow, and cross models are simulated according to the boundary conditions. Consequently, for the Reynolds range of 600‐2500, increasing the Reynolds number decreases the friction coefficient. It is observed that in slow flow, there is no significant difference between the results of cross and power law models. The distribution of velocity profile has slight variation at the pipe outlet for Reynolds 9000 and 20 000. In other words, the flow is constant in developed region inside the spiral pipe. Moreover, the investigation of pressure drop inside the pipe revealed that regarding the increase in Reynolds number, the friction coefficient decreases. In spiral tubes, due to the presence of secondary currents, the friction coefficient is higher than the direct tube.
Energy Science &... arrow_drop_down Energy Science & EngineeringArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2020 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ese3.514&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 43 citations 43 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Science &... arrow_drop_down Energy Science & EngineeringArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2020 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ese3.514&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Wiley Soroush Farahbakhsh; Kamran Valizadeh; Mojtaba Zarei; Amirhossein zargarian; Amir Bateni; Afshin Davarpanah; Afshin Davarpanah; Araz Alizadeh;doi: 10.1002/ese3.514
handle: 11541.2/140824
AbstractNon‐Newtonian fluids are considered to those types of fluids that do not follow Newton's law of viscosity where viscosity would change in either more solid or liquid. The objective of this study, a parametric simulation, was performed to investigate the considerable influence of non‐Newtonian fluids on different parameters on spiral tubes. Firstly, governing equations have derived by computational fluid dynamics methods to compare the laminar and turbulent flows. Then, the turbulent flow, the non‐Newtonian flow, power law flow, and cross models are simulated according to the boundary conditions. Consequently, for the Reynolds range of 600‐2500, increasing the Reynolds number decreases the friction coefficient. It is observed that in slow flow, there is no significant difference between the results of cross and power law models. The distribution of velocity profile has slight variation at the pipe outlet for Reynolds 9000 and 20 000. In other words, the flow is constant in developed region inside the spiral pipe. Moreover, the investigation of pressure drop inside the pipe revealed that regarding the increase in Reynolds number, the friction coefficient decreases. In spiral tubes, due to the presence of secondary currents, the friction coefficient is higher than the direct tube.
Energy Science &... arrow_drop_down Energy Science & EngineeringArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2020 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ese3.514&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 43 citations 43 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Science &... arrow_drop_down Energy Science & EngineeringArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2020 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ese3.514&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 ColombiaPublisher:MDPI AG Authors: Rahmad Syah; Seyed Mehdi Alizadeh; Karina Shamilyevna Nurgalieva; John William Grimaldo Guerrero; +4 AuthorsRahmad Syah; Seyed Mehdi Alizadeh; Karina Shamilyevna Nurgalieva; John William Grimaldo Guerrero; Mahyuddin K. M. Nasution; Afshin Davarpanah; Dadan Ramdan; Ahmed Sayed M. Metwally;doi: 10.3390/su132111606
handle: 11323/8984
Supercritical carbon dioxide injection in tight reservoirs is an efficient and prominent enhanced gas recovery method, as it can be more mobilized in low-permeable reservoirs due to its molecular size. This paper aimed to perform a set of laboratory experiments to evaluate the impacts of permeability and water saturation on enhanced gas recovery, carbon dioxide storage capacity, and carbon dioxide content during supercritical carbon dioxide injection. It is observed that supercritical carbon dioxide provides a higher gas recovery increase after the gas depletion drive mechanism is carried out in low permeable core samples. This corresponds to the feasible mobilization of the supercritical carbon dioxide phase through smaller pores. The maximum gas recovery increase for core samples with 0.1 mD is about 22.5%, while gas recovery increase has lower values with the increase in permeability. It is about 19.8%, 15.3%, 12.1%, and 10.9% for core samples with 0.22, 0.36, 0.54, and 0.78 mD permeability, respectively. Moreover, higher water saturations would be a crucial factor in the gas recovery enhancement, especially in the final pore volume injection, as it can increase the supercritical carbon dioxide dissolving in water, leading to more displacement efficiency. The minimum carbon dioxide storage for 0.1 mD core samples is about 50%, while it is about 38% for tight core samples with the permeability of 0.78 mD. By decreasing water saturation from 0.65 to 0.15, less volume of supercritical carbon dioxide is involved in water, and therefore, carbon dioxide storage capacity increases. This is indicative of a proper gas displacement front in lower water saturation and higher gas recovery factor. The findings of this study can help for a better understanding of the gas production mechanism and crucial parameters that affect gas recovery from tight reservoirs.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing InstituteREDICUC - Repositorio Universidad de La CostaArticle . 2021Full-Text: https://hdl.handle.net/11323/8984Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132111606&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing InstituteREDICUC - Repositorio Universidad de La CostaArticle . 2021Full-Text: https://hdl.handle.net/11323/8984Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132111606&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 ColombiaPublisher:MDPI AG Authors: Rahmad Syah; Seyed Mehdi Alizadeh; Karina Shamilyevna Nurgalieva; John William Grimaldo Guerrero; +4 AuthorsRahmad Syah; Seyed Mehdi Alizadeh; Karina Shamilyevna Nurgalieva; John William Grimaldo Guerrero; Mahyuddin K. M. Nasution; Afshin Davarpanah; Dadan Ramdan; Ahmed Sayed M. Metwally;doi: 10.3390/su132111606
handle: 11323/8984
Supercritical carbon dioxide injection in tight reservoirs is an efficient and prominent enhanced gas recovery method, as it can be more mobilized in low-permeable reservoirs due to its molecular size. This paper aimed to perform a set of laboratory experiments to evaluate the impacts of permeability and water saturation on enhanced gas recovery, carbon dioxide storage capacity, and carbon dioxide content during supercritical carbon dioxide injection. It is observed that supercritical carbon dioxide provides a higher gas recovery increase after the gas depletion drive mechanism is carried out in low permeable core samples. This corresponds to the feasible mobilization of the supercritical carbon dioxide phase through smaller pores. The maximum gas recovery increase for core samples with 0.1 mD is about 22.5%, while gas recovery increase has lower values with the increase in permeability. It is about 19.8%, 15.3%, 12.1%, and 10.9% for core samples with 0.22, 0.36, 0.54, and 0.78 mD permeability, respectively. Moreover, higher water saturations would be a crucial factor in the gas recovery enhancement, especially in the final pore volume injection, as it can increase the supercritical carbon dioxide dissolving in water, leading to more displacement efficiency. The minimum carbon dioxide storage for 0.1 mD core samples is about 50%, while it is about 38% for tight core samples with the permeability of 0.78 mD. By decreasing water saturation from 0.65 to 0.15, less volume of supercritical carbon dioxide is involved in water, and therefore, carbon dioxide storage capacity increases. This is indicative of a proper gas displacement front in lower water saturation and higher gas recovery factor. The findings of this study can help for a better understanding of the gas production mechanism and crucial parameters that affect gas recovery from tight reservoirs.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing InstituteREDICUC - Repositorio Universidad de La CostaArticle . 2021Full-Text: https://hdl.handle.net/11323/8984Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132111606&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing InstituteREDICUC - Repositorio Universidad de La CostaArticle . 2021Full-Text: https://hdl.handle.net/11323/8984Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132111606&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Afshin Davarpanah; Behnam Mirshekari;handle: 10419/243549
Drilling thin oil layers regarding the high expenditures is always considered as the debate issue in petroleum industries to invest. Oil rim reservoirs are one kind unconventional reservoirs which are occupied with a strong aquifer and a big gas cap that provided complex conditions for producing reserve oil. The purpose of this study is to simulate the six different injectivity scenarios for one of the Iranian’s oilfield to select the optimum scenario which has the most oil production. In these injectivity scenarios, different gas–oil ratios, water cut, and drilling new wells were considered in the simulator to compare each of them in more detail. Consequently, scenario 6 has the optimum volume of field oil production regarding the drilling of one horizontal well and three vertical well. That is to say that, horizontal wells due to the higher contact with the thin oil layers have led to more oil production rate and it is recommended to drill the wells in this type of reservoir horizontally. Keywords: Oil-rim reservoirs, Field oil production rate, Simulator, Horizontal well, Injectivity scenarios
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2018.10.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2018.10.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Afshin Davarpanah; Behnam Mirshekari;handle: 10419/243549
Drilling thin oil layers regarding the high expenditures is always considered as the debate issue in petroleum industries to invest. Oil rim reservoirs are one kind unconventional reservoirs which are occupied with a strong aquifer and a big gas cap that provided complex conditions for producing reserve oil. The purpose of this study is to simulate the six different injectivity scenarios for one of the Iranian’s oilfield to select the optimum scenario which has the most oil production. In these injectivity scenarios, different gas–oil ratios, water cut, and drilling new wells were considered in the simulator to compare each of them in more detail. Consequently, scenario 6 has the optimum volume of field oil production regarding the drilling of one horizontal well and three vertical well. That is to say that, horizontal wells due to the higher contact with the thin oil layers have led to more oil production rate and it is recommended to drill the wells in this type of reservoir horizontally. Keywords: Oil-rim reservoirs, Field oil production rate, Simulator, Horizontal well, Injectivity scenarios
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2018.10.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2018.10.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu