- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021 MalaysiaPublisher:Springer Science and Business Media LLC Mohd Ali Hashim; Andrew T. H. Yeow; Farouq S. Mjalli; Hanee F. Hizaddin; Falah D. H. Alajmi; Ahmaad Kadmouse Aldeehani; Abdullah S. M. Aljohani; Adeeb Hayyan; Yousef Alharbi; Jehad Saleh; Khalid M. Abed; Khalid M. Abed; Inas Al Nashef; Fahad A. Alhumaydhi; Abdul Aziz Ahmad; Ali Abo-Hamad;A novel encapsulated deep eutectic solvent (DES) was introduced for biodiesel production via a two-step process. The DES was encapsulated in medical capsules and were used to reduce the free fatty acid (FFA) content of acidic crude palm oil (ACPO) to the minimum acceptable level (< 1%). The DES was synthesized from methyltriphenylphosphonium bromide (MTPB) and p-toluenesulfonic acid (PTSA). The effects pertaining to different operating conditions such as capsule dosage, reaction time, molar ratio, and reaction temperature were optimized. The FFA content of ACPO was reduced from existing 9.61% to less than 1% under optimum operating conditions. This indicated that encapsulated MTPB-DES performed high catalytic activity in FFA esterification reaction and showed considerable activity even after four consecutive recycling runs. The produced biodiesel after acid esterification and alkaline transesterification met the EN14214 international biodiesel standard specifications. To our best knowledge, this is the first study to introduce an acidic catalyst in capsule form. This method presents a new route for the safe storage of new materials to be used for biofuel production. Conductor-like screening model for real solvents (COSMO-RS) representation of the DES using σ-profile and σ-potential graphs indicated that MTPB and PTSA is a compatible combination due to the balanced presence and affinity towards hydrogen bond donor and hydrogen bond acceptor in each constituent.
Biomass Conversion a... arrow_drop_down Biomass Conversion and BiorefineryArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversity of Malaya: UM Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13399-021-01913-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Biomass Conversion a... arrow_drop_down Biomass Conversion and BiorefineryArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversity of Malaya: UM Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13399-021-01913-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 MalaysiaPublisher:MDPI AG Wan Jefrey Basirun; Syed Tawab Shah; Md. Shalauddin; Shamima Akhter; Nazzatush Shimar Jamaludin; Adeeb Hayyan;doi: 10.3390/en16010015
The recycling of sodium borohydride poses a huge challenge to the drive towards a hydrogen economy. Currently, mechano-chemical, thermo-chemical and electrochemical are the only reported methods of recycling sodium metaborate into sodium borohydride. Much attention has been devoted to the mechano-chemical and thermo-chemical methods of reduction, but little focus has been devoted to electrochemical methods. This review describes the electrochemical behaviour of borohydride (BH4−) and metaborate (BO2−) anions in alkaline solutions. The BH4− is stabilized in highly concentrated alkaline solutions, while the electro-oxidation of BH4− is dependent on the type of electrode material. The attempts to electro-reduce the BO2− into BH4− is reviewed and the challenges, suggestions and future outlook of electro-reduction for the recycling of BO2− into BH4− is highlighted.
Energies arrow_drop_down University of Malaya: UM Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down University of Malaya: UM Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 MalaysiaPublisher:Springer Science and Business Media LLC Authors: Hayyan, A.; Hashim, M.A.; Hayyan, M.;Mixed industrial palm oil (MIPO) is proposed in this study as a renewable and agro-industrial raw material to produce biodiesel fuel. MIPO was obtained by mixing of acidic crude palm oil with sludge palm oil. Due to the high level of free fatty acid (FFA) in MIPO (8.5 %), esterification is needed to remove the acidity to the minimum level before biodiesel production. This is the first time 1-propanesulphonic acid (1-PSA) has been introduced as a catalyst for the pretreatment of MIPO. Using optimum conditions, the FFA content was successfully reduced from 8.5 % to less than 1 %. The biodiesel produced meets the international standards (ASTM D6751 and EN 14214). 1-PSA is therefore a promising catalyst that can be used to treat various types of acidic oils.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-014-9502-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-014-9502-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Maan Hayyan; Mohd Ali Hashim; Khor Gui Qing; Adeeb Hayyan;AbstractPerchloric acid was used as a catalyst for the treatment of free fatty acid (FFA) in acidic crude palm oil (ACPO). Perchloric acid shows reduced the FFA content from 8.8% to 1% using 1% of acid to ACPO and the conversion of FFA to fatty acid methyl ester (FAME) was 88%. The produced biodiesel from treated ACPO meets international biodiesel standards such as EN 14214 and ASTM D6751. Perchloric acid shows high catalytic activity for the conversion of FFA to FAME and can be used to treat a wide range of acidic oils and fats.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.12.295&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.12.295&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 MalaysiaPublisher:MDPI AG Khalid M. Abed; Adeeb Hayyan; Amal A. M. Elgharbawy; Hanee F. Hizaddin; Mohd Ali Hashim; Hassimi Abu Hasan; Mahar Diana Hamid; Fathiah M. Zuki; Jehad Saleh; Ahmad GH Aldaihani;This study concerns the role of activated carbon (AC) from palm raceme as a support material for the enhancement of lipase-catalyzed reactions in an aqueous solution, with deep eutectic solvent (DES) as a co-solvent. The effects of carbonization temperature, impregnation ratio, and carbonization time on lipase activity were studied. The activities of Amano lipase from Burkholderia cepacia (AML) and lipase from the porcine pancreas (PPL) were used to investigate the optimum conditions for AC preparation. The results showed that AC has more interaction with PPL and effectively provides greater enzymatic activity compared with AML. The optimum treatment conditions of AC samples that yield the highest enzymatic activity were 0.5 (NaOH (g)/palm raceme (g)), 150 min, and a carbonization temperature of 400 °C. DES was prepared from alanine/sodium hydroxide and used with AC for the further enhancement of enzymatic activity. Kinetic studies demonstrated that the activity of PPL was enhanced with the immobilization of AC in a DES medium.
Molecules arrow_drop_down MoleculesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1420-3049/27/24/8734/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Malaya: UM Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/molecules27248734&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Molecules arrow_drop_down MoleculesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1420-3049/27/24/8734/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Malaya: UM Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/molecules27248734&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 MalaysiaPublisher:Springer Science and Business Media LLC Mohd Ali Hashim; Andrew T. H. Yeow; Farouq S. Mjalli; Hanee F. Hizaddin; Falah D. H. Alajmi; Ahmaad Kadmouse Aldeehani; Abdullah S. M. Aljohani; Adeeb Hayyan; Yousef Alharbi; Jehad Saleh; Khalid M. Abed; Khalid M. Abed; Inas Al Nashef; Fahad A. Alhumaydhi; Abdul Aziz Ahmad; Ali Abo-Hamad;A novel encapsulated deep eutectic solvent (DES) was introduced for biodiesel production via a two-step process. The DES was encapsulated in medical capsules and were used to reduce the free fatty acid (FFA) content of acidic crude palm oil (ACPO) to the minimum acceptable level (< 1%). The DES was synthesized from methyltriphenylphosphonium bromide (MTPB) and p-toluenesulfonic acid (PTSA). The effects pertaining to different operating conditions such as capsule dosage, reaction time, molar ratio, and reaction temperature were optimized. The FFA content of ACPO was reduced from existing 9.61% to less than 1% under optimum operating conditions. This indicated that encapsulated MTPB-DES performed high catalytic activity in FFA esterification reaction and showed considerable activity even after four consecutive recycling runs. The produced biodiesel after acid esterification and alkaline transesterification met the EN14214 international biodiesel standard specifications. To our best knowledge, this is the first study to introduce an acidic catalyst in capsule form. This method presents a new route for the safe storage of new materials to be used for biofuel production. Conductor-like screening model for real solvents (COSMO-RS) representation of the DES using σ-profile and σ-potential graphs indicated that MTPB and PTSA is a compatible combination due to the balanced presence and affinity towards hydrogen bond donor and hydrogen bond acceptor in each constituent.
Biomass Conversion a... arrow_drop_down Biomass Conversion and BiorefineryArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversity of Malaya: UM Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13399-021-01913-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Biomass Conversion a... arrow_drop_down Biomass Conversion and BiorefineryArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversity of Malaya: UM Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13399-021-01913-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 MalaysiaPublisher:MDPI AG Wan Jefrey Basirun; Syed Tawab Shah; Md. Shalauddin; Shamima Akhter; Nazzatush Shimar Jamaludin; Adeeb Hayyan;doi: 10.3390/en16010015
The recycling of sodium borohydride poses a huge challenge to the drive towards a hydrogen economy. Currently, mechano-chemical, thermo-chemical and electrochemical are the only reported methods of recycling sodium metaborate into sodium borohydride. Much attention has been devoted to the mechano-chemical and thermo-chemical methods of reduction, but little focus has been devoted to electrochemical methods. This review describes the electrochemical behaviour of borohydride (BH4−) and metaborate (BO2−) anions in alkaline solutions. The BH4− is stabilized in highly concentrated alkaline solutions, while the electro-oxidation of BH4− is dependent on the type of electrode material. The attempts to electro-reduce the BO2− into BH4− is reviewed and the challenges, suggestions and future outlook of electro-reduction for the recycling of BO2− into BH4− is highlighted.
Energies arrow_drop_down University of Malaya: UM Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down University of Malaya: UM Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 MalaysiaPublisher:Springer Science and Business Media LLC Authors: Hayyan, A.; Hashim, M.A.; Hayyan, M.;Mixed industrial palm oil (MIPO) is proposed in this study as a renewable and agro-industrial raw material to produce biodiesel fuel. MIPO was obtained by mixing of acidic crude palm oil with sludge palm oil. Due to the high level of free fatty acid (FFA) in MIPO (8.5 %), esterification is needed to remove the acidity to the minimum level before biodiesel production. This is the first time 1-propanesulphonic acid (1-PSA) has been introduced as a catalyst for the pretreatment of MIPO. Using optimum conditions, the FFA content was successfully reduced from 8.5 % to less than 1 %. The biodiesel produced meets the international standards (ASTM D6751 and EN 14214). 1-PSA is therefore a promising catalyst that can be used to treat various types of acidic oils.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-014-9502-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-014-9502-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Maan Hayyan; Mohd Ali Hashim; Khor Gui Qing; Adeeb Hayyan;AbstractPerchloric acid was used as a catalyst for the treatment of free fatty acid (FFA) in acidic crude palm oil (ACPO). Perchloric acid shows reduced the FFA content from 8.8% to 1% using 1% of acid to ACPO and the conversion of FFA to fatty acid methyl ester (FAME) was 88%. The produced biodiesel from treated ACPO meets international biodiesel standards such as EN 14214 and ASTM D6751. Perchloric acid shows high catalytic activity for the conversion of FFA to FAME and can be used to treat a wide range of acidic oils and fats.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.12.295&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.12.295&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 MalaysiaPublisher:MDPI AG Khalid M. Abed; Adeeb Hayyan; Amal A. M. Elgharbawy; Hanee F. Hizaddin; Mohd Ali Hashim; Hassimi Abu Hasan; Mahar Diana Hamid; Fathiah M. Zuki; Jehad Saleh; Ahmad GH Aldaihani;This study concerns the role of activated carbon (AC) from palm raceme as a support material for the enhancement of lipase-catalyzed reactions in an aqueous solution, with deep eutectic solvent (DES) as a co-solvent. The effects of carbonization temperature, impregnation ratio, and carbonization time on lipase activity were studied. The activities of Amano lipase from Burkholderia cepacia (AML) and lipase from the porcine pancreas (PPL) were used to investigate the optimum conditions for AC preparation. The results showed that AC has more interaction with PPL and effectively provides greater enzymatic activity compared with AML. The optimum treatment conditions of AC samples that yield the highest enzymatic activity were 0.5 (NaOH (g)/palm raceme (g)), 150 min, and a carbonization temperature of 400 °C. DES was prepared from alanine/sodium hydroxide and used with AC for the further enhancement of enzymatic activity. Kinetic studies demonstrated that the activity of PPL was enhanced with the immobilization of AC in a DES medium.
Molecules arrow_drop_down MoleculesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1420-3049/27/24/8734/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Malaya: UM Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/molecules27248734&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Molecules arrow_drop_down MoleculesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1420-3049/27/24/8734/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Malaya: UM Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/molecules27248734&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu