- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018 Italy, Saudi Arabia, Saudi ArabiaPublisher:American Meteorological Society Langodan Sabique; Cavaleri Luigi; Pomaro Angela; Portilla Jesus; Abualnaja Yasser; Hoteit Ibrahim;handle: 20.500.14243/343026 , 11573/1672142 , 10754/626772
The wind and wave climatology of the Red Sea is derived from a validated 30-yr high-resolution model simulation. After describing the relevant features of the basin, the main wind and wave systems are identified by using an innovative spectral partition technique to explain their genesis and characteristics. In the northern part of the sea, wind and waves of the same intensity are present throughout the year, while the central and southern zones are characterized by a marked seasonality. The partition technique allows the association of a general decrease in the energy of the different wave systems with a specific weather pattern. The most intense decrease is found in the northern storms, which are associated with meteorological pulses from the Mediterranean Sea.
IRIS Cnr arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2018Data sources: Archivio della ricerca- Università di Roma La SapienzaKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/jcli-d-17-0295.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2018Data sources: Archivio della ricerca- Università di Roma La SapienzaKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/jcli-d-17-0295.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 Saudi Arabia, United Kingdom, Saudi ArabiaPublisher:Springer Science and Business Media LLC Authors: Gittings, JA; Raitsos, DE; Krokos, G; Hoteit, I;AbstractIn the tropics, thermal stratification (during warm conditions) may contribute to a shallowing of the mixed layer above the nutricline and a reduction in the transfer of nutrients to the surface lit-layer, ultimately limiting phytoplankton growth. Using remotely sensed observations and modelled datasets, we study such linkages in the northern Red Sea (NRS) - a typical tropical marine ecosystem. We assess the interannual variability (1998–2015) of both phytoplankton biomass and phenological indices (timing of bloom initiation, duration and termination) in relation to regional warming. We demonstrate that warmer conditions in the NRS are associated with substantially weaker winter phytoplankton blooms, which initiate later, terminate earlier and are shorter in their overall duration (~ 4 weeks). These alterations are directly linked with the strength of atmospheric forcing (air-sea heat fluxes) and vertical stratification (mixed layer depth [MLD]). The interannual variability of sea surface temperature (SST) is found to be a good indicator of phytoplankton abundance, but appears to be less important for predicting bloom timing. These findings suggest that future climate warming scenarios may have a two-fold impact on phytoplankton growth in tropical marine ecosystems: 1) a reduction in phytoplankton abundance and 2) alterations in the timing of seasonal phytoplankton blooms.
Plymouth Marine Scie... arrow_drop_down Plymouth Marine Science Electronic Archive (PlyMEA)Article . 2018License: CC BYData sources: CORE (RIOXX-UK Aggregator)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-018-20560-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 110 citations 110 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Plymouth Marine Scie... arrow_drop_down Plymouth Marine Science Electronic Archive (PlyMEA)Article . 2018License: CC BYData sources: CORE (RIOXX-UK Aggregator)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-018-20560-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Publisher:Springer Science and Business Media LLC Funded by:HFRI, TARA | Tara OceansHFRI ,TARA| Tara OceansIason Theodorou; George Krokos; John A. Gittings; Sofia Darmaraki; Ibrahim Hoteit; Dionysios E. Raitsos;Abstract In tropical oceans, phytoplankton experience significant alterations during marine heatwaves (MHWs), yet the consequences of reduced or absent marine cold-spells (MCSs) on these microscopic algae are currently overlooked. Synergistically combining in situ measurements, Argo-float data, remotely-sensed observations, and hydrodynamic model outputs, we explore such relationships in the Red Sea. Results show a long-term (1982 to 2018) gradual increase in MHW days (5–20 days/decade) and a clear decrease in MCS days (10–30 days/decade). Compound extreme temperature and chlorophyll-a events (Chl-a – an index of phytoplankton biomass) exhibit consistently lower Chl-a concentrations during MHWs and higher ones during MCSs, particularly in the northern and southern Red Sea. In these regions, during the main phytoplankton-growth period, the presence of MHWs/MCSs leads to respective Chl-a anomalies in 94% of the cases. Yet, phytoplankton responses in the central Red Sea are more complex, most likely linked to the region’s highly dynamic circulation (e.g., mesoscale anti-cyclonic eddies), and multiple nutrient sources. In the naturally warm and stratified ecosystem of the Red Sea, where deeper mixed layers enhance the transfer of nutrient-rich waters to the lit zone, the substantial reduction of MCSs could be more impactful for phytoplankton than the gradual rise of MHWs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-025-88727-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-025-88727-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Publisher:Public Library of Science (PLoS) Marianthi Pateraki; Dionysios E. Raitsos; George Krokos; Iason Theodorou; Ibrahim Hoteit;Primary production in highly stratified and oligotrophic tropical seas relies primarily on nutrient injections from a deepened mixed layer. The Red Sea, one of the warmest marine ecosystems on earth, has very few external nutrient sources. The role of mixed layer depth (MLD) on phytoplankton dynamics has predominantly been investigated in the northern part of the basin, yet a comprehensive investigation covering the entire basin is currently lacking. By integrating numerical MLD simulations and ocean colour remote sensing observations, both regionally-tuned to the Red Sea environment, the influence of vertical mixing, proxied by the MLD, on chlorophyll-a concentration (CHL) is investigated at seasonal and interannual scales. Results show that the central basin exhibits weak relationships, possibly linked to the intense mesoscale activity and the resulting horizontal advective fluxes. Remarkably, in the southern basin, even minor MLD variations (3%) seem to have a significant response in CHL (~10%). Until now, phytoplankton biomass in the south was linked to the horizontal intrusion of nutrient-rich waters from the Indian Ocean, while our results also stress the importance of vertical mixing in the redistribution of these fertile deeper layer waters to the surface lit zone. Here, we report the diverse role of deepened mixed layers in shaping CHL concentrations across various provinces in the Red Sea.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0318214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0318214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 France, Saudi Arabia, Saudi ArabiaPublisher:Elsevier BV Funded by:NSF | EPCN:Solving Electricity-...NSF| EPCN:Solving Electricity-Expansion Problems Efficiently via Decomposition (SEEPED)Ricardo M. Lima; Antonio J. Conejo; Loïc Giraldi; Olivier Le Maître; Ibrahim Hoteit; Omar M. Knio;handle: 10754/662722
In this paper, we address the decision-making problem of a virtual power plant (VPP) involving a self-scheduling and market involvement problem under uncertainty in the wind speed and electricity prices. The problem is modeled using a risk-neutral and two risk-averse two-stage stochastic programming formulations, where the conditional value at risk is used to represent risk. A sample average approximation methodology is integrated with an adapted L-Shaped solution method, which can solve risk-neutral and specific risk-averse problems. This methodology provides a framework to understand and quantify the impact of the sample size on the variability of the results. The numerical results include an analysis of the computational performance of the methodology for two case studies, estimators for the bounds of the true optimal solutions of the problems, and an assessment of the quality of the solutions obtained. In particular, numerical experiences indicate that when an adequate sample size is used, the solution obtained is close to the optimal one.
Hyper Article en Lig... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10754/662722Data sources: Bielefeld Academic Search Engine (BASE)EURO Journal on Computational OptimizationArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefINRIA a CCSD electronic archive serverArticle . 2021Data sources: INRIA a CCSD electronic archive serverÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ejco.2021.100005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10754/662722Data sources: Bielefeld Academic Search Engine (BASE)EURO Journal on Computational OptimizationArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefINRIA a CCSD electronic archive serverArticle . 2021Data sources: INRIA a CCSD electronic archive serverÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ejco.2021.100005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Saudi ArabiaPublisher:Elsevier BV Ricardo M. Lima; Antonio J. Conejo; Sabique Langodan; Ibrahim Hoteit; Omar M. Knio;handle: 10754/626422
Abstract In this paper, we address the optimal operation of a virtual power plant using stochastic programming. We consider one risk-neutral and two risk-averse formulations that rely on the conditional value at risk. To handle large-scale problems, we implement two decomposition methods with variants using single- and multiple-cuts. We propose the utilization of wind ensembles obtained from the European Centre for Medium Range Weather Forecasts (ECMWF) to quantify the uncertainty of the wind forecast. We present detailed results relative to the computational performance of the risk-averse formulations, the decomposition methods, and risk management and sensitivities analysis as a function of the number of scenarios and risk parameters. The implementation of the two decomposition methods relies on the parallel solution of subproblems, which turns out to be paramount for computational efficiency. The results show that one of the two decomposition methods is the most efficient.
King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Computers & Operations ResearchArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cor.2017.12.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Computers & Operations ResearchArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cor.2017.12.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2019Publisher:SPE Authors: Yanhui Zhang; Ibrahim Hoteit;doi: 10.2118/193808-ms
Abstract An ensemble-based history-matching framework is proposed to enhance the characterization of petroleum reservoirs through the assimilation of crosswell electromagnetic (EM) data. As one of advanced technologies in reservoir surveillance, crosswell EM tomography can provide a cross-sectional conductivity map and hence saturation profile at an interwell scale by exploiting the sharp contrast in conductivity between hydrocarbons and saline water. Incorporating this new information into reservoir simulation in combination with other available observations is therefore expected to enhance the forecasting capability of reservoir models and to lead to better quantification of uncertainty. The proposed approach applies ensemble-based data-assimilation methods to build a robust and flexible framework under which various sources of available measurements can be readily integrated. Because the assimilation of crosswell EM data can be implemented in different ways (e.g., components of EM fields or inverted conductivity), a comparative study is conducted. The first approach integrates crosswell EM data in its original form which entails establishing a forward model simulating observed EM responses. In this work, the forward model is based on Archie's law that provides a link between fluid properties and formation conductivity, and Maxwell’s equations that describe how EM fields behave given the spatial distribution of conductivity. Alternatively, formation conductivity can be used for history matching, which is obtained from the original EM data through inversion using an adjoint gradient-based optimization method. Because the inverted conductivity is usually of high dimension and very noisy, an image-oriented distance parameterization utilizing fluid front information is applied aiming to assimilate the conductivity field efficiently and robustly. Numerical experiments for different test cases with increasing complexity are carried out to examine the performance of the proposed integration schemes and potential of crosswell EM data for improving the estimation of relevant model parameters. The results demonstrate the efficiency of the developed history-matching workflow and added value of crosswell EM data in enhancing the characterization of reservoir models and reliability of model forecasts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2118/193808-ms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2118/193808-ms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Saudi ArabiaPublisher:MDPI AG Authors: Jingyi Ma; Daquan Guo; Peng Zhan; Ibrahim Hoteit;doi: 10.3390/rs13142823
handle: 10754/670346
Internal tides play a crucial role in ocean mixing. To explore the seasonal features of mode-1 M2 internal tides in the Arabian Sea, we analyzed their propagation and energy distribution using along-track sea-level anomaly data collected by satellite altimeters. We identified four primary source regions of internal tides: Abd al Kuri Island, the Carlsberg Ridge, the northeastern Arabian Sea, and the Maldive Islands. The baroclinic signals that originate from Abd al Kuri Island propagate meridionally, whereas those originating from the west coast of India propagate southwestward. The strength and energy flux of the internal tides in the Arabian Sea exhibit significant seasonal and spatial variability. The internal tides generated during winter are more energetic and can propagate further than those generated in summer. Doppler shifting and horizontal variations in stratification can explain the differences in the internal tides’ seasonal distributions.
King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021License: CC BYFull-Text: https://www.mdpi.com/2072-4292/13/14/2823Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs13142823&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021License: CC BYFull-Text: https://www.mdpi.com/2072-4292/13/14/2823Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs13142823&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Copernicus GmbH M. Zampieri; K. Ashok; A. Toreti; D. Bavera; I. Hoteit;Compound climate anomalies pose escalating risks in the context of climate change, with anomalous heat and drought presenting significant stressors to both ecosystems and society. The simultaneous occurrence of these events can be influenced by land surface processes such as the soil moisture – air temperature coupling. However, the long-term variability of this coupling remains unexplored. Here, using a combination of observations and multi-model ensemble forecasts dating back to the 1980s, we examine the global land exposure to higher than normal probabilities of concurrent hot temperature anomalies and drought on a monthly scale. Our findings confirm that drought substantially shapes the spatial distribution of heat-related risks on a global scale, offering a crucial predictive factor for these combined events. Traditionally, defining heat anomalies for non-adaptive systems involves fixed reference temperature thresholds. Using this method, our analysis reveals that the portion of global land experiencing drought-conditioned hot temperature anomalies has tripled in less than three decades. Surprisingly, the global level of spatial coupling appears to be declining. However, this outcome heavily depends on the specific definition of heat risk employed. By employing a time-dependent temperature threshold that considers changes in the climate's mean state due to both global warming and natural variability, a different picture emerges. Using the latter method, the level of spatial coupling demonstrates persistence and stability. Importantly, this method is better suited to assessing risks for adaptive systems and is more consistent with our current understanding of the underlying processes. Our study strongly advocates for tailoring hazard definitions to the specific processes and systems under investigation. Additionally, it underscores the pivotal role of operational sub-seasonal and seasonal forecasts in early warning systems, crucial for societal adaptation in the face of global warming.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu24-16402&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu24-16402&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Italy, Saudi Arabia, Saudi ArabiaPublisher:Elsevier BV Langodan, Sabique; Cavaleri, Luigi; Portilla, Jesus; Abualnaja, Yasser; Hoteit, Ibrahim;handle: 20.500.14243/390897 , 10754/662152
We examine the possibility of making useful climate extrapolations in inner basins. Stressing the role of the local geographic features, for a practical example we focus our attention on the Red Sea. We observe that in spite of being an enclosed and relatively small Sea, its climate conditions are heavily affected by those of the larger neighboring regions, in particular the Mediterranean and the Arabian Seas. Using existing high-resolution information of the recent decades, we use both reasoned extrapolation and knowledge of, past and future, longer term general climatic information to frame what is presently possible to assess for the Red Sea. Specifically, the northern part, influenced by the Mediterranean Sea, shows a clear decreasing trend of both the meteorological and wave conditions in the recent decades. However, within a longer span record of 100 years, this decrease appears to be part of a 70-year cycle, which may be overturning, partly at least, in the coming decades. These trends are consistent with the expectations inferred from regional climatic indices, such as North Atlantic Oscillation and Atlantic Multidecadal Oscillation. No similar long term trend has been found for wave, hence implicitly the wind, conditions in the southern part of the basin. As expected, some correlation exists with the typical patterns of the Indian Ocean, but without any specific indication of a future trend. We suggest that, suitably adapted for the specific local conditions and dominant patterns, similar correlation and physical patterns may exist in several of the enclosed areas of the world, opening the possibility of exploring their possible trends in the future decades.
King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Global and Planetary ChangeArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloplacha.2020.103151&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Global and Planetary ChangeArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloplacha.2020.103151&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 Italy, Saudi Arabia, Saudi ArabiaPublisher:American Meteorological Society Langodan Sabique; Cavaleri Luigi; Pomaro Angela; Portilla Jesus; Abualnaja Yasser; Hoteit Ibrahim;handle: 20.500.14243/343026 , 11573/1672142 , 10754/626772
The wind and wave climatology of the Red Sea is derived from a validated 30-yr high-resolution model simulation. After describing the relevant features of the basin, the main wind and wave systems are identified by using an innovative spectral partition technique to explain their genesis and characteristics. In the northern part of the sea, wind and waves of the same intensity are present throughout the year, while the central and southern zones are characterized by a marked seasonality. The partition technique allows the association of a general decrease in the energy of the different wave systems with a specific weather pattern. The most intense decrease is found in the northern storms, which are associated with meteorological pulses from the Mediterranean Sea.
IRIS Cnr arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2018Data sources: Archivio della ricerca- Università di Roma La SapienzaKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/jcli-d-17-0295.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2018Data sources: Archivio della ricerca- Università di Roma La SapienzaKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/jcli-d-17-0295.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 Saudi Arabia, United Kingdom, Saudi ArabiaPublisher:Springer Science and Business Media LLC Authors: Gittings, JA; Raitsos, DE; Krokos, G; Hoteit, I;AbstractIn the tropics, thermal stratification (during warm conditions) may contribute to a shallowing of the mixed layer above the nutricline and a reduction in the transfer of nutrients to the surface lit-layer, ultimately limiting phytoplankton growth. Using remotely sensed observations and modelled datasets, we study such linkages in the northern Red Sea (NRS) - a typical tropical marine ecosystem. We assess the interannual variability (1998–2015) of both phytoplankton biomass and phenological indices (timing of bloom initiation, duration and termination) in relation to regional warming. We demonstrate that warmer conditions in the NRS are associated with substantially weaker winter phytoplankton blooms, which initiate later, terminate earlier and are shorter in their overall duration (~ 4 weeks). These alterations are directly linked with the strength of atmospheric forcing (air-sea heat fluxes) and vertical stratification (mixed layer depth [MLD]). The interannual variability of sea surface temperature (SST) is found to be a good indicator of phytoplankton abundance, but appears to be less important for predicting bloom timing. These findings suggest that future climate warming scenarios may have a two-fold impact on phytoplankton growth in tropical marine ecosystems: 1) a reduction in phytoplankton abundance and 2) alterations in the timing of seasonal phytoplankton blooms.
Plymouth Marine Scie... arrow_drop_down Plymouth Marine Science Electronic Archive (PlyMEA)Article . 2018License: CC BYData sources: CORE (RIOXX-UK Aggregator)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-018-20560-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 110 citations 110 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Plymouth Marine Scie... arrow_drop_down Plymouth Marine Science Electronic Archive (PlyMEA)Article . 2018License: CC BYData sources: CORE (RIOXX-UK Aggregator)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-018-20560-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Publisher:Springer Science and Business Media LLC Funded by:HFRI, TARA | Tara OceansHFRI ,TARA| Tara OceansIason Theodorou; George Krokos; John A. Gittings; Sofia Darmaraki; Ibrahim Hoteit; Dionysios E. Raitsos;Abstract In tropical oceans, phytoplankton experience significant alterations during marine heatwaves (MHWs), yet the consequences of reduced or absent marine cold-spells (MCSs) on these microscopic algae are currently overlooked. Synergistically combining in situ measurements, Argo-float data, remotely-sensed observations, and hydrodynamic model outputs, we explore such relationships in the Red Sea. Results show a long-term (1982 to 2018) gradual increase in MHW days (5–20 days/decade) and a clear decrease in MCS days (10–30 days/decade). Compound extreme temperature and chlorophyll-a events (Chl-a – an index of phytoplankton biomass) exhibit consistently lower Chl-a concentrations during MHWs and higher ones during MCSs, particularly in the northern and southern Red Sea. In these regions, during the main phytoplankton-growth period, the presence of MHWs/MCSs leads to respective Chl-a anomalies in 94% of the cases. Yet, phytoplankton responses in the central Red Sea are more complex, most likely linked to the region’s highly dynamic circulation (e.g., mesoscale anti-cyclonic eddies), and multiple nutrient sources. In the naturally warm and stratified ecosystem of the Red Sea, where deeper mixed layers enhance the transfer of nutrient-rich waters to the lit zone, the substantial reduction of MCSs could be more impactful for phytoplankton than the gradual rise of MHWs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-025-88727-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-025-88727-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Publisher:Public Library of Science (PLoS) Marianthi Pateraki; Dionysios E. Raitsos; George Krokos; Iason Theodorou; Ibrahim Hoteit;Primary production in highly stratified and oligotrophic tropical seas relies primarily on nutrient injections from a deepened mixed layer. The Red Sea, one of the warmest marine ecosystems on earth, has very few external nutrient sources. The role of mixed layer depth (MLD) on phytoplankton dynamics has predominantly been investigated in the northern part of the basin, yet a comprehensive investigation covering the entire basin is currently lacking. By integrating numerical MLD simulations and ocean colour remote sensing observations, both regionally-tuned to the Red Sea environment, the influence of vertical mixing, proxied by the MLD, on chlorophyll-a concentration (CHL) is investigated at seasonal and interannual scales. Results show that the central basin exhibits weak relationships, possibly linked to the intense mesoscale activity and the resulting horizontal advective fluxes. Remarkably, in the southern basin, even minor MLD variations (3%) seem to have a significant response in CHL (~10%). Until now, phytoplankton biomass in the south was linked to the horizontal intrusion of nutrient-rich waters from the Indian Ocean, while our results also stress the importance of vertical mixing in the redistribution of these fertile deeper layer waters to the surface lit zone. Here, we report the diverse role of deepened mixed layers in shaping CHL concentrations across various provinces in the Red Sea.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0318214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0318214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 France, Saudi Arabia, Saudi ArabiaPublisher:Elsevier BV Funded by:NSF | EPCN:Solving Electricity-...NSF| EPCN:Solving Electricity-Expansion Problems Efficiently via Decomposition (SEEPED)Ricardo M. Lima; Antonio J. Conejo; Loïc Giraldi; Olivier Le Maître; Ibrahim Hoteit; Omar M. Knio;handle: 10754/662722
In this paper, we address the decision-making problem of a virtual power plant (VPP) involving a self-scheduling and market involvement problem under uncertainty in the wind speed and electricity prices. The problem is modeled using a risk-neutral and two risk-averse two-stage stochastic programming formulations, where the conditional value at risk is used to represent risk. A sample average approximation methodology is integrated with an adapted L-Shaped solution method, which can solve risk-neutral and specific risk-averse problems. This methodology provides a framework to understand and quantify the impact of the sample size on the variability of the results. The numerical results include an analysis of the computational performance of the methodology for two case studies, estimators for the bounds of the true optimal solutions of the problems, and an assessment of the quality of the solutions obtained. In particular, numerical experiences indicate that when an adequate sample size is used, the solution obtained is close to the optimal one.
Hyper Article en Lig... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10754/662722Data sources: Bielefeld Academic Search Engine (BASE)EURO Journal on Computational OptimizationArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefINRIA a CCSD electronic archive serverArticle . 2021Data sources: INRIA a CCSD electronic archive serverÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ejco.2021.100005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10754/662722Data sources: Bielefeld Academic Search Engine (BASE)EURO Journal on Computational OptimizationArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefINRIA a CCSD electronic archive serverArticle . 2021Data sources: INRIA a CCSD electronic archive serverÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ejco.2021.100005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Saudi ArabiaPublisher:Elsevier BV Ricardo M. Lima; Antonio J. Conejo; Sabique Langodan; Ibrahim Hoteit; Omar M. Knio;handle: 10754/626422
Abstract In this paper, we address the optimal operation of a virtual power plant using stochastic programming. We consider one risk-neutral and two risk-averse formulations that rely on the conditional value at risk. To handle large-scale problems, we implement two decomposition methods with variants using single- and multiple-cuts. We propose the utilization of wind ensembles obtained from the European Centre for Medium Range Weather Forecasts (ECMWF) to quantify the uncertainty of the wind forecast. We present detailed results relative to the computational performance of the risk-averse formulations, the decomposition methods, and risk management and sensitivities analysis as a function of the number of scenarios and risk parameters. The implementation of the two decomposition methods relies on the parallel solution of subproblems, which turns out to be paramount for computational efficiency. The results show that one of the two decomposition methods is the most efficient.
King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Computers & Operations ResearchArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cor.2017.12.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Computers & Operations ResearchArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cor.2017.12.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2019Publisher:SPE Authors: Yanhui Zhang; Ibrahim Hoteit;doi: 10.2118/193808-ms
Abstract An ensemble-based history-matching framework is proposed to enhance the characterization of petroleum reservoirs through the assimilation of crosswell electromagnetic (EM) data. As one of advanced technologies in reservoir surveillance, crosswell EM tomography can provide a cross-sectional conductivity map and hence saturation profile at an interwell scale by exploiting the sharp contrast in conductivity between hydrocarbons and saline water. Incorporating this new information into reservoir simulation in combination with other available observations is therefore expected to enhance the forecasting capability of reservoir models and to lead to better quantification of uncertainty. The proposed approach applies ensemble-based data-assimilation methods to build a robust and flexible framework under which various sources of available measurements can be readily integrated. Because the assimilation of crosswell EM data can be implemented in different ways (e.g., components of EM fields or inverted conductivity), a comparative study is conducted. The first approach integrates crosswell EM data in its original form which entails establishing a forward model simulating observed EM responses. In this work, the forward model is based on Archie's law that provides a link between fluid properties and formation conductivity, and Maxwell’s equations that describe how EM fields behave given the spatial distribution of conductivity. Alternatively, formation conductivity can be used for history matching, which is obtained from the original EM data through inversion using an adjoint gradient-based optimization method. Because the inverted conductivity is usually of high dimension and very noisy, an image-oriented distance parameterization utilizing fluid front information is applied aiming to assimilate the conductivity field efficiently and robustly. Numerical experiments for different test cases with increasing complexity are carried out to examine the performance of the proposed integration schemes and potential of crosswell EM data for improving the estimation of relevant model parameters. The results demonstrate the efficiency of the developed history-matching workflow and added value of crosswell EM data in enhancing the characterization of reservoir models and reliability of model forecasts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2118/193808-ms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2118/193808-ms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Saudi ArabiaPublisher:MDPI AG Authors: Jingyi Ma; Daquan Guo; Peng Zhan; Ibrahim Hoteit;doi: 10.3390/rs13142823
handle: 10754/670346
Internal tides play a crucial role in ocean mixing. To explore the seasonal features of mode-1 M2 internal tides in the Arabian Sea, we analyzed their propagation and energy distribution using along-track sea-level anomaly data collected by satellite altimeters. We identified four primary source regions of internal tides: Abd al Kuri Island, the Carlsberg Ridge, the northeastern Arabian Sea, and the Maldive Islands. The baroclinic signals that originate from Abd al Kuri Island propagate meridionally, whereas those originating from the west coast of India propagate southwestward. The strength and energy flux of the internal tides in the Arabian Sea exhibit significant seasonal and spatial variability. The internal tides generated during winter are more energetic and can propagate further than those generated in summer. Doppler shifting and horizontal variations in stratification can explain the differences in the internal tides’ seasonal distributions.
King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021License: CC BYFull-Text: https://www.mdpi.com/2072-4292/13/14/2823Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs13142823&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021License: CC BYFull-Text: https://www.mdpi.com/2072-4292/13/14/2823Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs13142823&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Copernicus GmbH M. Zampieri; K. Ashok; A. Toreti; D. Bavera; I. Hoteit;Compound climate anomalies pose escalating risks in the context of climate change, with anomalous heat and drought presenting significant stressors to both ecosystems and society. The simultaneous occurrence of these events can be influenced by land surface processes such as the soil moisture – air temperature coupling. However, the long-term variability of this coupling remains unexplored. Here, using a combination of observations and multi-model ensemble forecasts dating back to the 1980s, we examine the global land exposure to higher than normal probabilities of concurrent hot temperature anomalies and drought on a monthly scale. Our findings confirm that drought substantially shapes the spatial distribution of heat-related risks on a global scale, offering a crucial predictive factor for these combined events. Traditionally, defining heat anomalies for non-adaptive systems involves fixed reference temperature thresholds. Using this method, our analysis reveals that the portion of global land experiencing drought-conditioned hot temperature anomalies has tripled in less than three decades. Surprisingly, the global level of spatial coupling appears to be declining. However, this outcome heavily depends on the specific definition of heat risk employed. By employing a time-dependent temperature threshold that considers changes in the climate's mean state due to both global warming and natural variability, a different picture emerges. Using the latter method, the level of spatial coupling demonstrates persistence and stability. Importantly, this method is better suited to assessing risks for adaptive systems and is more consistent with our current understanding of the underlying processes. Our study strongly advocates for tailoring hazard definitions to the specific processes and systems under investigation. Additionally, it underscores the pivotal role of operational sub-seasonal and seasonal forecasts in early warning systems, crucial for societal adaptation in the face of global warming.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu24-16402&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu24-16402&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Italy, Saudi Arabia, Saudi ArabiaPublisher:Elsevier BV Langodan, Sabique; Cavaleri, Luigi; Portilla, Jesus; Abualnaja, Yasser; Hoteit, Ibrahim;handle: 20.500.14243/390897 , 10754/662152
We examine the possibility of making useful climate extrapolations in inner basins. Stressing the role of the local geographic features, for a practical example we focus our attention on the Red Sea. We observe that in spite of being an enclosed and relatively small Sea, its climate conditions are heavily affected by those of the larger neighboring regions, in particular the Mediterranean and the Arabian Seas. Using existing high-resolution information of the recent decades, we use both reasoned extrapolation and knowledge of, past and future, longer term general climatic information to frame what is presently possible to assess for the Red Sea. Specifically, the northern part, influenced by the Mediterranean Sea, shows a clear decreasing trend of both the meteorological and wave conditions in the recent decades. However, within a longer span record of 100 years, this decrease appears to be part of a 70-year cycle, which may be overturning, partly at least, in the coming decades. These trends are consistent with the expectations inferred from regional climatic indices, such as North Atlantic Oscillation and Atlantic Multidecadal Oscillation. No similar long term trend has been found for wave, hence implicitly the wind, conditions in the southern part of the basin. As expected, some correlation exists with the typical patterns of the Indian Ocean, but without any specific indication of a future trend. We suggest that, suitably adapted for the specific local conditions and dominant patterns, similar correlation and physical patterns may exist in several of the enclosed areas of the world, opening the possibility of exploring their possible trends in the future decades.
King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Global and Planetary ChangeArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloplacha.2020.103151&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Global and Planetary ChangeArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloplacha.2020.103151&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu