- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Aslam, R. M.; Ingham, D. B.; Ismail, M. S.; Hughes, K. J.; Ma, L.; Pourkashanian, M.;Water flooding and membrane dry-out are two major issues that could be very detrimental to the performance and/or durability of the proton exchange membrane (PEM) fuel cells. The above two phenomena are well-related to the distributions of and the interaction between the water saturation and temperature within the membrane electrode assembly (MEA). To obtain further insights into the relation between water saturation and temperature, the distributions of liquid water and temperature within a transparent PEM fuel cell have been imaged using high-resolution digital and thermal cameras. A parametric study, in which the air flow rate has been incrementally changed, has been conducted to explore the viability of the proposed experimental procedure to correlate the relation between the distribution of liquid water and temperature along the MEA of the fuel cell. The results have shown that, for the investigated fuel cell, more liquid water and more uniform temperature distribution along MEA at the cathode side are obtained as the air flow rate decreases. Further, the fuel cell performance was found to increase with decreasing air flow rate. All the above results have been discussed.
http://eprints.white... arrow_drop_down https://doi.org/10.1016/j.joei...Article . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Hull: Repository@HullArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.joei.2018.01.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 46 citations 46 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert http://eprints.white... arrow_drop_down https://doi.org/10.1016/j.joei...Article . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Hull: Repository@HullArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.joei.2018.01.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Aslam, R. M.; Ingham, D. B.; Ismail, M. S.; Hughes, K. J.; Ma, L.; Pourkashanian, M.;Water flooding and membrane dry-out are two major issues that could be very detrimental to the performance and/or durability of the proton exchange membrane (PEM) fuel cells. The above two phenomena are well-related to the distributions of and the interaction between the water saturation and temperature within the membrane electrode assembly (MEA). To obtain further insights into the relation between water saturation and temperature, the distributions of liquid water and temperature within a transparent PEM fuel cell have been imaged using high-resolution digital and thermal cameras. A parametric study, in which the air flow rate has been incrementally changed, has been conducted to explore the viability of the proposed experimental procedure to correlate the relation between the distribution of liquid water and temperature along the MEA of the fuel cell. The results have shown that, for the investigated fuel cell, more liquid water and more uniform temperature distribution along MEA at the cathode side are obtained as the air flow rate decreases. Further, the fuel cell performance was found to increase with decreasing air flow rate. All the above results have been discussed.
http://eprints.white... arrow_drop_down https://doi.org/10.1016/j.joei...Article . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Hull: Repository@HullArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.joei.2018.01.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 46 citations 46 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert http://eprints.white... arrow_drop_down https://doi.org/10.1016/j.joei...Article . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Hull: Repository@HullArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.joei.2018.01.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Gasser E. Hassan; Lin Ma; Derek B. Ingham; Paul Newman; Mohamed Pourkashanian; Anand Odedra;Abstract This investigation develops a three-dimensional Computational Fluid Dynamics (CFD) model to simulate the turbulent diffusion flame on the fire-side of the radiation section of a thermal cracking test furnace coupled with a non-premixed low NOx floor burner. When this type of burners which uses the internal Flue Gas Recirculation (FGR) technique is coupled with large scale furnaces, both the turbulent mixing and chemical reaction rates are comparable and hence this should be considered in the model. Different combustion models are used to simulate the turbulence–chemistry interactions for this flame. The CFD model, based on the Eddy Dissipation Concept (EDC) combustion model coupled with the detailed GRI2.11 reaction mechanism, gives the most reasonable predictions compared with the available experimental data or empirical correlations for the diffusion flame in the thermal cracking test furnace, especially for the flame length and the CO and NOx emissions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.compchemeng.2013.06.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.compchemeng.2013.06.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Gasser E. Hassan; Lin Ma; Derek B. Ingham; Paul Newman; Mohamed Pourkashanian; Anand Odedra;Abstract This investigation develops a three-dimensional Computational Fluid Dynamics (CFD) model to simulate the turbulent diffusion flame on the fire-side of the radiation section of a thermal cracking test furnace coupled with a non-premixed low NOx floor burner. When this type of burners which uses the internal Flue Gas Recirculation (FGR) technique is coupled with large scale furnaces, both the turbulent mixing and chemical reaction rates are comparable and hence this should be considered in the model. Different combustion models are used to simulate the turbulence–chemistry interactions for this flame. The CFD model, based on the Eddy Dissipation Concept (EDC) combustion model coupled with the detailed GRI2.11 reaction mechanism, gives the most reasonable predictions compared with the available experimental data or empirical correlations for the diffusion flame in the thermal cracking test furnace, especially for the flame length and the CO and NOx emissions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.compchemeng.2013.06.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.compchemeng.2013.06.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Funded by:EC | SWIPEC| SWIPAva Shahrokhi; Julien Berthaut-Gerentes; Lin Ma; Derek Ingham; Mohamed Pourkashanian;When undertaking wind assessment around buildings using large eddy simulation (LES), the implementation of the integral length scale at the inlet for inflow generation is controversial, as real atmospheric length scales require huge computational domains. While length scales significantly influence inflow generation in the domain, their effect on the downstream flow field has not yet, been investigated. In this paper, we validate the effectiveness and accuracy of implementing a reduced turbulence integral length scale for inflow generation in LES results at the rooftop of low-rise buildings and develop a technique to estimate the real local length scales using simulation results. We measure the wind locally and calculate the turbulence length scales from the energy spectrum of the wind data and simulation data. According to these results, there is an excellent agreement between the length scale from simulation and measurement when they are scaled with their corresponding freestream/inlet value. These results indicate that a reduced integral length scale can be safely used for LES to provide a reliable prediction of the energy spectrum as well as the length scales around complex geometries. The simulation results were confidently employed to obtain the best location for a wind turbine installation on low-rise buildings.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.20944/prepr...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202306.0575.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.20944/prepr...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202306.0575.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Funded by:EC | SWIPEC| SWIPAva Shahrokhi; Julien Berthaut-Gerentes; Lin Ma; Derek Ingham; Mohamed Pourkashanian;When undertaking wind assessment around buildings using large eddy simulation (LES), the implementation of the integral length scale at the inlet for inflow generation is controversial, as real atmospheric length scales require huge computational domains. While length scales significantly influence inflow generation in the domain, their effect on the downstream flow field has not yet, been investigated. In this paper, we validate the effectiveness and accuracy of implementing a reduced turbulence integral length scale for inflow generation in LES results at the rooftop of low-rise buildings and develop a technique to estimate the real local length scales using simulation results. We measure the wind locally and calculate the turbulence length scales from the energy spectrum of the wind data and simulation data. According to these results, there is an excellent agreement between the length scale from simulation and measurement when they are scaled with their corresponding freestream/inlet value. These results indicate that a reduced integral length scale can be safely used for LES to provide a reliable prediction of the energy spectrum as well as the length scales around complex geometries. The simulation results were confidently employed to obtain the best location for a wind turbine installation on low-rise buildings.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.20944/prepr...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202306.0575.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.20944/prepr...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202306.0575.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Funded by:EC | SWIPEC| SWIPAva Shahrokhi; Julien Berthaut-Gerentes; Lin Ma; Derek Ingham; Mohamed Pourkashanian;doi: 10.3390/su151712786
When undertaking wind assessment around buildings using large eddy simulation (LES), the implementation of the integral length scale at the inlet for inflow generation is controversial, as real atmospheric length scales require huge computational domains. While length scales significantly influence inflow generation in the domain, their effect on the downstream flow field has not, as yet, been investigated. In this paper, we validate the effectiveness and accuracy of implementing a reduced turbulence integral length scale for inflow generation in LES results at the rooftop of low-rise buildings and develop a technique to estimate the real local length scales using simulation results. We measure the wind locally and calculate the turbulence length scales from the energy spectrum of the wind data and simulation data. According to these results, there is an excellent agreement between the length scale from simulation and measurement when they are scaled with their corresponding freestream/inlet value. These results indicate that a reduced integral length scale can be safely used for LES to provide a reliable prediction of the energy spectrum as well as the length scales around complex geometries. The simulation results were confidently employed to obtain the best location for a wind turbine installation on low-rise buildings.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151712786&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151712786&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Funded by:EC | SWIPEC| SWIPAva Shahrokhi; Julien Berthaut-Gerentes; Lin Ma; Derek Ingham; Mohamed Pourkashanian;doi: 10.3390/su151712786
When undertaking wind assessment around buildings using large eddy simulation (LES), the implementation of the integral length scale at the inlet for inflow generation is controversial, as real atmospheric length scales require huge computational domains. While length scales significantly influence inflow generation in the domain, their effect on the downstream flow field has not, as yet, been investigated. In this paper, we validate the effectiveness and accuracy of implementing a reduced turbulence integral length scale for inflow generation in LES results at the rooftop of low-rise buildings and develop a technique to estimate the real local length scales using simulation results. We measure the wind locally and calculate the turbulence length scales from the energy spectrum of the wind data and simulation data. According to these results, there is an excellent agreement between the length scale from simulation and measurement when they are scaled with their corresponding freestream/inlet value. These results indicate that a reduced integral length scale can be safely used for LES to provide a reliable prediction of the energy spectrum as well as the length scales around complex geometries. The simulation results were confidently employed to obtain the best location for a wind turbine installation on low-rise buildings.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151712786&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151712786&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Lin Ma; Derek B. Ingham; Mohamed M. Elsakka; Mohamed M. Elsakka; Mohamed Pourkashanian;The Angle of Attack (AOA) of the Vertical Axis Wind Turbines (VAWTs) blades has a dominant role in the generation of the aerodynamic forces and the power generation of the turbine. However, there is a significant uncertainty in determining the blade AOAs during operation due to the very complex flow structures and this limits the turbine design optimization. The paper proposes a fast and accurate method for the calculation of the constantly changing AOA based on the velocity flow field data at two reference points upstream the turbine blades. The new method could be used to calculate and store the AOA data during the CFD simulations without the need for extensive post-processing for efficient turbine aerodynamic analysis and optimisation. Several single reference-points and pair of reference-points criteria are used to select the most appropriate locations of the two reference points to calculate the AOA and It is found that using the flow data from the two reference points at the locations 0.5 aerofoil chord length upstream and 1 chord away from each side of the aerofoil can give most accurate estimation across a range of tested AOAs. Based on the proposed AOA estimation method, the performance of a fixed pitch and the sinusoidal variable pitch VAWT configurations are analysed and compared with each other. The analysis illustrates how the sinusoidal variable pitch configuration could enhance the overall performance of the turbine by maintaining more favourable AOAs, and lift and drag distributions.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.12.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 86 citations 86 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.12.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Lin Ma; Derek B. Ingham; Mohamed M. Elsakka; Mohamed M. Elsakka; Mohamed Pourkashanian;The Angle of Attack (AOA) of the Vertical Axis Wind Turbines (VAWTs) blades has a dominant role in the generation of the aerodynamic forces and the power generation of the turbine. However, there is a significant uncertainty in determining the blade AOAs during operation due to the very complex flow structures and this limits the turbine design optimization. The paper proposes a fast and accurate method for the calculation of the constantly changing AOA based on the velocity flow field data at two reference points upstream the turbine blades. The new method could be used to calculate and store the AOA data during the CFD simulations without the need for extensive post-processing for efficient turbine aerodynamic analysis and optimisation. Several single reference-points and pair of reference-points criteria are used to select the most appropriate locations of the two reference points to calculate the AOA and It is found that using the flow data from the two reference points at the locations 0.5 aerofoil chord length upstream and 1 chord away from each side of the aerofoil can give most accurate estimation across a range of tested AOAs. Based on the proposed AOA estimation method, the performance of a fixed pitch and the sinusoidal variable pitch VAWT configurations are analysed and compared with each other. The analysis illustrates how the sinusoidal variable pitch configuration could enhance the overall performance of the turbine by maintaining more favourable AOAs, and lift and drag distributions.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.12.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 86 citations 86 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.12.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Lin Ma; Derek B. Ingham; Kevin J. Hughes; Mohamed Pourkashanian; Ali J. Sultan; Ali J. Sultan;Abstract This work evaluates the concentrating solar power (parabolic trough) technology for electricity generation in Kuwait. The assessment is performed on an existing plant in Spain, and the model is validated using published data. The Direct Normal Irradiance (DNI) of Spain exceeds that of Kuwait by a difference of 176.2 kWh/m 2 a , but the overall performance of the Kuwait case exceeds that of Spain. With wet cooling, the Kuwait case performance exceeds that of Spain for the annual overall plant efficiency by 2.9% and the annual efficiency of the Solar Field (SF) by 4.1%. Additionally, the annual net electricity output of the Kuwait case exceeds that of Spain by 14,534 MWh e . With dry cooling, the Kuwait case performance exceeds that of Spain for the annual overall plant efficiency by 1.1% and the annual efficiency of the SF by 3.0%. However, the annual net electricity output of the Spain case exceeds that of Kuwait by only 749.8 MWh e . The better performance of the Kuwait case is due to the DNI impact on the number of full load hours of steam turbine, ambient temperature, wind speed, and SF heat loss/dumped energy. The techno-economic assessment considered numerous design configurations utilizing dry cooling in Kuwait due to the lack of water resources. The solar multiple and the number of full load hours of storage are varied to identify optimal configurations. It is concluded that the optimal solar multiple is at 3.3 corresponding to the lowest LCOE of 15.0663 ¢ / kWh for 16 h of storage.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110342&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110342&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Lin Ma; Derek B. Ingham; Kevin J. Hughes; Mohamed Pourkashanian; Ali J. Sultan; Ali J. Sultan;Abstract This work evaluates the concentrating solar power (parabolic trough) technology for electricity generation in Kuwait. The assessment is performed on an existing plant in Spain, and the model is validated using published data. The Direct Normal Irradiance (DNI) of Spain exceeds that of Kuwait by a difference of 176.2 kWh/m 2 a , but the overall performance of the Kuwait case exceeds that of Spain. With wet cooling, the Kuwait case performance exceeds that of Spain for the annual overall plant efficiency by 2.9% and the annual efficiency of the Solar Field (SF) by 4.1%. Additionally, the annual net electricity output of the Kuwait case exceeds that of Spain by 14,534 MWh e . With dry cooling, the Kuwait case performance exceeds that of Spain for the annual overall plant efficiency by 1.1% and the annual efficiency of the SF by 3.0%. However, the annual net electricity output of the Spain case exceeds that of Kuwait by only 749.8 MWh e . The better performance of the Kuwait case is due to the DNI impact on the number of full load hours of steam turbine, ambient temperature, wind speed, and SF heat loss/dumped energy. The techno-economic assessment considered numerous design configurations utilizing dry cooling in Kuwait due to the lack of water resources. The solar multiple and the number of full load hours of storage are varied to identify optimal configurations. It is concluded that the optimal solar multiple is at 3.3 corresponding to the lowest LCOE of 15.0663 ¢ / kWh for 16 h of storage.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110342&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110342&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV As S. Tomlin; Lin Ma; Mohamed Pourkashanian; Jt T. Millward-Hopkins; Db B. Ingham;An analytical methodology for predicting above-roof mean wind speeds in urban areas is first used to map wind speeds over four different UK cities. The methodology utilises detailed geometric data describing buildings and vegetation to calculate the aerodynamic characteristics of the urban surfaces, and accounts for the influence of building height heterogeneity and wind direction upon wind profiles. The initial objective of the work is to determine the accuracy of the methodology when using detailed geometric data describing building roof shapes in addition to their heights, to estimate surface aerodynamic parameters. By integrating detailed LiDAR (light detection and ranging) data into the methodology and comparing the predictions with measured data, predictive accuracy is found to improve significantly with respect to previous results obtained using less detailed geometric datasets which describe each building with a single height. Subsequently, a preliminary evaluation of the cumulative, city-scale potential for generating wind energy is made, using the UK City of Leeds as a case study. The results suggest that from the point of view of wind resource, 2000 to 9500 viable building-mounted wind turbine locations may exist in Leeds, highlighting the potential for this technology to be far more widely deployed than has presently been achieved. However, the calculations are shown to be highly sensitive to the viable wind speed selected, which in turn depends on financial support and technological progress. An investigation is then made into where, in general, viable roof-top turbine locations may be found. The results suggest that there are viable sites distributed throughout the city, including within the complex city centre, where at the most suitable locations above-roof wind speeds may be comparable to those observed at well exposed rural sites. However, in residential areas, consisting of groups of buildings of similar heights, it is likely that the majority of properties will be unsuitable turbine locations. The wind maps and methodology described in this paper may be utilised by turbine suppliers and customers for assessing the viability of potential sites, as well as being instructive for policymakers developing subsidies for small-scale renewable energy projects.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2013.06.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2013.06.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV As S. Tomlin; Lin Ma; Mohamed Pourkashanian; Jt T. Millward-Hopkins; Db B. Ingham;An analytical methodology for predicting above-roof mean wind speeds in urban areas is first used to map wind speeds over four different UK cities. The methodology utilises detailed geometric data describing buildings and vegetation to calculate the aerodynamic characteristics of the urban surfaces, and accounts for the influence of building height heterogeneity and wind direction upon wind profiles. The initial objective of the work is to determine the accuracy of the methodology when using detailed geometric data describing building roof shapes in addition to their heights, to estimate surface aerodynamic parameters. By integrating detailed LiDAR (light detection and ranging) data into the methodology and comparing the predictions with measured data, predictive accuracy is found to improve significantly with respect to previous results obtained using less detailed geometric datasets which describe each building with a single height. Subsequently, a preliminary evaluation of the cumulative, city-scale potential for generating wind energy is made, using the UK City of Leeds as a case study. The results suggest that from the point of view of wind resource, 2000 to 9500 viable building-mounted wind turbine locations may exist in Leeds, highlighting the potential for this technology to be far more widely deployed than has presently been achieved. However, the calculations are shown to be highly sensitive to the viable wind speed selected, which in turn depends on financial support and technological progress. An investigation is then made into where, in general, viable roof-top turbine locations may be found. The results suggest that there are viable sites distributed throughout the city, including within the complex city centre, where at the most suitable locations above-roof wind speeds may be comparable to those observed at well exposed rural sites. However, in residential areas, consisting of groups of buildings of similar heights, it is likely that the majority of properties will be unsuitable turbine locations. The wind maps and methodology described in this paper may be utilised by turbine suppliers and customers for assessing the viability of potential sites, as well as being instructive for policymakers developing subsidies for small-scale renewable energy projects.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2013.06.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2013.06.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Celik, Y.; Ingham, D.; Ma, L.; Pourkashanian, M.;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.123881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.123881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Celik, Y.; Ingham, D.; Ma, L.; Pourkashanian, M.;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.123881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.123881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Derek B. Ingham; Lin Ma; Peng Xie; Xuesong Lu; Mohamed Pourkashanian;Abstract Rotating packed beds (RPBs) are promising to be employed for CO2 capture from the flue gas due to their high mass transfer efficiency. Therefore, good predictions of the mass transfer characteristics for RPBs are crucial for their design. In this paper, a method based on CFD simulation is proposed to investigate the liquid film flows and mass transfer characteristics within RPBs. Local mass transfer coefficients along the radial direction of an RPB have been obtained. The results obtained show that high surface roughness and high rotational speed enhance the CO2 absorption into the liquid film, thus generating a high mass transfer coefficient, and the larger the RPB radial position, the higher the mass transfer coefficient.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Derek B. Ingham; Lin Ma; Peng Xie; Xuesong Lu; Mohamed Pourkashanian;Abstract Rotating packed beds (RPBs) are promising to be employed for CO2 capture from the flue gas due to their high mass transfer efficiency. Therefore, good predictions of the mass transfer characteristics for RPBs are crucial for their design. In this paper, a method based on CFD simulation is proposed to investigate the liquid film flows and mass transfer characteristics within RPBs. Local mass transfer coefficients along the radial direction of an RPB have been obtained. The results obtained show that high surface roughness and high rotational speed enhance the CO2 absorption into the liquid film, thus generating a high mass transfer coefficient, and the larger the RPB radial position, the higher the mass transfer coefficient.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Elsevier BV Alfailakawi, M.S.; Michailos, S.; Ingham, D.B.; Hughes, K.J.; Ma, L.; Pourkashanian, M.;This work evaluates the Solar Power Tower performance in arid regions where elevated aerosols levels and water scarcity threaten solar applications feasibility. The work conducts an aerosols aware modelling and techno-economic assessment by considering possible aerosols effects on the solar field’s reflected irradiance; an effect that is typically ignored in the literature. Aerosols effect inclusion’s modifies the thermal input to the solar field and this, in turn, provides a more accurate assessment. A parametric analysis has been performed using a 50 MW model by varying the Thermal Energy Storage and Solar Multiple based on three aerosols temporal resolutions: a typical year’s average, daily and no-aerosols schemes. Further, water consumption is examined over four different condenser scenarios: dry, wet and two hybrid set ups. The assessment performed in Kuwait reveals that the wet-cooled condenser scenario with a 16h of storage and a solar multiple of 3.2 yields the lowest Levelized Cost of Energy of 12.06 $/kWh when the no-aerosols scheme is considered. This increases to 12.87 $/kWh when the daily aerosols are considered as the generated energy decreases by 6.7%. Besides, both hybrid condenser scenarios offer a trade-off as they result in a 55.1–68.7% of water saving for only 2.1–2.3% less energy generation.
CORE arrow_drop_down University of Hull: Repository@HullArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2022.102324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down University of Hull: Repository@HullArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2022.102324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Elsevier BV Alfailakawi, M.S.; Michailos, S.; Ingham, D.B.; Hughes, K.J.; Ma, L.; Pourkashanian, M.;This work evaluates the Solar Power Tower performance in arid regions where elevated aerosols levels and water scarcity threaten solar applications feasibility. The work conducts an aerosols aware modelling and techno-economic assessment by considering possible aerosols effects on the solar field’s reflected irradiance; an effect that is typically ignored in the literature. Aerosols effect inclusion’s modifies the thermal input to the solar field and this, in turn, provides a more accurate assessment. A parametric analysis has been performed using a 50 MW model by varying the Thermal Energy Storage and Solar Multiple based on three aerosols temporal resolutions: a typical year’s average, daily and no-aerosols schemes. Further, water consumption is examined over four different condenser scenarios: dry, wet and two hybrid set ups. The assessment performed in Kuwait reveals that the wet-cooled condenser scenario with a 16h of storage and a solar multiple of 3.2 yields the lowest Levelized Cost of Energy of 12.06 $/kWh when the no-aerosols scheme is considered. This increases to 12.87 $/kWh when the daily aerosols are considered as the generated energy decreases by 6.7%. Besides, both hybrid condenser scenarios offer a trade-off as they result in a 55.1–68.7% of water saving for only 2.1–2.3% less energy generation.
CORE arrow_drop_down University of Hull: Repository@HullArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2022.102324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down University of Hull: Repository@HullArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2022.102324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Aslam, R. M.; Ingham, D. B.; Ismail, M. S.; Hughes, K. J.; Ma, L.; Pourkashanian, M.;Water flooding and membrane dry-out are two major issues that could be very detrimental to the performance and/or durability of the proton exchange membrane (PEM) fuel cells. The above two phenomena are well-related to the distributions of and the interaction between the water saturation and temperature within the membrane electrode assembly (MEA). To obtain further insights into the relation between water saturation and temperature, the distributions of liquid water and temperature within a transparent PEM fuel cell have been imaged using high-resolution digital and thermal cameras. A parametric study, in which the air flow rate has been incrementally changed, has been conducted to explore the viability of the proposed experimental procedure to correlate the relation between the distribution of liquid water and temperature along the MEA of the fuel cell. The results have shown that, for the investigated fuel cell, more liquid water and more uniform temperature distribution along MEA at the cathode side are obtained as the air flow rate decreases. Further, the fuel cell performance was found to increase with decreasing air flow rate. All the above results have been discussed.
http://eprints.white... arrow_drop_down https://doi.org/10.1016/j.joei...Article . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Hull: Repository@HullArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.joei.2018.01.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 46 citations 46 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert http://eprints.white... arrow_drop_down https://doi.org/10.1016/j.joei...Article . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Hull: Repository@HullArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.joei.2018.01.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Aslam, R. M.; Ingham, D. B.; Ismail, M. S.; Hughes, K. J.; Ma, L.; Pourkashanian, M.;Water flooding and membrane dry-out are two major issues that could be very detrimental to the performance and/or durability of the proton exchange membrane (PEM) fuel cells. The above two phenomena are well-related to the distributions of and the interaction between the water saturation and temperature within the membrane electrode assembly (MEA). To obtain further insights into the relation between water saturation and temperature, the distributions of liquid water and temperature within a transparent PEM fuel cell have been imaged using high-resolution digital and thermal cameras. A parametric study, in which the air flow rate has been incrementally changed, has been conducted to explore the viability of the proposed experimental procedure to correlate the relation between the distribution of liquid water and temperature along the MEA of the fuel cell. The results have shown that, for the investigated fuel cell, more liquid water and more uniform temperature distribution along MEA at the cathode side are obtained as the air flow rate decreases. Further, the fuel cell performance was found to increase with decreasing air flow rate. All the above results have been discussed.
http://eprints.white... arrow_drop_down https://doi.org/10.1016/j.joei...Article . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Hull: Repository@HullArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.joei.2018.01.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 46 citations 46 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert http://eprints.white... arrow_drop_down https://doi.org/10.1016/j.joei...Article . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Hull: Repository@HullArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.joei.2018.01.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Gasser E. Hassan; Lin Ma; Derek B. Ingham; Paul Newman; Mohamed Pourkashanian; Anand Odedra;Abstract This investigation develops a three-dimensional Computational Fluid Dynamics (CFD) model to simulate the turbulent diffusion flame on the fire-side of the radiation section of a thermal cracking test furnace coupled with a non-premixed low NOx floor burner. When this type of burners which uses the internal Flue Gas Recirculation (FGR) technique is coupled with large scale furnaces, both the turbulent mixing and chemical reaction rates are comparable and hence this should be considered in the model. Different combustion models are used to simulate the turbulence–chemistry interactions for this flame. The CFD model, based on the Eddy Dissipation Concept (EDC) combustion model coupled with the detailed GRI2.11 reaction mechanism, gives the most reasonable predictions compared with the available experimental data or empirical correlations for the diffusion flame in the thermal cracking test furnace, especially for the flame length and the CO and NOx emissions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.compchemeng.2013.06.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.compchemeng.2013.06.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Gasser E. Hassan; Lin Ma; Derek B. Ingham; Paul Newman; Mohamed Pourkashanian; Anand Odedra;Abstract This investigation develops a three-dimensional Computational Fluid Dynamics (CFD) model to simulate the turbulent diffusion flame on the fire-side of the radiation section of a thermal cracking test furnace coupled with a non-premixed low NOx floor burner. When this type of burners which uses the internal Flue Gas Recirculation (FGR) technique is coupled with large scale furnaces, both the turbulent mixing and chemical reaction rates are comparable and hence this should be considered in the model. Different combustion models are used to simulate the turbulence–chemistry interactions for this flame. The CFD model, based on the Eddy Dissipation Concept (EDC) combustion model coupled with the detailed GRI2.11 reaction mechanism, gives the most reasonable predictions compared with the available experimental data or empirical correlations for the diffusion flame in the thermal cracking test furnace, especially for the flame length and the CO and NOx emissions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.compchemeng.2013.06.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.compchemeng.2013.06.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Funded by:EC | SWIPEC| SWIPAva Shahrokhi; Julien Berthaut-Gerentes; Lin Ma; Derek Ingham; Mohamed Pourkashanian;When undertaking wind assessment around buildings using large eddy simulation (LES), the implementation of the integral length scale at the inlet for inflow generation is controversial, as real atmospheric length scales require huge computational domains. While length scales significantly influence inflow generation in the domain, their effect on the downstream flow field has not yet, been investigated. In this paper, we validate the effectiveness and accuracy of implementing a reduced turbulence integral length scale for inflow generation in LES results at the rooftop of low-rise buildings and develop a technique to estimate the real local length scales using simulation results. We measure the wind locally and calculate the turbulence length scales from the energy spectrum of the wind data and simulation data. According to these results, there is an excellent agreement between the length scale from simulation and measurement when they are scaled with their corresponding freestream/inlet value. These results indicate that a reduced integral length scale can be safely used for LES to provide a reliable prediction of the energy spectrum as well as the length scales around complex geometries. The simulation results were confidently employed to obtain the best location for a wind turbine installation on low-rise buildings.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.20944/prepr...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202306.0575.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.20944/prepr...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202306.0575.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Funded by:EC | SWIPEC| SWIPAva Shahrokhi; Julien Berthaut-Gerentes; Lin Ma; Derek Ingham; Mohamed Pourkashanian;When undertaking wind assessment around buildings using large eddy simulation (LES), the implementation of the integral length scale at the inlet for inflow generation is controversial, as real atmospheric length scales require huge computational domains. While length scales significantly influence inflow generation in the domain, their effect on the downstream flow field has not yet, been investigated. In this paper, we validate the effectiveness and accuracy of implementing a reduced turbulence integral length scale for inflow generation in LES results at the rooftop of low-rise buildings and develop a technique to estimate the real local length scales using simulation results. We measure the wind locally and calculate the turbulence length scales from the energy spectrum of the wind data and simulation data. According to these results, there is an excellent agreement between the length scale from simulation and measurement when they are scaled with their corresponding freestream/inlet value. These results indicate that a reduced integral length scale can be safely used for LES to provide a reliable prediction of the energy spectrum as well as the length scales around complex geometries. The simulation results were confidently employed to obtain the best location for a wind turbine installation on low-rise buildings.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.20944/prepr...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202306.0575.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.20944/prepr...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202306.0575.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Funded by:EC | SWIPEC| SWIPAva Shahrokhi; Julien Berthaut-Gerentes; Lin Ma; Derek Ingham; Mohamed Pourkashanian;doi: 10.3390/su151712786
When undertaking wind assessment around buildings using large eddy simulation (LES), the implementation of the integral length scale at the inlet for inflow generation is controversial, as real atmospheric length scales require huge computational domains. While length scales significantly influence inflow generation in the domain, their effect on the downstream flow field has not, as yet, been investigated. In this paper, we validate the effectiveness and accuracy of implementing a reduced turbulence integral length scale for inflow generation in LES results at the rooftop of low-rise buildings and develop a technique to estimate the real local length scales using simulation results. We measure the wind locally and calculate the turbulence length scales from the energy spectrum of the wind data and simulation data. According to these results, there is an excellent agreement between the length scale from simulation and measurement when they are scaled with their corresponding freestream/inlet value. These results indicate that a reduced integral length scale can be safely used for LES to provide a reliable prediction of the energy spectrum as well as the length scales around complex geometries. The simulation results were confidently employed to obtain the best location for a wind turbine installation on low-rise buildings.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151712786&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151712786&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Funded by:EC | SWIPEC| SWIPAva Shahrokhi; Julien Berthaut-Gerentes; Lin Ma; Derek Ingham; Mohamed Pourkashanian;doi: 10.3390/su151712786
When undertaking wind assessment around buildings using large eddy simulation (LES), the implementation of the integral length scale at the inlet for inflow generation is controversial, as real atmospheric length scales require huge computational domains. While length scales significantly influence inflow generation in the domain, their effect on the downstream flow field has not, as yet, been investigated. In this paper, we validate the effectiveness and accuracy of implementing a reduced turbulence integral length scale for inflow generation in LES results at the rooftop of low-rise buildings and develop a technique to estimate the real local length scales using simulation results. We measure the wind locally and calculate the turbulence length scales from the energy spectrum of the wind data and simulation data. According to these results, there is an excellent agreement between the length scale from simulation and measurement when they are scaled with their corresponding freestream/inlet value. These results indicate that a reduced integral length scale can be safely used for LES to provide a reliable prediction of the energy spectrum as well as the length scales around complex geometries. The simulation results were confidently employed to obtain the best location for a wind turbine installation on low-rise buildings.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151712786&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151712786&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Lin Ma; Derek B. Ingham; Mohamed M. Elsakka; Mohamed M. Elsakka; Mohamed Pourkashanian;The Angle of Attack (AOA) of the Vertical Axis Wind Turbines (VAWTs) blades has a dominant role in the generation of the aerodynamic forces and the power generation of the turbine. However, there is a significant uncertainty in determining the blade AOAs during operation due to the very complex flow structures and this limits the turbine design optimization. The paper proposes a fast and accurate method for the calculation of the constantly changing AOA based on the velocity flow field data at two reference points upstream the turbine blades. The new method could be used to calculate and store the AOA data during the CFD simulations without the need for extensive post-processing for efficient turbine aerodynamic analysis and optimisation. Several single reference-points and pair of reference-points criteria are used to select the most appropriate locations of the two reference points to calculate the AOA and It is found that using the flow data from the two reference points at the locations 0.5 aerofoil chord length upstream and 1 chord away from each side of the aerofoil can give most accurate estimation across a range of tested AOAs. Based on the proposed AOA estimation method, the performance of a fixed pitch and the sinusoidal variable pitch VAWT configurations are analysed and compared with each other. The analysis illustrates how the sinusoidal variable pitch configuration could enhance the overall performance of the turbine by maintaining more favourable AOAs, and lift and drag distributions.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.12.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 86 citations 86 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.12.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Lin Ma; Derek B. Ingham; Mohamed M. Elsakka; Mohamed M. Elsakka; Mohamed Pourkashanian;The Angle of Attack (AOA) of the Vertical Axis Wind Turbines (VAWTs) blades has a dominant role in the generation of the aerodynamic forces and the power generation of the turbine. However, there is a significant uncertainty in determining the blade AOAs during operation due to the very complex flow structures and this limits the turbine design optimization. The paper proposes a fast and accurate method for the calculation of the constantly changing AOA based on the velocity flow field data at two reference points upstream the turbine blades. The new method could be used to calculate and store the AOA data during the CFD simulations without the need for extensive post-processing for efficient turbine aerodynamic analysis and optimisation. Several single reference-points and pair of reference-points criteria are used to select the most appropriate locations of the two reference points to calculate the AOA and It is found that using the flow data from the two reference points at the locations 0.5 aerofoil chord length upstream and 1 chord away from each side of the aerofoil can give most accurate estimation across a range of tested AOAs. Based on the proposed AOA estimation method, the performance of a fixed pitch and the sinusoidal variable pitch VAWT configurations are analysed and compared with each other. The analysis illustrates how the sinusoidal variable pitch configuration could enhance the overall performance of the turbine by maintaining more favourable AOAs, and lift and drag distributions.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.12.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 86 citations 86 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.12.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Lin Ma; Derek B. Ingham; Kevin J. Hughes; Mohamed Pourkashanian; Ali J. Sultan; Ali J. Sultan;Abstract This work evaluates the concentrating solar power (parabolic trough) technology for electricity generation in Kuwait. The assessment is performed on an existing plant in Spain, and the model is validated using published data. The Direct Normal Irradiance (DNI) of Spain exceeds that of Kuwait by a difference of 176.2 kWh/m 2 a , but the overall performance of the Kuwait case exceeds that of Spain. With wet cooling, the Kuwait case performance exceeds that of Spain for the annual overall plant efficiency by 2.9% and the annual efficiency of the Solar Field (SF) by 4.1%. Additionally, the annual net electricity output of the Kuwait case exceeds that of Spain by 14,534 MWh e . With dry cooling, the Kuwait case performance exceeds that of Spain for the annual overall plant efficiency by 1.1% and the annual efficiency of the SF by 3.0%. However, the annual net electricity output of the Spain case exceeds that of Kuwait by only 749.8 MWh e . The better performance of the Kuwait case is due to the DNI impact on the number of full load hours of steam turbine, ambient temperature, wind speed, and SF heat loss/dumped energy. The techno-economic assessment considered numerous design configurations utilizing dry cooling in Kuwait due to the lack of water resources. The solar multiple and the number of full load hours of storage are varied to identify optimal configurations. It is concluded that the optimal solar multiple is at 3.3 corresponding to the lowest LCOE of 15.0663 ¢ / kWh for 16 h of storage.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110342&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110342&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Lin Ma; Derek B. Ingham; Kevin J. Hughes; Mohamed Pourkashanian; Ali J. Sultan; Ali J. Sultan;Abstract This work evaluates the concentrating solar power (parabolic trough) technology for electricity generation in Kuwait. The assessment is performed on an existing plant in Spain, and the model is validated using published data. The Direct Normal Irradiance (DNI) of Spain exceeds that of Kuwait by a difference of 176.2 kWh/m 2 a , but the overall performance of the Kuwait case exceeds that of Spain. With wet cooling, the Kuwait case performance exceeds that of Spain for the annual overall plant efficiency by 2.9% and the annual efficiency of the Solar Field (SF) by 4.1%. Additionally, the annual net electricity output of the Kuwait case exceeds that of Spain by 14,534 MWh e . With dry cooling, the Kuwait case performance exceeds that of Spain for the annual overall plant efficiency by 1.1% and the annual efficiency of the SF by 3.0%. However, the annual net electricity output of the Spain case exceeds that of Kuwait by only 749.8 MWh e . The better performance of the Kuwait case is due to the DNI impact on the number of full load hours of steam turbine, ambient temperature, wind speed, and SF heat loss/dumped energy. The techno-economic assessment considered numerous design configurations utilizing dry cooling in Kuwait due to the lack of water resources. The solar multiple and the number of full load hours of storage are varied to identify optimal configurations. It is concluded that the optimal solar multiple is at 3.3 corresponding to the lowest LCOE of 15.0663 ¢ / kWh for 16 h of storage.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110342&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110342&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV As S. Tomlin; Lin Ma; Mohamed Pourkashanian; Jt T. Millward-Hopkins; Db B. Ingham;An analytical methodology for predicting above-roof mean wind speeds in urban areas is first used to map wind speeds over four different UK cities. The methodology utilises detailed geometric data describing buildings and vegetation to calculate the aerodynamic characteristics of the urban surfaces, and accounts for the influence of building height heterogeneity and wind direction upon wind profiles. The initial objective of the work is to determine the accuracy of the methodology when using detailed geometric data describing building roof shapes in addition to their heights, to estimate surface aerodynamic parameters. By integrating detailed LiDAR (light detection and ranging) data into the methodology and comparing the predictions with measured data, predictive accuracy is found to improve significantly with respect to previous results obtained using less detailed geometric datasets which describe each building with a single height. Subsequently, a preliminary evaluation of the cumulative, city-scale potential for generating wind energy is made, using the UK City of Leeds as a case study. The results suggest that from the point of view of wind resource, 2000 to 9500 viable building-mounted wind turbine locations may exist in Leeds, highlighting the potential for this technology to be far more widely deployed than has presently been achieved. However, the calculations are shown to be highly sensitive to the viable wind speed selected, which in turn depends on financial support and technological progress. An investigation is then made into where, in general, viable roof-top turbine locations may be found. The results suggest that there are viable sites distributed throughout the city, including within the complex city centre, where at the most suitable locations above-roof wind speeds may be comparable to those observed at well exposed rural sites. However, in residential areas, consisting of groups of buildings of similar heights, it is likely that the majority of properties will be unsuitable turbine locations. The wind maps and methodology described in this paper may be utilised by turbine suppliers and customers for assessing the viability of potential sites, as well as being instructive for policymakers developing subsidies for small-scale renewable energy projects.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2013.06.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2013.06.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV As S. Tomlin; Lin Ma; Mohamed Pourkashanian; Jt T. Millward-Hopkins; Db B. Ingham;An analytical methodology for predicting above-roof mean wind speeds in urban areas is first used to map wind speeds over four different UK cities. The methodology utilises detailed geometric data describing buildings and vegetation to calculate the aerodynamic characteristics of the urban surfaces, and accounts for the influence of building height heterogeneity and wind direction upon wind profiles. The initial objective of the work is to determine the accuracy of the methodology when using detailed geometric data describing building roof shapes in addition to their heights, to estimate surface aerodynamic parameters. By integrating detailed LiDAR (light detection and ranging) data into the methodology and comparing the predictions with measured data, predictive accuracy is found to improve significantly with respect to previous results obtained using less detailed geometric datasets which describe each building with a single height. Subsequently, a preliminary evaluation of the cumulative, city-scale potential for generating wind energy is made, using the UK City of Leeds as a case study. The results suggest that from the point of view of wind resource, 2000 to 9500 viable building-mounted wind turbine locations may exist in Leeds, highlighting the potential for this technology to be far more widely deployed than has presently been achieved. However, the calculations are shown to be highly sensitive to the viable wind speed selected, which in turn depends on financial support and technological progress. An investigation is then made into where, in general, viable roof-top turbine locations may be found. The results suggest that there are viable sites distributed throughout the city, including within the complex city centre, where at the most suitable locations above-roof wind speeds may be comparable to those observed at well exposed rural sites. However, in residential areas, consisting of groups of buildings of similar heights, it is likely that the majority of properties will be unsuitable turbine locations. The wind maps and methodology described in this paper may be utilised by turbine suppliers and customers for assessing the viability of potential sites, as well as being instructive for policymakers developing subsidies for small-scale renewable energy projects.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2013.06.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2013.06.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Celik, Y.; Ingham, D.; Ma, L.; Pourkashanian, M.;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.123881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.123881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Celik, Y.; Ingham, D.; Ma, L.; Pourkashanian, M.;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.123881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.123881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Derek B. Ingham; Lin Ma; Peng Xie; Xuesong Lu; Mohamed Pourkashanian;Abstract Rotating packed beds (RPBs) are promising to be employed for CO2 capture from the flue gas due to their high mass transfer efficiency. Therefore, good predictions of the mass transfer characteristics for RPBs are crucial for their design. In this paper, a method based on CFD simulation is proposed to investigate the liquid film flows and mass transfer characteristics within RPBs. Local mass transfer coefficients along the radial direction of an RPB have been obtained. The results obtained show that high surface roughness and high rotational speed enhance the CO2 absorption into the liquid film, thus generating a high mass transfer coefficient, and the larger the RPB radial position, the higher the mass transfer coefficient.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Derek B. Ingham; Lin Ma; Peng Xie; Xuesong Lu; Mohamed Pourkashanian;Abstract Rotating packed beds (RPBs) are promising to be employed for CO2 capture from the flue gas due to their high mass transfer efficiency. Therefore, good predictions of the mass transfer characteristics for RPBs are crucial for their design. In this paper, a method based on CFD simulation is proposed to investigate the liquid film flows and mass transfer characteristics within RPBs. Local mass transfer coefficients along the radial direction of an RPB have been obtained. The results obtained show that high surface roughness and high rotational speed enhance the CO2 absorption into the liquid film, thus generating a high mass transfer coefficient, and the larger the RPB radial position, the higher the mass transfer coefficient.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Elsevier BV Alfailakawi, M.S.; Michailos, S.; Ingham, D.B.; Hughes, K.J.; Ma, L.; Pourkashanian, M.;This work evaluates the Solar Power Tower performance in arid regions where elevated aerosols levels and water scarcity threaten solar applications feasibility. The work conducts an aerosols aware modelling and techno-economic assessment by considering possible aerosols effects on the solar field’s reflected irradiance; an effect that is typically ignored in the literature. Aerosols effect inclusion’s modifies the thermal input to the solar field and this, in turn, provides a more accurate assessment. A parametric analysis has been performed using a 50 MW model by varying the Thermal Energy Storage and Solar Multiple based on three aerosols temporal resolutions: a typical year’s average, daily and no-aerosols schemes. Further, water consumption is examined over four different condenser scenarios: dry, wet and two hybrid set ups. The assessment performed in Kuwait reveals that the wet-cooled condenser scenario with a 16h of storage and a solar multiple of 3.2 yields the lowest Levelized Cost of Energy of 12.06 $/kWh when the no-aerosols scheme is considered. This increases to 12.87 $/kWh when the daily aerosols are considered as the generated energy decreases by 6.7%. Besides, both hybrid condenser scenarios offer a trade-off as they result in a 55.1–68.7% of water saving for only 2.1–2.3% less energy generation.
CORE arrow_drop_down University of Hull: Repository@HullArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2022.102324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down University of Hull: Repository@HullArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2022.102324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Elsevier BV Alfailakawi, M.S.; Michailos, S.; Ingham, D.B.; Hughes, K.J.; Ma, L.; Pourkashanian, M.;This work evaluates the Solar Power Tower performance in arid regions where elevated aerosols levels and water scarcity threaten solar applications feasibility. The work conducts an aerosols aware modelling and techno-economic assessment by considering possible aerosols effects on the solar field’s reflected irradiance; an effect that is typically ignored in the literature. Aerosols effect inclusion’s modifies the thermal input to the solar field and this, in turn, provides a more accurate assessment. A parametric analysis has been performed using a 50 MW model by varying the Thermal Energy Storage and Solar Multiple based on three aerosols temporal resolutions: a typical year’s average, daily and no-aerosols schemes. Further, water consumption is examined over four different condenser scenarios: dry, wet and two hybrid set ups. The assessment performed in Kuwait reveals that the wet-cooled condenser scenario with a 16h of storage and a solar multiple of 3.2 yields the lowest Levelized Cost of Energy of 12.06 $/kWh when the no-aerosols scheme is considered. This increases to 12.87 $/kWh when the daily aerosols are considered as the generated energy decreases by 6.7%. Besides, both hybrid condenser scenarios offer a trade-off as they result in a 55.1–68.7% of water saving for only 2.1–2.3% less energy generation.
CORE arrow_drop_down University of Hull: Repository@HullArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2022.102324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down University of Hull: Repository@HullArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2022.102324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu