- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Sebastian Stynski; Marta Grzegorczyk; Cezary Sobol; Radek Kot;doi: 10.3390/en14154607
Nowadays, the increasing number of nonlinear loads and renewable energy resources pose new challenges for the standard electrical grid. Conventional solutions cannot handle most of them. The weakest component in the whole system is a conventional distribution (converting medium to low AC voltage) transformer. It should not operate with unbalanced, heavily distorted voltage and cannot control power flow or compensate current harmonics. One of the promising solutions to replace the conventional transformer and thus minimize power flow and grid distortions is a power electronics device called a solid state transformer (SST). Depending on the SST topology, it can have different functionalities, and, with the proper control algorithm, it is able to compensate any power imbalances in both low voltage (LV) and medium voltage (MV) grid sides. In the case of a three energy conversion stage SST, the LV and the MV stages can be treated separately. This paper focuses on the MV-AC to the MV-DC stage only based on a star-connected cascaded H-bridge converter. In this paper, a simple control solution for such a converter enabling different current control strategies to distribute power among the phases in an MV grid in the case of voltage imbalances is proposed. Simulation and experimental results proved good performance and verified the validity of the proposed control algorithm.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/15/4607/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14154607&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/15/4607/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14154607&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Institute of Electrical and Electronics Engineers (IEEE) Robert Smolenski; Grzegorz Benysek; Mariusz Malinowski; Marcin Sedlak; Sebastian Stynski; Marek Jasinski;A novel approach to synchronization of shore and ship power systems is presented in this paper, providing a blackout-free supply from the shore. An application of the shore-to-ship synchronization strategy, proposed in the paper, instead of the commonly used ship-to-shore synchronization, enables a fuller exploitation of the high dynamic offered by power electronic converters. Converters are increasingly being used in shore-to-ship supply arrangements in order to ensure the required levels of voltages and frequencies, specified in shore-supply related standards. Simulation results, supported by preliminary tests in small-scale experimental arrangements, have confirmed that shore-to-ship applications might significantly improve the dynamics of the synchronization as well as the parameters of the load transferring process, especially under distorted ship voltage conditions.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Energy ConversionArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tec.2018.2839702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Energy ConversionArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tec.2018.2839702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Sebastian Stynski; Marta Grzegorczyk; Cezary Sobol; Radek Kot;doi: 10.3390/en14154607
Nowadays, the increasing number of nonlinear loads and renewable energy resources pose new challenges for the standard electrical grid. Conventional solutions cannot handle most of them. The weakest component in the whole system is a conventional distribution (converting medium to low AC voltage) transformer. It should not operate with unbalanced, heavily distorted voltage and cannot control power flow or compensate current harmonics. One of the promising solutions to replace the conventional transformer and thus minimize power flow and grid distortions is a power electronics device called a solid state transformer (SST). Depending on the SST topology, it can have different functionalities, and, with the proper control algorithm, it is able to compensate any power imbalances in both low voltage (LV) and medium voltage (MV) grid sides. In the case of a three energy conversion stage SST, the LV and the MV stages can be treated separately. This paper focuses on the MV-AC to the MV-DC stage only based on a star-connected cascaded H-bridge converter. In this paper, a simple control solution for such a converter enabling different current control strategies to distribute power among the phases in an MV grid in the case of voltage imbalances is proposed. Simulation and experimental results proved good performance and verified the validity of the proposed control algorithm.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/15/4607/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14154607&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/15/4607/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14154607&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Institute of Electrical and Electronics Engineers (IEEE) Robert Smolenski; Grzegorz Benysek; Mariusz Malinowski; Marcin Sedlak; Sebastian Stynski; Marek Jasinski;A novel approach to synchronization of shore and ship power systems is presented in this paper, providing a blackout-free supply from the shore. An application of the shore-to-ship synchronization strategy, proposed in the paper, instead of the commonly used ship-to-shore synchronization, enables a fuller exploitation of the high dynamic offered by power electronic converters. Converters are increasingly being used in shore-to-ship supply arrangements in order to ensure the required levels of voltages and frequencies, specified in shore-supply related standards. Simulation results, supported by preliminary tests in small-scale experimental arrangements, have confirmed that shore-to-ship applications might significantly improve the dynamics of the synchronization as well as the parameters of the load transferring process, especially under distorted ship voltage conditions.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Energy ConversionArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tec.2018.2839702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Energy ConversionArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tec.2018.2839702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu