- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Walter Svinurai; Farai Mapanda; Dingane Sithole; Elisha N. Moyo; Kudzai Ndidzano; Alois Tsiga; Washington Zhakata;pmid: 29122353
Without disregarding its role as one of the key sources of sustainable livelihoods in Zimbabwe and other developing countries, livestock production contributes significantly to greenhouse gas (GHG) emissions through enteric fermentation. For the livestock sector to complement global efforts to mitigate climate change, accurate estimations of GHG emissions are required. Methane emissions from enteric fermentation in Zimbabwe were quantified over 35years under four production systems and five agro-ecological regions. The Intergovernmental Panel on Climate Change emission factor methodology was used to derive CH4 emissions from seven livestock categories at national level. Emission intensities based on human population, domestic export of livestock meat and climate variables were used to assess emission drivers and predict future emission trends. Over the past 35years, enteric fermentation CH4 emissions from all livestock categories ranged between 158.3 and 204.3Ggyear-1. Communal lands, typified by indigenous livestock breeds, had the highest contribution of between 58% and 75% of the total annual emissions followed by livestock from large scale commercial (LSC) farms. The decreasing livestock population on LSC farms and consequent decline in production could explain the lack of a positive response of CH4 emissions to human population growth, and decreasing emissions per capita over time at -0.3kg CH4capita-1year-1. The emissions trend showed that even if Zimbabwe's national livestock population doubles in 2030 relative to the 2014 estimates, the country would still remain with similar magnitude of CH4 emission intensity as that of 1980. No significant correlations (P>0.05) were found between emissions and domestic export of beef and pork. Further research on enhanced characterisation of livestock species, population and production systems, as well as direct measurements and modelling of emissions from indigenous and exotic livestock breeds were recommended.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2017.10.257&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2017.10.257&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Other literature type 2021 India, Netherlands, IndiaPublisher:WORLD SCIENTIFIC (EUROPE) Authors: Homann-Kee Tui, Sabine; Masikati, Patricia; Descheemaeker, Katrien; Sisito, Gevious; +5 AuthorsHomann-Kee Tui, Sabine; Masikati, Patricia; Descheemaeker, Katrien; Sisito, Gevious; Francis, Buhle; Senda, Trinity; Crespo, Olivier; Moyo, Elisha N.; Valdivia, Roberto O.;This study provides a unique contribution to improving agricultural systems in the face of changing climate and socio-economic conditions, integratingmulti-modeling research with stakeholder engagement to inform future-oriented decision processes. In areas like semi-aridZimbabwe, rural communities are highly vulnerable to climate variability. Climate risk is not a future issue, but constitutes a current threat to food security, if no improvement actions are taken. This study therefore frames the potential for agricultural systems to transform under current conditions and under future conditions where different pathways would lead agricultural systems to respond more favorably.
Research@WUR arrow_drop_down https://doi.org/10.1142/978178...Part of book or chapter of book . 2021 . Peer-reviewedData sources: CrossrefICRISAT (International Crops Research Institute for the Semi-Arid Tropics): Open Access RepositoryPart of book or chapter of book . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1142/9781786348814_0005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Research@WUR arrow_drop_down https://doi.org/10.1142/978178...Part of book or chapter of book . 2021 . Peer-reviewedData sources: CrossrefICRISAT (International Crops Research Institute for the Semi-Arid Tropics): Open Access RepositoryPart of book or chapter of book . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1142/9781786348814_0005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Shingirai S. Nangombe; Elisha N. Moyo;AbstractThis study which sought to understand the phenomenal events surrounding numerous, intense and violent storms in southern Africa, was inspired by the unusually active 2012-2013 season. In addition to improving the Early warning system, the study supports the evaluation and calibration of the weather forecasting guidance NWP products and RCMs alike. The study also sought to investigate the role of Climate Change in the occurrence of these storms in addition to understanding the science behind them, the causes and possible return periods for better impact, vulnerability and adaptation studies as well as integration of Climate Risk Management practices like Weather Index Insurance and climate resilience planning into development. Preliminary analyses categorized Chivi storm as a Dry Macro-burst as the region experienced serious delayed onsets of rainfall and high temperatures, Chilonga and Mt Darwin as squall lines and nados respectively, whereas Bindura and Mberengwa cases were all Wet Macro-bursts. Density currents from nearby mountain ranges coupled with extreme temperature rises, influx of moisture into dry regions prior to these events were identified as the possible triggers which were aided by prolonged dry spells in the rain season. Rapid Climate Change is thought to have enhanced and prolonged the 2012-2013 storm activity which stretched until April which is cooler. Global warming which increases the atmospheric water vapour holding capacity, according to the Clausius-Clapeyron theory, also provides energy which fuels these violent storms. Thus as Climate Changes, the study hypothesize more intense storms, heavily impacting life, property and development.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.piutam.2015.06.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.piutam.2015.06.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 India, Netherlands, Canada, India, CanadaPublisher:Springer Science and Business Media LLC Authors: Sabine Homann-Kee Tui; Katrien Descheemaeker; Roberto O. Valdivia; Patricia Masikati; +5 AuthorsSabine Homann-Kee Tui; Katrien Descheemaeker; Roberto O. Valdivia; Patricia Masikati; Gevious Sisito; Elisha N. Moyo; Olivier Crespo; Alex C. Ruane; Cynthia Rosenzweig;handle: 10625/63337
AbstractDecision makers need accurate information to address climate variability and change and accelerate transformation to sustainability. A stakeholder-driven, science-based multi-model approach has been developed and used by the Agricultural Model Intercomparison and Improvement Project (AgMIP) to generate actionable information for adaptation planning processes. For a range of mid-century climate projections—likely to be hotter, drier, and more variable—contrasting future socio-economic scenarios (Representative Agricultural Pathways, RAPs) were co-developed with stakeholders to portray a sustainable development scenario and a rapid economic growth pathway. The unique characteristic of this application is the integration of a multi-modeling approach with stakeholder engagement to co-develop scenarios and adaptation strategies. Distribution of outcomes were simulated with climate, crop, livestock, and economic impact assessment models for smallholder crop livestock farmers in a typical dryland agro-ecological zone in Zimbabwe, characterized by low and erratic rainfall and nutrient depleted soils. Results showed that in Nkayi District, Western Zimbabwe, climate change would threaten most of the farms, and, in particular, those with large cattle herds due to feed shortages. Adaptation strategies that showed the most promise included diversification using legume production, soil fertility improvement, and investment in conducive market environments. The switch to more legumes in the farming systems reduced the vulnerability of the very poor as well as the more resourced farmers. Overall, the sustainable development scenario consistently addressed institutional failures and motivated productivity-enhancing, environmentally sound technologies and inclusive development approaches. This yielded more favorable outcomes than investment in quick economic wins from commercializing agriculture.
Climatic Change arrow_drop_down Wageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsInternational Development Research Centre: IDRC Digital LibraryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-021-03151-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Climatic Change arrow_drop_down Wageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsInternational Development Research Centre: IDRC Digital LibraryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-021-03151-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 India, Netherlands, IndiaPublisher:CABI Publishing Authors: Sabine Homann-Kee Tui; Roberto O. Valdivia; Katrien Descheemaeker; Gevious Sisito; +2 AuthorsSabine Homann-Kee Tui; Roberto O. Valdivia; Katrien Descheemaeker; Gevious Sisito; Elisha N. Moyo; F. Mapanda;AbstractAchieving Zimbabwe’s national and international commitments to food systems transformation and climate resilience building is of high priority. Integrated simulation-based research approaches developed under the Agricultural Model Intercomparison and Improvement Project (AgMIP) are important sources of evidence to guide policy decisions towards sustainable intensification. Through the identification of economically viable, socially inclusive and environmentally sustainable development pathways, the analysis in this study evaluates co-benefits and trade-offs between climate change adaptation and mitigation interventions for vulnerable smallholder crop-livestock holdings in the semi-arid regions of Zimbabwe. We explore how climate effects disrupt the livelihoods and food security for diverse farm types, the extremely vulnerable and those better resource endowed but facing high risks. In an iterative process with experts and stakeholders, we co-developed context specific development pathways. They include market-oriented adaptation and mitigation interventions and social protection mechanisms that would support the transition towards more sustainable intensified, diversified and better integrated crop-livestock systems. We assess the trade-offs associated with adoption of climate-smart interventions aimed at improving incomes and food security but that may have consequences on GHG emissions for the different pathways and farm types. The approach and results inform the discussion on drivers that can bring about sustainable intensification, and the extent to which socio-economic benefits could enhance the uptake of emission reducing technologies thereof. Through this strategy we evaluate interventions that can result in win–win outcomes, that is, adaptation-mitigation co-benefits, and what this would imply for policies that aim at transforming agri-food systems.
CABI Agriculture and... arrow_drop_down Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s43170-023-00165-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert CABI Agriculture and... arrow_drop_down Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s43170-023-00165-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Walter Svinurai; Farai Mapanda; Dingane Sithole; Elisha N. Moyo; Kudzai Ndidzano; Alois Tsiga; Washington Zhakata;pmid: 29122353
Without disregarding its role as one of the key sources of sustainable livelihoods in Zimbabwe and other developing countries, livestock production contributes significantly to greenhouse gas (GHG) emissions through enteric fermentation. For the livestock sector to complement global efforts to mitigate climate change, accurate estimations of GHG emissions are required. Methane emissions from enteric fermentation in Zimbabwe were quantified over 35years under four production systems and five agro-ecological regions. The Intergovernmental Panel on Climate Change emission factor methodology was used to derive CH4 emissions from seven livestock categories at national level. Emission intensities based on human population, domestic export of livestock meat and climate variables were used to assess emission drivers and predict future emission trends. Over the past 35years, enteric fermentation CH4 emissions from all livestock categories ranged between 158.3 and 204.3Ggyear-1. Communal lands, typified by indigenous livestock breeds, had the highest contribution of between 58% and 75% of the total annual emissions followed by livestock from large scale commercial (LSC) farms. The decreasing livestock population on LSC farms and consequent decline in production could explain the lack of a positive response of CH4 emissions to human population growth, and decreasing emissions per capita over time at -0.3kg CH4capita-1year-1. The emissions trend showed that even if Zimbabwe's national livestock population doubles in 2030 relative to the 2014 estimates, the country would still remain with similar magnitude of CH4 emission intensity as that of 1980. No significant correlations (P>0.05) were found between emissions and domestic export of beef and pork. Further research on enhanced characterisation of livestock species, population and production systems, as well as direct measurements and modelling of emissions from indigenous and exotic livestock breeds were recommended.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2017.10.257&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2017.10.257&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Other literature type 2021 India, Netherlands, IndiaPublisher:WORLD SCIENTIFIC (EUROPE) Authors: Homann-Kee Tui, Sabine; Masikati, Patricia; Descheemaeker, Katrien; Sisito, Gevious; +5 AuthorsHomann-Kee Tui, Sabine; Masikati, Patricia; Descheemaeker, Katrien; Sisito, Gevious; Francis, Buhle; Senda, Trinity; Crespo, Olivier; Moyo, Elisha N.; Valdivia, Roberto O.;This study provides a unique contribution to improving agricultural systems in the face of changing climate and socio-economic conditions, integratingmulti-modeling research with stakeholder engagement to inform future-oriented decision processes. In areas like semi-aridZimbabwe, rural communities are highly vulnerable to climate variability. Climate risk is not a future issue, but constitutes a current threat to food security, if no improvement actions are taken. This study therefore frames the potential for agricultural systems to transform under current conditions and under future conditions where different pathways would lead agricultural systems to respond more favorably.
Research@WUR arrow_drop_down https://doi.org/10.1142/978178...Part of book or chapter of book . 2021 . Peer-reviewedData sources: CrossrefICRISAT (International Crops Research Institute for the Semi-Arid Tropics): Open Access RepositoryPart of book or chapter of book . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1142/9781786348814_0005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Research@WUR arrow_drop_down https://doi.org/10.1142/978178...Part of book or chapter of book . 2021 . Peer-reviewedData sources: CrossrefICRISAT (International Crops Research Institute for the Semi-Arid Tropics): Open Access RepositoryPart of book or chapter of book . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1142/9781786348814_0005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Shingirai S. Nangombe; Elisha N. Moyo;AbstractThis study which sought to understand the phenomenal events surrounding numerous, intense and violent storms in southern Africa, was inspired by the unusually active 2012-2013 season. In addition to improving the Early warning system, the study supports the evaluation and calibration of the weather forecasting guidance NWP products and RCMs alike. The study also sought to investigate the role of Climate Change in the occurrence of these storms in addition to understanding the science behind them, the causes and possible return periods for better impact, vulnerability and adaptation studies as well as integration of Climate Risk Management practices like Weather Index Insurance and climate resilience planning into development. Preliminary analyses categorized Chivi storm as a Dry Macro-burst as the region experienced serious delayed onsets of rainfall and high temperatures, Chilonga and Mt Darwin as squall lines and nados respectively, whereas Bindura and Mberengwa cases were all Wet Macro-bursts. Density currents from nearby mountain ranges coupled with extreme temperature rises, influx of moisture into dry regions prior to these events were identified as the possible triggers which were aided by prolonged dry spells in the rain season. Rapid Climate Change is thought to have enhanced and prolonged the 2012-2013 storm activity which stretched until April which is cooler. Global warming which increases the atmospheric water vapour holding capacity, according to the Clausius-Clapeyron theory, also provides energy which fuels these violent storms. Thus as Climate Changes, the study hypothesize more intense storms, heavily impacting life, property and development.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.piutam.2015.06.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.piutam.2015.06.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 India, Netherlands, Canada, India, CanadaPublisher:Springer Science and Business Media LLC Authors: Sabine Homann-Kee Tui; Katrien Descheemaeker; Roberto O. Valdivia; Patricia Masikati; +5 AuthorsSabine Homann-Kee Tui; Katrien Descheemaeker; Roberto O. Valdivia; Patricia Masikati; Gevious Sisito; Elisha N. Moyo; Olivier Crespo; Alex C. Ruane; Cynthia Rosenzweig;handle: 10625/63337
AbstractDecision makers need accurate information to address climate variability and change and accelerate transformation to sustainability. A stakeholder-driven, science-based multi-model approach has been developed and used by the Agricultural Model Intercomparison and Improvement Project (AgMIP) to generate actionable information for adaptation planning processes. For a range of mid-century climate projections—likely to be hotter, drier, and more variable—contrasting future socio-economic scenarios (Representative Agricultural Pathways, RAPs) were co-developed with stakeholders to portray a sustainable development scenario and a rapid economic growth pathway. The unique characteristic of this application is the integration of a multi-modeling approach with stakeholder engagement to co-develop scenarios and adaptation strategies. Distribution of outcomes were simulated with climate, crop, livestock, and economic impact assessment models for smallholder crop livestock farmers in a typical dryland agro-ecological zone in Zimbabwe, characterized by low and erratic rainfall and nutrient depleted soils. Results showed that in Nkayi District, Western Zimbabwe, climate change would threaten most of the farms, and, in particular, those with large cattle herds due to feed shortages. Adaptation strategies that showed the most promise included diversification using legume production, soil fertility improvement, and investment in conducive market environments. The switch to more legumes in the farming systems reduced the vulnerability of the very poor as well as the more resourced farmers. Overall, the sustainable development scenario consistently addressed institutional failures and motivated productivity-enhancing, environmentally sound technologies and inclusive development approaches. This yielded more favorable outcomes than investment in quick economic wins from commercializing agriculture.
Climatic Change arrow_drop_down Wageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsInternational Development Research Centre: IDRC Digital LibraryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-021-03151-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Climatic Change arrow_drop_down Wageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsInternational Development Research Centre: IDRC Digital LibraryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-021-03151-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 India, Netherlands, IndiaPublisher:CABI Publishing Authors: Sabine Homann-Kee Tui; Roberto O. Valdivia; Katrien Descheemaeker; Gevious Sisito; +2 AuthorsSabine Homann-Kee Tui; Roberto O. Valdivia; Katrien Descheemaeker; Gevious Sisito; Elisha N. Moyo; F. Mapanda;AbstractAchieving Zimbabwe’s national and international commitments to food systems transformation and climate resilience building is of high priority. Integrated simulation-based research approaches developed under the Agricultural Model Intercomparison and Improvement Project (AgMIP) are important sources of evidence to guide policy decisions towards sustainable intensification. Through the identification of economically viable, socially inclusive and environmentally sustainable development pathways, the analysis in this study evaluates co-benefits and trade-offs between climate change adaptation and mitigation interventions for vulnerable smallholder crop-livestock holdings in the semi-arid regions of Zimbabwe. We explore how climate effects disrupt the livelihoods and food security for diverse farm types, the extremely vulnerable and those better resource endowed but facing high risks. In an iterative process with experts and stakeholders, we co-developed context specific development pathways. They include market-oriented adaptation and mitigation interventions and social protection mechanisms that would support the transition towards more sustainable intensified, diversified and better integrated crop-livestock systems. We assess the trade-offs associated with adoption of climate-smart interventions aimed at improving incomes and food security but that may have consequences on GHG emissions for the different pathways and farm types. The approach and results inform the discussion on drivers that can bring about sustainable intensification, and the extent to which socio-economic benefits could enhance the uptake of emission reducing technologies thereof. Through this strategy we evaluate interventions that can result in win–win outcomes, that is, adaptation-mitigation co-benefits, and what this would imply for policies that aim at transforming agri-food systems.
CABI Agriculture and... arrow_drop_down Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s43170-023-00165-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert CABI Agriculture and... arrow_drop_down Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s43170-023-00165-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu