- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:IOP Publishing Authors: Kwang-Hyung Kim; Yasuhiro Doi; Navin Ramankutty; Toshichika Iizumi;Abstract Agricultural monitoring, seasonal crop forecasting and climate change adaptation planning all require identifying where, when, how and which crops are grown. Global gridded cropping system data products offer useful information for these applications. However, not only the main sources of information (satellites, censuses, surveys and models) but also the spatial and temporal resolutions of these data products are quite distant from each other because of different user requirements. This is a barrier to strengthening collaborations among the research communities working to increase the capacity of societies to manage climate risks for global food systems, from extreme weather disasters to climate change. A first step is to improve cropping system data products so they can be used more seamlessly across various applications than they are currently. Toward this goal, this article reviews global gridded data products of crop variables (area, yield, cropping intensity, etc) using systematic literature survey, identifies their current limitations, and suggests directions for future research. We found that cropland or crop type mapping and yield or production estimation/prediction together accounted for half of the research objectives of the reviewed studies. Satellite-based data products are dominant at the finer resolution in space and time (<10 km and daily to annual), while model-based data products are found at the coarser resolutions (>55 km and ⩾decadal). Census-based data products are seen at intermediate resolutions (10–55 km and annual to decadal). The suggested directions for future research include the hybridization of multiple sources of information, improvements to temporal coverage and resolution, the enrichment of management variables, the exploration of new sources of information, and comprehensiveness within a single data product.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac20f4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac20f4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 United States, Canada, Mexico, Canada, CanadaPublisher:Springer Science and Business Media LLC Funded by:NSERCNSERCAuthors: Corey Lesk; Navin Ramankutty; Navin Ramankutty; Pedram Rowhani;In recent years, a number of extreme weather disasters (EWDs) have partially or completely damaged regional crop production1–5. While detailed regional accounts of the impacts of EWDs exist, the global scale impacts of droughts, floods, and extreme temperature events on crop production are yet to be quantified. Here we estimate for the first time national cereal production losses across the globe resulting from reported extreme weather events over 1964-2007. We find that droughts and extreme heat events significantly reduced national cereal production by 9-10%, while our analysis could not identify a global impact from floods and extreme cold events. Analyzing the underlying processes, we find that production losses due to droughts were associated with a reduction in both harvested area and yields whereas extreme heat mainly decreased cereal yields. Additionally, the results highlight ~7% greater production impacts from more recent droughts and 8-11% more damage in developed countries compared to developing ones. Our findings may help guide agricultural priorities in international disaster risk reduction and adaptation efforts.
cIRcle arrow_drop_down cIRcleArticle . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/2429/68260Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature16467&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3K citations 2,606 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert cIRcle arrow_drop_down cIRcleArticle . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/2429/68260Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature16467&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:IOP Publishing Funded by:NSERCNSERCAuthors: Jordan Graesser; Navin Ramankutty; Oliver T Coomes;A combination of high commodity crop prices, rising global food demand, and technological advances has transformed the scale of global crop production. Farming in South America is a prime example, where large-scale cash crops, such as soy, have transformed the land use dynamics at the forest frontier. We evaluate this transformation in sub-Andean South America by estimating crop and forest cover and detecting individual cropland field parcels using Landsat imagery in 5 year intervals over a 24 year period. From 1990 to 2014, cropland expansion onto deforested land was increasingly driven by large fields (>50 ha), whose contribution increased from 32% to 48% (+16% increase), while the contribution of smaller fields (<20 ha) declined from 36% to 26% (−10% decrease). This shift toward large-scale farming replacing cleared land across the region has important implications for food security and biodiversity conservation. Policy efforts will need to target different actors and transcend national borders in order to tackle the changing nature of South American deforestation.
Environmental Resear... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aad5bf&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Resear... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aad5bf&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 Netherlands, Netherlands, Germany, United KingdomPublisher:Copernicus GmbH Matthew C. Hansen; Joanna Isobel House; C. Le Quéré; Julia Pongratz; Julia Pongratz; G. R. van der Werf; Navin Ramankutty; Richard A. Houghton; Ruth DeFries;Abstract. The net flux of carbon from land use and land-cover change (LULCC) accounted for 12.5% of anthropogenic carbon emissions from 1990 to 2010. This net flux is the most uncertain term in the global carbon budget, not only because of uncertainties in rates of deforestation and forestation, but also because of uncertainties in the carbon density of the lands actually undergoing change. Furthermore, there are differences in approaches used to determine the flux that introduce variability into estimates in ways that are difficult to evaluate, and not all analyses consider the same types of management activities. Thirteen recent estimates of net carbon emissions from LULCC are summarized here. In addition to deforestation, all analyses considered changes in the area of agricultural lands (croplands and pastures). Some considered, also, forest management (wood harvest, shifting cultivation). None included emissions from the degradation of tropical peatlands. Means and standard deviations across the thirteen model estimates of annual emissions for the 1980s and 1990s, respectively, are 1.14 ± 0.23 and 1.12 ± 0.25 Pg C yr−1 (1 Pg = 1015 g carbon). Four studies also considered the period 2000–2009, and the mean and standard deviations across these four for the three decades are 1.14 ± 0.39, 1.17 ± 0.32, and 1.10 ± 0.11 Pg C yr−1. For the period 1990–2009 the mean global emissions from LULCC are 1.14 ± 0.18 Pg C yr−1. The standard deviations across model means shown here are smaller than previous estimates of uncertainty as they do not account for the errors that result from data uncertainty and from an incomplete understanding of all the processes affecting the net flux of carbon from LULCC. Although these errors have not been systematically evaluated, based on partial analyses available in the literature and expert opinion, they are estimated to be on the order of ± 0.5 Pg C yr−1.
Biogeosciences (BG) arrow_drop_down Biogeosciences (BG)Article . 2012University of Bristol: Bristol ResearchArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-9-5125-2012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 966 citations 966 popularity Top 0.1% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert Biogeosciences (BG) arrow_drop_down Biogeosciences (BG)Article . 2012University of Bristol: Bristol ResearchArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-9-5125-2012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Germany, Netherlands, Italy, Italy, United KingdomPublisher:IOP Publishing Funded by:NSERCNSERCMartellozzo F.; Landry J.-S.; Plouffe D.; Seufert V.; Rowhani P.; Ramankutty N.;Urban agriculture (UA) has been drawing a lot of attention recently for several reasons: the majority of the world population has shifted from living in rural to urban areas; the environmental impact of agriculture is a matter of rising concern; and food insecurity, especially the accessibility of food, remains a major challenge. UA has often been proposed as a solution to some of these issues, for example by producing food in places where population density is highest, reducing transportation costs, connecting people directly to food systems and using urban areas efficiently. However, to date no study has examined how much food could actually be produced in urban areas at the global scale. Here we use a simple approach, based on different global-scale datasets, to assess to what extent UA is constrained by the existing amount of urban space. Our results suggest that UA would require roughly one third of the total global urban area to meet the global vegetable consumption of urban dwellers. This estimate does not consider how much urban area may actually be suitable and available for UA, which likely varies substantially around the world and according to the type of UA performed. Further, this global average value masks variations of more than two orders of magnitude among individual countries. The variations in the space required across countries derive mostly from variations in urban population density, and much less from variations in yields or per capita consumption. Overall, the space required is regrettably the highest where UA is most needed, i.e., in more food insecure countries. We also show that smaller urban clusters (i.e., <100 km2 each) together represent about two thirds of the global urban extent; thus UA discourse and policies should not focus on large cities exclusively, but should also target smaller urban areas that offer the greatest potential in terms of physical space.
CORE arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Environmental Research LettersArticle . 2014Archivio della ricerca- Università di Roma La SapienzaArticle . 2014Data sources: Archivio della ricerca- Università di Roma La Sapienzaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/9/6/064025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 144 citations 144 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Environmental Research LettersArticle . 2014Archivio della ricerca- Università di Roma La SapienzaArticle . 2014Data sources: Archivio della ricerca- Università di Roma La Sapienzaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/9/6/064025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:IOP Publishing Funded by:SSHRC, NSERCSSHRC ,NSERCAuthors: Navin Ramankutty; Hadi Dowlatabadi;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac1e3f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac1e3f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:IOP Publishing Authors: Thomas W Hertel; Elena Irwin; Stephen Polasky; Navin Ramankutty;Abstract This special issue is the outcome of a workshop held at Purdue University in April 2022. It comprises thematic syntheses of five overarching dimensions of the Global-to-Local-to-Global (GLG) challenge to ensuring the long-term sustainability of land and water resources. These thematic dimensions include: climate change, ecosystems and biodiversity, governance, water resources and cyberinfrastructure. In addition, there are eight applications of GLG analysis to specific land and water sustainability challenges, ranging from environmental stress in the Amazon River Basin to groundwater depletion in the United States. Based on these papers, we conclude that, without fine-scale, local analysis, interventions focusing on land and water sustainability will likely be misguided. But formulating such policies without the broader, national/global context is also problematic – both from the point of view of the global drivers of local sustainability stresses, as well as to capture unanticipated spillovers. In addition, because local and global systems are connected to – and mediated by – meso-scale processes, accounting for key meso-scale phenomena, such as labor market functioning, is critical for characterizing GLG interactions. We also conclude that there is great scope for increasing the complexity of GLG analysis in future work. However, this carries significant risks. Increased complexity can outstrip data and modeling capabilities, slow down research, make results more difficult to understand and interpret, and complicate effective communication with decision-makers and other users of the analyses. We believe that research guidance regarding appropriate complexity is a high priority in the emerging field of Global-Local-Global analysis of sustainability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/acf8da&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/acf8da&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 Canada, United States, Canada, Mexico, CanadaPublisher:Springer Science and Business Media LLC Funded by:NSERCNSERCAuthors: Zia Mehrabi; Navin Ramankutty;Multiple breadbasket failure is a risk to global food security. However, there are no global analyses that have quantitatively assessed if global crop production has actually tended towards synchronized failure historically. We show that synchronization in production within major commodities such as maize and soybean has declined in recent decades, leading to increased global stability in production of these crops. In contrast, synchrony between crops has peaked, making global calorie production more unstable. Under the hypothetical event of complete synchronized failure we estimate simultaneous global production losses for rice, wheat, soybean and maize to lie between −17% and −34%. We find that offsetting these losses by reducing variation in production across all growing locations, and raising production ceilings in breadbaskets, are far more effective than strategies focused on reducing variability in breadbaskets alone or closing production gaps in low productive locations. Our findings suggest that maintaining asynchrony in the food system requires a central place in discussions of future food demand under mean climate change, population growth and consumption trends.
cIRcle arrow_drop_down cIRcleArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/2429/70224Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2019 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-019-0862-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 85 citations 85 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert cIRcle arrow_drop_down cIRcleArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/2429/70224Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2019 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-019-0862-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 FrancePublisher:Springer Science and Business Media LLC Funded by:NSERCNSERCZia Mehrabi; Margaret Gill; Mark van Wijk; Mario Herrero; Navin Ramankutty;handle: 10568/108142
The production and consumption of livestock products are under examination on environmental, human health and animal welfare grounds. However, a wealth of evidence suggests that the livestock sector has complex interactions with the UN Sustainable Development Goals, with both the problem and solution spaces for livestock interventions varying depending on the context. To circumvent the uncertainty associated with incomplete or conflicting evidence for making policy recommendations, we suggest a sharper focus on local solutions to global targets, as well as due attention to cross-scale feedbacks that occur between them. Our analysis offers a lens that focuses on balancing both the costs and benefits of the livestock sector, and can be used to define better livestock policy that steers the planet towards a more sustainable and food-secure future. Livestock products are under scrutiny from environmental, human health and animal welfare perspectives. Future policy decisions must address and represent the complexity of the interactions between livestock and the Sustainable Development Goals, and beyond.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43016-020-0042-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 125 citations 125 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43016-020-0042-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:IOP Publishing Authors: Balsher Singh Sidhu; Zia Mehrabi; Navin Ramankutty; Milind Kandlikar;Abstract Ordinary least squares linear regression (LR) has long been a popular choice among researchers interested in using historical data for estimating crop yield response to climate change. Today, the rapidly growing field of machine learning (ML) offers a wide range of advanced statistical tools that are increasingly being used for more accurate estimates of this relationship. This study compares LR to a popular ML technique called boosted regression trees (BRTs). We find that BRTs provide a significantly better prediction accuracy compared to various LR specifications, including those fitting quadratic and piece-wise linear functions. BRTs are also able to identify break points where the relationship between climate and yield undergoes significant shifts (for example, increasing yields with precipitation followed by a plateauing of the relationship beyond a certain point). Tests we performed with synthetically simulated climate and crop yield data showed that BRTs can automatically account for not only spatial variation in climate–yield relationships, but also interactions between different variables that affect crop yields. We then used both statistical techniques to estimate the influence of historical climate change on rice, wheat, and pearl millet in India. BRTs predicted a considerably smaller negative impact compared to LR. This may be an artifact of BRTs conflating time and climate variables, signaling a potential weakness of models with excessively flexible functional forms for inferring climate impacts on agriculture. Our findings thus suggest caution while interpreting the results from single-model analyses, especially in regions with highly varied climate and agricultural practices.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/acb164&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/acb164&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:IOP Publishing Authors: Kwang-Hyung Kim; Yasuhiro Doi; Navin Ramankutty; Toshichika Iizumi;Abstract Agricultural monitoring, seasonal crop forecasting and climate change adaptation planning all require identifying where, when, how and which crops are grown. Global gridded cropping system data products offer useful information for these applications. However, not only the main sources of information (satellites, censuses, surveys and models) but also the spatial and temporal resolutions of these data products are quite distant from each other because of different user requirements. This is a barrier to strengthening collaborations among the research communities working to increase the capacity of societies to manage climate risks for global food systems, from extreme weather disasters to climate change. A first step is to improve cropping system data products so they can be used more seamlessly across various applications than they are currently. Toward this goal, this article reviews global gridded data products of crop variables (area, yield, cropping intensity, etc) using systematic literature survey, identifies their current limitations, and suggests directions for future research. We found that cropland or crop type mapping and yield or production estimation/prediction together accounted for half of the research objectives of the reviewed studies. Satellite-based data products are dominant at the finer resolution in space and time (<10 km and daily to annual), while model-based data products are found at the coarser resolutions (>55 km and ⩾decadal). Census-based data products are seen at intermediate resolutions (10–55 km and annual to decadal). The suggested directions for future research include the hybridization of multiple sources of information, improvements to temporal coverage and resolution, the enrichment of management variables, the exploration of new sources of information, and comprehensiveness within a single data product.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac20f4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac20f4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 United States, Canada, Mexico, Canada, CanadaPublisher:Springer Science and Business Media LLC Funded by:NSERCNSERCAuthors: Corey Lesk; Navin Ramankutty; Navin Ramankutty; Pedram Rowhani;In recent years, a number of extreme weather disasters (EWDs) have partially or completely damaged regional crop production1–5. While detailed regional accounts of the impacts of EWDs exist, the global scale impacts of droughts, floods, and extreme temperature events on crop production are yet to be quantified. Here we estimate for the first time national cereal production losses across the globe resulting from reported extreme weather events over 1964-2007. We find that droughts and extreme heat events significantly reduced national cereal production by 9-10%, while our analysis could not identify a global impact from floods and extreme cold events. Analyzing the underlying processes, we find that production losses due to droughts were associated with a reduction in both harvested area and yields whereas extreme heat mainly decreased cereal yields. Additionally, the results highlight ~7% greater production impacts from more recent droughts and 8-11% more damage in developed countries compared to developing ones. Our findings may help guide agricultural priorities in international disaster risk reduction and adaptation efforts.
cIRcle arrow_drop_down cIRcleArticle . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/2429/68260Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature16467&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3K citations 2,606 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert cIRcle arrow_drop_down cIRcleArticle . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/2429/68260Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature16467&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:IOP Publishing Funded by:NSERCNSERCAuthors: Jordan Graesser; Navin Ramankutty; Oliver T Coomes;A combination of high commodity crop prices, rising global food demand, and technological advances has transformed the scale of global crop production. Farming in South America is a prime example, where large-scale cash crops, such as soy, have transformed the land use dynamics at the forest frontier. We evaluate this transformation in sub-Andean South America by estimating crop and forest cover and detecting individual cropland field parcels using Landsat imagery in 5 year intervals over a 24 year period. From 1990 to 2014, cropland expansion onto deforested land was increasingly driven by large fields (>50 ha), whose contribution increased from 32% to 48% (+16% increase), while the contribution of smaller fields (<20 ha) declined from 36% to 26% (−10% decrease). This shift toward large-scale farming replacing cleared land across the region has important implications for food security and biodiversity conservation. Policy efforts will need to target different actors and transcend national borders in order to tackle the changing nature of South American deforestation.
Environmental Resear... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aad5bf&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Resear... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aad5bf&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 Netherlands, Netherlands, Germany, United KingdomPublisher:Copernicus GmbH Matthew C. Hansen; Joanna Isobel House; C. Le Quéré; Julia Pongratz; Julia Pongratz; G. R. van der Werf; Navin Ramankutty; Richard A. Houghton; Ruth DeFries;Abstract. The net flux of carbon from land use and land-cover change (LULCC) accounted for 12.5% of anthropogenic carbon emissions from 1990 to 2010. This net flux is the most uncertain term in the global carbon budget, not only because of uncertainties in rates of deforestation and forestation, but also because of uncertainties in the carbon density of the lands actually undergoing change. Furthermore, there are differences in approaches used to determine the flux that introduce variability into estimates in ways that are difficult to evaluate, and not all analyses consider the same types of management activities. Thirteen recent estimates of net carbon emissions from LULCC are summarized here. In addition to deforestation, all analyses considered changes in the area of agricultural lands (croplands and pastures). Some considered, also, forest management (wood harvest, shifting cultivation). None included emissions from the degradation of tropical peatlands. Means and standard deviations across the thirteen model estimates of annual emissions for the 1980s and 1990s, respectively, are 1.14 ± 0.23 and 1.12 ± 0.25 Pg C yr−1 (1 Pg = 1015 g carbon). Four studies also considered the period 2000–2009, and the mean and standard deviations across these four for the three decades are 1.14 ± 0.39, 1.17 ± 0.32, and 1.10 ± 0.11 Pg C yr−1. For the period 1990–2009 the mean global emissions from LULCC are 1.14 ± 0.18 Pg C yr−1. The standard deviations across model means shown here are smaller than previous estimates of uncertainty as they do not account for the errors that result from data uncertainty and from an incomplete understanding of all the processes affecting the net flux of carbon from LULCC. Although these errors have not been systematically evaluated, based on partial analyses available in the literature and expert opinion, they are estimated to be on the order of ± 0.5 Pg C yr−1.
Biogeosciences (BG) arrow_drop_down Biogeosciences (BG)Article . 2012University of Bristol: Bristol ResearchArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-9-5125-2012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 966 citations 966 popularity Top 0.1% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert Biogeosciences (BG) arrow_drop_down Biogeosciences (BG)Article . 2012University of Bristol: Bristol ResearchArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-9-5125-2012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Germany, Netherlands, Italy, Italy, United KingdomPublisher:IOP Publishing Funded by:NSERCNSERCMartellozzo F.; Landry J.-S.; Plouffe D.; Seufert V.; Rowhani P.; Ramankutty N.;Urban agriculture (UA) has been drawing a lot of attention recently for several reasons: the majority of the world population has shifted from living in rural to urban areas; the environmental impact of agriculture is a matter of rising concern; and food insecurity, especially the accessibility of food, remains a major challenge. UA has often been proposed as a solution to some of these issues, for example by producing food in places where population density is highest, reducing transportation costs, connecting people directly to food systems and using urban areas efficiently. However, to date no study has examined how much food could actually be produced in urban areas at the global scale. Here we use a simple approach, based on different global-scale datasets, to assess to what extent UA is constrained by the existing amount of urban space. Our results suggest that UA would require roughly one third of the total global urban area to meet the global vegetable consumption of urban dwellers. This estimate does not consider how much urban area may actually be suitable and available for UA, which likely varies substantially around the world and according to the type of UA performed. Further, this global average value masks variations of more than two orders of magnitude among individual countries. The variations in the space required across countries derive mostly from variations in urban population density, and much less from variations in yields or per capita consumption. Overall, the space required is regrettably the highest where UA is most needed, i.e., in more food insecure countries. We also show that smaller urban clusters (i.e., <100 km2 each) together represent about two thirds of the global urban extent; thus UA discourse and policies should not focus on large cities exclusively, but should also target smaller urban areas that offer the greatest potential in terms of physical space.
CORE arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Environmental Research LettersArticle . 2014Archivio della ricerca- Università di Roma La SapienzaArticle . 2014Data sources: Archivio della ricerca- Università di Roma La Sapienzaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/9/6/064025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 144 citations 144 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Environmental Research LettersArticle . 2014Archivio della ricerca- Università di Roma La SapienzaArticle . 2014Data sources: Archivio della ricerca- Università di Roma La Sapienzaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/9/6/064025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:IOP Publishing Funded by:SSHRC, NSERCSSHRC ,NSERCAuthors: Navin Ramankutty; Hadi Dowlatabadi;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac1e3f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac1e3f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:IOP Publishing Authors: Thomas W Hertel; Elena Irwin; Stephen Polasky; Navin Ramankutty;Abstract This special issue is the outcome of a workshop held at Purdue University in April 2022. It comprises thematic syntheses of five overarching dimensions of the Global-to-Local-to-Global (GLG) challenge to ensuring the long-term sustainability of land and water resources. These thematic dimensions include: climate change, ecosystems and biodiversity, governance, water resources and cyberinfrastructure. In addition, there are eight applications of GLG analysis to specific land and water sustainability challenges, ranging from environmental stress in the Amazon River Basin to groundwater depletion in the United States. Based on these papers, we conclude that, without fine-scale, local analysis, interventions focusing on land and water sustainability will likely be misguided. But formulating such policies without the broader, national/global context is also problematic – both from the point of view of the global drivers of local sustainability stresses, as well as to capture unanticipated spillovers. In addition, because local and global systems are connected to – and mediated by – meso-scale processes, accounting for key meso-scale phenomena, such as labor market functioning, is critical for characterizing GLG interactions. We also conclude that there is great scope for increasing the complexity of GLG analysis in future work. However, this carries significant risks. Increased complexity can outstrip data and modeling capabilities, slow down research, make results more difficult to understand and interpret, and complicate effective communication with decision-makers and other users of the analyses. We believe that research guidance regarding appropriate complexity is a high priority in the emerging field of Global-Local-Global analysis of sustainability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/acf8da&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/acf8da&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 Canada, United States, Canada, Mexico, CanadaPublisher:Springer Science and Business Media LLC Funded by:NSERCNSERCAuthors: Zia Mehrabi; Navin Ramankutty;Multiple breadbasket failure is a risk to global food security. However, there are no global analyses that have quantitatively assessed if global crop production has actually tended towards synchronized failure historically. We show that synchronization in production within major commodities such as maize and soybean has declined in recent decades, leading to increased global stability in production of these crops. In contrast, synchrony between crops has peaked, making global calorie production more unstable. Under the hypothetical event of complete synchronized failure we estimate simultaneous global production losses for rice, wheat, soybean and maize to lie between −17% and −34%. We find that offsetting these losses by reducing variation in production across all growing locations, and raising production ceilings in breadbaskets, are far more effective than strategies focused on reducing variability in breadbaskets alone or closing production gaps in low productive locations. Our findings suggest that maintaining asynchrony in the food system requires a central place in discussions of future food demand under mean climate change, population growth and consumption trends.
cIRcle arrow_drop_down cIRcleArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/2429/70224Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2019 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-019-0862-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 85 citations 85 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert cIRcle arrow_drop_down cIRcleArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/2429/70224Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2019 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-019-0862-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 FrancePublisher:Springer Science and Business Media LLC Funded by:NSERCNSERCZia Mehrabi; Margaret Gill; Mark van Wijk; Mario Herrero; Navin Ramankutty;handle: 10568/108142
The production and consumption of livestock products are under examination on environmental, human health and animal welfare grounds. However, a wealth of evidence suggests that the livestock sector has complex interactions with the UN Sustainable Development Goals, with both the problem and solution spaces for livestock interventions varying depending on the context. To circumvent the uncertainty associated with incomplete or conflicting evidence for making policy recommendations, we suggest a sharper focus on local solutions to global targets, as well as due attention to cross-scale feedbacks that occur between them. Our analysis offers a lens that focuses on balancing both the costs and benefits of the livestock sector, and can be used to define better livestock policy that steers the planet towards a more sustainable and food-secure future. Livestock products are under scrutiny from environmental, human health and animal welfare perspectives. Future policy decisions must address and represent the complexity of the interactions between livestock and the Sustainable Development Goals, and beyond.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43016-020-0042-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 125 citations 125 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43016-020-0042-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:IOP Publishing Authors: Balsher Singh Sidhu; Zia Mehrabi; Navin Ramankutty; Milind Kandlikar;Abstract Ordinary least squares linear regression (LR) has long been a popular choice among researchers interested in using historical data for estimating crop yield response to climate change. Today, the rapidly growing field of machine learning (ML) offers a wide range of advanced statistical tools that are increasingly being used for more accurate estimates of this relationship. This study compares LR to a popular ML technique called boosted regression trees (BRTs). We find that BRTs provide a significantly better prediction accuracy compared to various LR specifications, including those fitting quadratic and piece-wise linear functions. BRTs are also able to identify break points where the relationship between climate and yield undergoes significant shifts (for example, increasing yields with precipitation followed by a plateauing of the relationship beyond a certain point). Tests we performed with synthetically simulated climate and crop yield data showed that BRTs can automatically account for not only spatial variation in climate–yield relationships, but also interactions between different variables that affect crop yields. We then used both statistical techniques to estimate the influence of historical climate change on rice, wheat, and pearl millet in India. BRTs predicted a considerably smaller negative impact compared to LR. This may be an artifact of BRTs conflating time and climate variables, signaling a potential weakness of models with excessively flexible functional forms for inferring climate impacts on agriculture. Our findings thus suggest caution while interpreting the results from single-model analyses, especially in regions with highly varied climate and agricultural practices.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/acb164&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/acb164&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu