- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2012 United Kingdom, FrancePublisher:American Geophysical Union (AGU) L G Collins; L G Collins; Claire S. Allen; Dominic A. Hodgson; Jennifer Pike;doi: 10.1029/2011pa002264
Recent modeling suggests that changes in Southern Ocean sea‐ice extent potentially regulated the exchange of CO2release between the ocean and atmosphere during glacials. Unfortunately, a lack of high‐resolution sea‐ice records from the Southern Ocean has prevented detailed testing of these model‐based hypotheses with field data. Here we present high‐resolution records of Southern Ocean sea‐ice, for the period 35–15 cal ka BP, derived from diatom assemblages measured in three glacial sediment cores forming an ∼8° transect across the Scotia Sea, southwest Atlantic. Chronological control was achieved through a novel combination of diatom abundance stratigraphy, relative geomagnetic paleointensity data, and down‐core magnetic susceptibility and ice core dust correlation. Results showed that the winter sea‐ice edge reached its maximum northward extent of ∼53°S, at least 3° north of its modern limit, between ∼25 and ∼23.5 cal ka BP, predating the Last Glacial Maximum (LGM). Maximum northward expansion of the summer sea‐ice edge also pre‐dated the LGM, advancing to at least 61°S, and possibly as far north as 55°S between ∼31 and ∼23.5 cal ka BP, a ∼12° advance from its modern position. A clear shift in the seasonal sea‐ice zone is evident following summer sea‐ice edge retreat at ∼23.5 cal ka BP, potentially related to austral insolation forcing. This resulted in an expanded seasonal sea‐ice zone between ∼22.5 cal ka BP and deglaciation. Our field data confirm that Southern Ocean sea‐ice had the physical potential to influence the carbon cycle both as a physical barrier and more importantly through the suppression of vertical mixing and cycling of pre‐formed nutrients. Our data indicates that Southern Ocean sea‐ice was most effective as a physical barrier between ∼31 and ∼23.5 cal ka BP and as a mechanism capable of reducing vertical mixing between ∼22.5 cal ka BP and deglaciation. However, poor correlations with atmospheric CO2 variability recorded in ice cores, particularly the lack of a CO2response during a rapid sea‐ice meltback event, recorded at our study sites at the same time as Antarctic Isotopic Maximum 2, suggest that Southern Ocean sea‐ice in the Scotia Sea did not play a controlling role in atmospheric CO2 variation during the glacial.
École Polytechnique,... arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2012Full-Text: https://hal.science/hal-01495045Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2012Full-Text: https://hal.science/hal-01495045Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Full-Text: https://hal.science/hal-01495045Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverPaleoceanographyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2011pa002264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert École Polytechnique,... arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2012Full-Text: https://hal.science/hal-01495045Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2012Full-Text: https://hal.science/hal-01495045Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Full-Text: https://hal.science/hal-01495045Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverPaleoceanographyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2011pa002264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United Kingdom, FrancePublisher:American Geophysical Union (AGU) L G Collins; L G Collins; Claire S. Allen; Dominic A. Hodgson; Jennifer Pike;doi: 10.1029/2011pa002264
Recent modeling suggests that changes in Southern Ocean sea‐ice extent potentially regulated the exchange of CO2release between the ocean and atmosphere during glacials. Unfortunately, a lack of high‐resolution sea‐ice records from the Southern Ocean has prevented detailed testing of these model‐based hypotheses with field data. Here we present high‐resolution records of Southern Ocean sea‐ice, for the period 35–15 cal ka BP, derived from diatom assemblages measured in three glacial sediment cores forming an ∼8° transect across the Scotia Sea, southwest Atlantic. Chronological control was achieved through a novel combination of diatom abundance stratigraphy, relative geomagnetic paleointensity data, and down‐core magnetic susceptibility and ice core dust correlation. Results showed that the winter sea‐ice edge reached its maximum northward extent of ∼53°S, at least 3° north of its modern limit, between ∼25 and ∼23.5 cal ka BP, predating the Last Glacial Maximum (LGM). Maximum northward expansion of the summer sea‐ice edge also pre‐dated the LGM, advancing to at least 61°S, and possibly as far north as 55°S between ∼31 and ∼23.5 cal ka BP, a ∼12° advance from its modern position. A clear shift in the seasonal sea‐ice zone is evident following summer sea‐ice edge retreat at ∼23.5 cal ka BP, potentially related to austral insolation forcing. This resulted in an expanded seasonal sea‐ice zone between ∼22.5 cal ka BP and deglaciation. Our field data confirm that Southern Ocean sea‐ice had the physical potential to influence the carbon cycle both as a physical barrier and more importantly through the suppression of vertical mixing and cycling of pre‐formed nutrients. Our data indicates that Southern Ocean sea‐ice was most effective as a physical barrier between ∼31 and ∼23.5 cal ka BP and as a mechanism capable of reducing vertical mixing between ∼22.5 cal ka BP and deglaciation. However, poor correlations with atmospheric CO2 variability recorded in ice cores, particularly the lack of a CO2response during a rapid sea‐ice meltback event, recorded at our study sites at the same time as Antarctic Isotopic Maximum 2, suggest that Southern Ocean sea‐ice in the Scotia Sea did not play a controlling role in atmospheric CO2 variation during the glacial.
École Polytechnique,... arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2012Full-Text: https://hal.science/hal-01495045Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2012Full-Text: https://hal.science/hal-01495045Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Full-Text: https://hal.science/hal-01495045Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverPaleoceanographyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2011pa002264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert École Polytechnique,... arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2012Full-Text: https://hal.science/hal-01495045Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2012Full-Text: https://hal.science/hal-01495045Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Full-Text: https://hal.science/hal-01495045Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverPaleoceanographyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2011pa002264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United KingdomPublisher:Elsevier BV Funded by:UKRI | Terrestrial Holocene clim...UKRI| Terrestrial Holocene climate variability on the Antarctic PeninsulaJessica Royles; Jessica Royles; Howard Griffiths; Matthew J. Amesbury; Melanie J. Leng; Melanie J. Leng; Dan J. Charman; Dominic A. Hodgson; Peter Convey;pmid: 23993839
Annual temperatures on the Antarctic Peninsula, one of the most rapidly warming regions on Earth, have risen by up to 0.56°C per decade since the 1950s. Terrestrial and marine organisms have shown changes in populations and distributions over this time, suggesting that the ecology of the Antarctic Peninsula is changing rapidly. However, these biological records are shorter in length than the meteorological data, and observed population changes cannot be securely linked to longer-term trends apparent in paleoclimate data. We developed a unique time series of past moss growth and soil microbial activity from a 150-year-old moss bank at the southern limit of significant plant growth based on accumulation rates, cellulose δ(13)C, and fossil testate amoebae. We show that growth rates and microbial productivity have risen rapidly since the 1960s, consistent with temperature changes, although recently they may have stalled. The recent increase in terrestrial plant growth rates and soil microbial activity are unprecedented in the last 150 years and are consistent with climate change. Future changes in terrestrial biota are likely to track projected temperature increases closely and will fundamentally change the ecology and appearance of the Antarctic Peninsula.
NERC Open Research A... arrow_drop_down Current BiologyArticle . 2013License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Current BiologyArticle . 2013 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2013.07.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 66 citations 66 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Current BiologyArticle . 2013License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Current BiologyArticle . 2013 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2013.07.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United KingdomPublisher:Elsevier BV Funded by:UKRI | Terrestrial Holocene clim...UKRI| Terrestrial Holocene climate variability on the Antarctic PeninsulaJessica Royles; Jessica Royles; Howard Griffiths; Matthew J. Amesbury; Melanie J. Leng; Melanie J. Leng; Dan J. Charman; Dominic A. Hodgson; Peter Convey;pmid: 23993839
Annual temperatures on the Antarctic Peninsula, one of the most rapidly warming regions on Earth, have risen by up to 0.56°C per decade since the 1950s. Terrestrial and marine organisms have shown changes in populations and distributions over this time, suggesting that the ecology of the Antarctic Peninsula is changing rapidly. However, these biological records are shorter in length than the meteorological data, and observed population changes cannot be securely linked to longer-term trends apparent in paleoclimate data. We developed a unique time series of past moss growth and soil microbial activity from a 150-year-old moss bank at the southern limit of significant plant growth based on accumulation rates, cellulose δ(13)C, and fossil testate amoebae. We show that growth rates and microbial productivity have risen rapidly since the 1960s, consistent with temperature changes, although recently they may have stalled. The recent increase in terrestrial plant growth rates and soil microbial activity are unprecedented in the last 150 years and are consistent with climate change. Future changes in terrestrial biota are likely to track projected temperature increases closely and will fundamentally change the ecology and appearance of the Antarctic Peninsula.
NERC Open Research A... arrow_drop_down Current BiologyArticle . 2013License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Current BiologyArticle . 2013 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2013.07.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 66 citations 66 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Current BiologyArticle . 2013License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Current BiologyArticle . 2013 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2013.07.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 Australia, Australia, Netherlands, United KingdomPublisher:Elsevier BV Verleyen, Elie; Hodgson, Dominic A.; Koen, Sabbe; Holger, Cremer; Emslie, Steven D.; Gibson, John; Hall, Brenda; Imura, Satoshi; Kudoh, Sakae; Marshall, Gareth J.; McMinn, Andrew; Melles, Martin; Newman, Louise; Roberts, Donna; Roberts, Steve J.; Singh, Shiv M.; Sterken, Mieke; Tavernier, Ines; Verkulich, Sergey; Van de Vyver, Evelien; Van Nieuwenhuyze, Wim; Wagner, Bernd; Vyverman, Wim;We review the post-glacial climate variability along the East Antarctic coastline using terrestrial and shallow marine geological records and compare these reconstructions with data from elsewhere. Nearly all East Antarctic records show a near-synchronous Early Holocene climate optimum (11.5-9 ka BP), coinciding with the deglaciation of currently ice-free regions and the optimum recorded in Antarctic ice and marine sediment cores. Shallow marine and coastal terrestrial climate anomalies appear to be out of phase after the Early Holocene warm period, and show complex regional patterns, but an overall trend of cooling in the terrestrial records. A Mid to Late Holocene warm period is present in many East Antarctic lake and shallow coastal marine records. Although there are some differences in the regional timing of this warm period, it typically occurs somewhere between 4.7 and 1 ka BP, which overlaps with a similar optimum found in Antarctic Peninsula terrestrial records. The differences in the timing of these sometimes abrupt warm events in different records and regions points to a number of mechanisms that we have yet to identify. Nearly all records show a neoglacial cooling from 2 ka BP onwards. There is no evidence along the East Antarctic coastline for an equivalent to the Northern Hemisphere Medieval Warm Period and there is only weak circumstantial evidence in a few places for a cool event crudely equivalent in time to the Northern Hemisphere's Little Ice Age. There is a need for well-dated, high resolution climate records in coastal East Antarctica and particularly in Terre Adélie, Dronning Maud Land and Enderby Land to fully understand the regional climate anomalies, the disparity between marine and terrestrial records, and to determine the significance of the heterogeneous temperature trends being measured in the Antarctic today. © 2010 Elsevier B.V.
Earth-Science Review... arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2011Data sources: DANS (Data Archiving and Networked Services)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.earscirev.2010.10.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu74 citations 74 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Earth-Science Review... arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2011Data sources: DANS (Data Archiving and Networked Services)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.earscirev.2010.10.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 Australia, Australia, Netherlands, United KingdomPublisher:Elsevier BV Verleyen, Elie; Hodgson, Dominic A.; Koen, Sabbe; Holger, Cremer; Emslie, Steven D.; Gibson, John; Hall, Brenda; Imura, Satoshi; Kudoh, Sakae; Marshall, Gareth J.; McMinn, Andrew; Melles, Martin; Newman, Louise; Roberts, Donna; Roberts, Steve J.; Singh, Shiv M.; Sterken, Mieke; Tavernier, Ines; Verkulich, Sergey; Van de Vyver, Evelien; Van Nieuwenhuyze, Wim; Wagner, Bernd; Vyverman, Wim;We review the post-glacial climate variability along the East Antarctic coastline using terrestrial and shallow marine geological records and compare these reconstructions with data from elsewhere. Nearly all East Antarctic records show a near-synchronous Early Holocene climate optimum (11.5-9 ka BP), coinciding with the deglaciation of currently ice-free regions and the optimum recorded in Antarctic ice and marine sediment cores. Shallow marine and coastal terrestrial climate anomalies appear to be out of phase after the Early Holocene warm period, and show complex regional patterns, but an overall trend of cooling in the terrestrial records. A Mid to Late Holocene warm period is present in many East Antarctic lake and shallow coastal marine records. Although there are some differences in the regional timing of this warm period, it typically occurs somewhere between 4.7 and 1 ka BP, which overlaps with a similar optimum found in Antarctic Peninsula terrestrial records. The differences in the timing of these sometimes abrupt warm events in different records and regions points to a number of mechanisms that we have yet to identify. Nearly all records show a neoglacial cooling from 2 ka BP onwards. There is no evidence along the East Antarctic coastline for an equivalent to the Northern Hemisphere Medieval Warm Period and there is only weak circumstantial evidence in a few places for a cool event crudely equivalent in time to the Northern Hemisphere's Little Ice Age. There is a need for well-dated, high resolution climate records in coastal East Antarctica and particularly in Terre Adélie, Dronning Maud Land and Enderby Land to fully understand the regional climate anomalies, the disparity between marine and terrestrial records, and to determine the significance of the heterogeneous temperature trends being measured in the Antarctic today. © 2010 Elsevier B.V.
Earth-Science Review... arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2011Data sources: DANS (Data Archiving and Networked Services)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.earscirev.2010.10.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu74 citations 74 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Earth-Science Review... arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2011Data sources: DANS (Data Archiving and Networked Services)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.earscirev.2010.10.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United Kingdom, Switzerland, SpainPublisher:Elsevier BV Sterken, Mieke; Roberts, Stephen; Hodgson, Dominic; Vyverman, Wim; Balbo, Andrea L.; Sabbe, Koen; Moreton, Steven G.; Verleyen, Elie;handle: 10261/97593
The Antarctic Peninsula is one of the most rapidly warming regions on Earth, as evidenced by a recent increase in the intensity and duration of summer melting, the recession of glaciers and the retreat and collapse of ice shelves. Despite this, only a limited number of well-dated near shore marine and lake sediment based palaeoenvironmental records exist from this region; so our understanding of the longer-term context of this rapid climate change is limited. Here we provide new well-dated constraints on the deglaciation history, and changes in sea ice and climate based on analyses of sedimentological proxies, diatoms and fossil pigments in a sediment core collected from an isolation basin on Beak Island in Prince Gustav Channel, NE Antarctic Peninsula (63°36′S, 57°20′W). Twenty two radiocarbon dates provided a chronology for the core including a minimum modelled age for deglaciation of 10,602 cal yr BP, following the onset of marine sedimentation. Conditions remained cold and perennial sea ice persisted in this part of Prince Gustav Channel until c. 9372 cal yr BP. This was followed by a seasonally open marine environment until at least 6988 cal yr BP, corresponding with the early retreat and disintegration of the ice shelf in southern Prince Gustav Channel. Following isolation of the basin from 6988 cal yr BP a relatively cold climate persisted until 3169 cal yr BP. A Mid-late Holocene climate optimum occurred between 3169 and 2120 cal yr BP, inferred from multiple indicators of increased biological production. This postdates the onset of the Mid-late Holocene climate optimum in the South Shetland Islands (4380 cal yr BP) and the South Orkney Islands (3800 cal yr BP) suggesting that cooler climate systems of the Weddell Sea Gyre to the east of the Peninsula may have buffered the onset of warming. Climate deterioration is inferred from c. 2120 cal yr BP until 543 cal yr BP. This was followed by warming. Superimposed on this warming trend, the instrumental record of recent warming at nearby Hope Bay is mirrored by a recent increase in the lake’s primary production and a shift in the diatom communities in the uppermost 3 cm of sediments, suggesting that this is amongst the first records to show an ecological response to recent rapid temperature increase. These new constraints on glaciological and climate events in Prince Gustav Channel are reviewed in the context of wider changes in the Antarctic region. Peer reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAQuaternary Science ReviewsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.quascirev.2011.10.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 37visibility views 37 download downloads 31 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAQuaternary Science ReviewsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.quascirev.2011.10.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United Kingdom, Switzerland, SpainPublisher:Elsevier BV Sterken, Mieke; Roberts, Stephen; Hodgson, Dominic; Vyverman, Wim; Balbo, Andrea L.; Sabbe, Koen; Moreton, Steven G.; Verleyen, Elie;handle: 10261/97593
The Antarctic Peninsula is one of the most rapidly warming regions on Earth, as evidenced by a recent increase in the intensity and duration of summer melting, the recession of glaciers and the retreat and collapse of ice shelves. Despite this, only a limited number of well-dated near shore marine and lake sediment based palaeoenvironmental records exist from this region; so our understanding of the longer-term context of this rapid climate change is limited. Here we provide new well-dated constraints on the deglaciation history, and changes in sea ice and climate based on analyses of sedimentological proxies, diatoms and fossil pigments in a sediment core collected from an isolation basin on Beak Island in Prince Gustav Channel, NE Antarctic Peninsula (63°36′S, 57°20′W). Twenty two radiocarbon dates provided a chronology for the core including a minimum modelled age for deglaciation of 10,602 cal yr BP, following the onset of marine sedimentation. Conditions remained cold and perennial sea ice persisted in this part of Prince Gustav Channel until c. 9372 cal yr BP. This was followed by a seasonally open marine environment until at least 6988 cal yr BP, corresponding with the early retreat and disintegration of the ice shelf in southern Prince Gustav Channel. Following isolation of the basin from 6988 cal yr BP a relatively cold climate persisted until 3169 cal yr BP. A Mid-late Holocene climate optimum occurred between 3169 and 2120 cal yr BP, inferred from multiple indicators of increased biological production. This postdates the onset of the Mid-late Holocene climate optimum in the South Shetland Islands (4380 cal yr BP) and the South Orkney Islands (3800 cal yr BP) suggesting that cooler climate systems of the Weddell Sea Gyre to the east of the Peninsula may have buffered the onset of warming. Climate deterioration is inferred from c. 2120 cal yr BP until 543 cal yr BP. This was followed by warming. Superimposed on this warming trend, the instrumental record of recent warming at nearby Hope Bay is mirrored by a recent increase in the lake’s primary production and a shift in the diatom communities in the uppermost 3 cm of sediments, suggesting that this is amongst the first records to show an ecological response to recent rapid temperature increase. These new constraints on glaciological and climate events in Prince Gustav Channel are reviewed in the context of wider changes in the Antarctic region. Peer reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAQuaternary Science ReviewsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.quascirev.2011.10.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 37visibility views 37 download downloads 31 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAQuaternary Science ReviewsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.quascirev.2011.10.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United KingdomPublisher:Elsevier BV Hodgson, Dominic A.; Roberts, Stephen J.; Smith, James A.; Verleyen, Elie; Sterken, Mieke; Labarque, Minke; Sabbe, Koen; Vyverman, Wim; Allen, Claire S.; Leng, Melanie J.; Bryant, Charlotte;The Antarctic Peninsula is one of the fastest-warming regions on Earth, but its palaeoenvironmental history south of 63° latitude is relatively poorly documented, relying principally on the marine geological record and short ice cores. In this paper, we present evidence of late-Quaternary environmental change from the Marguerite Bay region combining data from lake sediment records on Horseshoe Island and Pourquoi-Pas Island, and raised beaches at Horseshoe Island, Pourquoi-Pas Island and Calmette Bay. Lake sediments were radiocarbon dated and analysed using a combination of sedimentological, geochemical and microfossil methods. Raised beaches were surveyed and analysed for changes in clast composition, size and roundness. Results suggest a non-erosive glacial regime could have existed on Horseshoe Island from 35,780 (38,650–33,380) or 32,910 (34,630–31,370) cal yr BP onwards. There is radiocarbon and macrofossil evidence for possible local deglaciation events at 28,830 (29,370–28,320) cal yr BP, immediately post-dating Antarctic Isotopic Maximum 4, and 21,110 (21,510–20,730 interpolated) cal yr BP coinciding with, or immediately post-dating, Antarctic Isotopic Maximum 2. The Holocene deglaciation of Horseshoe Island commenced from 10,610 (11,000–10,300) cal yr BP at the same time as the early Holocene temperature maximum recorded in Antarctic ice cores. This was followed by the onset of marine sedimentation in The Narrows, Pourquoi-Pas Island, before 8850 (8480–9260) cal yr BP. Relative sea level high stands of 40.79 m above present at Pourquoi-Pas Island and 40.55 m above present at Calmette Bay occurred sometime after 9000 cal yr BP and suggest that a thicker ice sheet, including grounded ice streams, was present in this region of the Antarctic Peninsula than that recorded at sites further north. Isolation of the Narrows Lake basin on Pourquoi-Pas Island shows relative sea level in this region had fallen rapidly to 19.41 m by 7270 (7385–7155) cal yr BP. Chaetoceros resting spores suggest high productivity and stratified surface waters in The Narrows after 8850 (9260–8480) cal yr BP and beach clasts provide evidence of a period of increased wave energy at approximately 8000 yr BP. Lake sediment and beach data suggest an extended period of regional warming sometime between 6200 and 2030 cal yr BP followed by the onset of Neoglacial conditions from 2630 and 2030 cal yr BP in Narrows Lake and Col Lake 1, respectively. Diatom and δ13C vs C/N and macrofossil evidence suggest a potential increase in the number of birds and seals visiting the Narrows Lake catchment sometime after 2100 (2250–2000) cal yr BP, with enhanced nutrient enrichment evident after 1150 (1230–1080) cal yr BP, and particularly from c. 460 (540–380) cal yr BP. A very recent increase in Gomphonema species and organic carbon in the top centimetre of the Narrows Lake sediment core after c. 410 (490–320) cal yr BP, and increased sedimentation rates in the Col Lake 1 sediment core, after c. 400 (490–310) cal yr BP may be a response to the regional late-Holocene warming of the Antarctic Peninsula.
NERC Open Research A... arrow_drop_down Quaternary Science ReviewsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.quascirev.2013.02.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Quaternary Science ReviewsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.quascirev.2013.02.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United KingdomPublisher:Elsevier BV Hodgson, Dominic A.; Roberts, Stephen J.; Smith, James A.; Verleyen, Elie; Sterken, Mieke; Labarque, Minke; Sabbe, Koen; Vyverman, Wim; Allen, Claire S.; Leng, Melanie J.; Bryant, Charlotte;The Antarctic Peninsula is one of the fastest-warming regions on Earth, but its palaeoenvironmental history south of 63° latitude is relatively poorly documented, relying principally on the marine geological record and short ice cores. In this paper, we present evidence of late-Quaternary environmental change from the Marguerite Bay region combining data from lake sediment records on Horseshoe Island and Pourquoi-Pas Island, and raised beaches at Horseshoe Island, Pourquoi-Pas Island and Calmette Bay. Lake sediments were radiocarbon dated and analysed using a combination of sedimentological, geochemical and microfossil methods. Raised beaches were surveyed and analysed for changes in clast composition, size and roundness. Results suggest a non-erosive glacial regime could have existed on Horseshoe Island from 35,780 (38,650–33,380) or 32,910 (34,630–31,370) cal yr BP onwards. There is radiocarbon and macrofossil evidence for possible local deglaciation events at 28,830 (29,370–28,320) cal yr BP, immediately post-dating Antarctic Isotopic Maximum 4, and 21,110 (21,510–20,730 interpolated) cal yr BP coinciding with, or immediately post-dating, Antarctic Isotopic Maximum 2. The Holocene deglaciation of Horseshoe Island commenced from 10,610 (11,000–10,300) cal yr BP at the same time as the early Holocene temperature maximum recorded in Antarctic ice cores. This was followed by the onset of marine sedimentation in The Narrows, Pourquoi-Pas Island, before 8850 (8480–9260) cal yr BP. Relative sea level high stands of 40.79 m above present at Pourquoi-Pas Island and 40.55 m above present at Calmette Bay occurred sometime after 9000 cal yr BP and suggest that a thicker ice sheet, including grounded ice streams, was present in this region of the Antarctic Peninsula than that recorded at sites further north. Isolation of the Narrows Lake basin on Pourquoi-Pas Island shows relative sea level in this region had fallen rapidly to 19.41 m by 7270 (7385–7155) cal yr BP. Chaetoceros resting spores suggest high productivity and stratified surface waters in The Narrows after 8850 (9260–8480) cal yr BP and beach clasts provide evidence of a period of increased wave energy at approximately 8000 yr BP. Lake sediment and beach data suggest an extended period of regional warming sometime between 6200 and 2030 cal yr BP followed by the onset of Neoglacial conditions from 2630 and 2030 cal yr BP in Narrows Lake and Col Lake 1, respectively. Diatom and δ13C vs C/N and macrofossil evidence suggest a potential increase in the number of birds and seals visiting the Narrows Lake catchment sometime after 2100 (2250–2000) cal yr BP, with enhanced nutrient enrichment evident after 1150 (1230–1080) cal yr BP, and particularly from c. 460 (540–380) cal yr BP. A very recent increase in Gomphonema species and organic carbon in the top centimetre of the Narrows Lake sediment core after c. 410 (490–320) cal yr BP, and increased sedimentation rates in the Col Lake 1 sediment core, after c. 400 (490–310) cal yr BP may be a response to the regional late-Holocene warming of the Antarctic Peninsula.
NERC Open Research A... arrow_drop_down Quaternary Science ReviewsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.quascirev.2013.02.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Quaternary Science ReviewsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.quascirev.2013.02.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 United KingdomPublisher:Proceedings of the National Academy of Sciences Authors: Hodgson, Dominic A.;It is now 10 y since field observations and RADARSAT imagery witnessed the breakup of the Ward Hunt Ice Shelf on Ellesmere Island, Canada. This was the largest remaining ice shelf in the Arctic and one of the last fragments of the 8,900-km2 Ellesmere Ice Shelf charted by the Aldrich 1875–1876 and Peary 1906 expeditions (1). Its breakup has been linked to the polar amplification of climate change being witnessed in the wider Arctic region (2), including the ongoing reduction in the extent and duration of sea ice (3). Similar ice shelf retreats have been reported from the Antarctic Peninsula region (4). The key question is the following: Have the polar ice shelves broken up before under natural conditions, or are these unique events triggered by anthropogenic climate forcing? In PNAS, Antoniades et al. (5) report a marine geological reconstruction of the Holocene history of the Ward Hunt Ice Shelf. They found that the northern coast of Ellesmere Island has been free of a bounding ice shelf through most of the past ca. 11,500 y (the Holocene epoch) and that ice shelves have only been present there between 4,000 and 1,400 calibrated radiocarbon years before present (cal. y B.P.) and from 800 cal. y B.P. until the recent break-up event. This has built on previous work on radiocarbon-dated ancient driftwood deposited along the northern coast of Ellesmere Island that could have arrived there either during periods of ice shelf absence or as a result of changes in the configuration of ocean currents and sea ice (6).
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2011 . Peer-reviewedData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1116515108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2011 . Peer-reviewedData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1116515108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 United KingdomPublisher:Proceedings of the National Academy of Sciences Authors: Hodgson, Dominic A.;It is now 10 y since field observations and RADARSAT imagery witnessed the breakup of the Ward Hunt Ice Shelf on Ellesmere Island, Canada. This was the largest remaining ice shelf in the Arctic and one of the last fragments of the 8,900-km2 Ellesmere Ice Shelf charted by the Aldrich 1875–1876 and Peary 1906 expeditions (1). Its breakup has been linked to the polar amplification of climate change being witnessed in the wider Arctic region (2), including the ongoing reduction in the extent and duration of sea ice (3). Similar ice shelf retreats have been reported from the Antarctic Peninsula region (4). The key question is the following: Have the polar ice shelves broken up before under natural conditions, or are these unique events triggered by anthropogenic climate forcing? In PNAS, Antoniades et al. (5) report a marine geological reconstruction of the Holocene history of the Ward Hunt Ice Shelf. They found that the northern coast of Ellesmere Island has been free of a bounding ice shelf through most of the past ca. 11,500 y (the Holocene epoch) and that ice shelves have only been present there between 4,000 and 1,400 calibrated radiocarbon years before present (cal. y B.P.) and from 800 cal. y B.P. until the recent break-up event. This has built on previous work on radiocarbon-dated ancient driftwood deposited along the northern coast of Ellesmere Island that could have arrived there either during periods of ice shelf absence or as a result of changes in the configuration of ocean currents and sea ice (6).
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2011 . Peer-reviewedData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1116515108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2011 . Peer-reviewedData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1116515108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 Belgium, United KingdomPublisher:Springer Science and Business Media LLC Wim Vyverman; Elie Verleyen; Louise C. Sime; Stephen Roberts; Dominic A. Hodgson; Dominic A. Hodgson; Wim Van Nieuwenhuyze; Bianca B. Perren;handle: 1854/LU-8734914
AbstractRecent changes in the strength and location of the Southern Hemisphere westerly winds (SHW) have been linked to continental droughts and wildfires, changes in the Southern Ocean carbon sink, sea ice extent, ocean circulation, and ice shelf stability. Despite their critical role, our ability to predict their impacts under future climates is limited by a lack of data on SHW behaviour over centennial timescales. Here, we present a 700-year record of changes in SHW intensity from sub-Antarctic Marion Island using diatom and geochemical proxies and compare it with paleoclimate records and recent instrumental data. During cool periods, such as the Little Ice Age (c. 1400–1870 CE), the winds weakened and shifted towards the equator, and during warm periods they intensified and migrated poleward. These results imply that changes in the latitudinal temperature gradient drive century-scale SHW migrations, and that intensification of impacts can be anticipated in the coming century.
NERC Open Research A... arrow_drop_down Communications Earth & EnvironmentArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43247-020-00059-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 60 citations 60 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Communications Earth & EnvironmentArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43247-020-00059-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 Belgium, United KingdomPublisher:Springer Science and Business Media LLC Wim Vyverman; Elie Verleyen; Louise C. Sime; Stephen Roberts; Dominic A. Hodgson; Dominic A. Hodgson; Wim Van Nieuwenhuyze; Bianca B. Perren;handle: 1854/LU-8734914
AbstractRecent changes in the strength and location of the Southern Hemisphere westerly winds (SHW) have been linked to continental droughts and wildfires, changes in the Southern Ocean carbon sink, sea ice extent, ocean circulation, and ice shelf stability. Despite their critical role, our ability to predict their impacts under future climates is limited by a lack of data on SHW behaviour over centennial timescales. Here, we present a 700-year record of changes in SHW intensity from sub-Antarctic Marion Island using diatom and geochemical proxies and compare it with paleoclimate records and recent instrumental data. During cool periods, such as the Little Ice Age (c. 1400–1870 CE), the winds weakened and shifted towards the equator, and during warm periods they intensified and migrated poleward. These results imply that changes in the latitudinal temperature gradient drive century-scale SHW migrations, and that intensification of impacts can be anticipated in the coming century.
NERC Open Research A... arrow_drop_down Communications Earth & EnvironmentArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43247-020-00059-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 60 citations 60 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Communications Earth & EnvironmentArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43247-020-00059-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016Embargo end date: 09 Aug 2017 United Kingdom, United KingdomPublisher:Springer Science and Business Media LLC Dominic A. Hodgson; Matthew J. Amesbury; Glyn D. Jones; Peter Convey; Dan J. Charman; Howard Griffiths; Thomas P. Roland; Jessica Royles; Jessica Royles;The stable isotope compositions of moss tissue water (δ(2)H and δ(18)O) and cellulose (δ(13)C and δ(18)O), and testate amoebae populations were sampled from 61 contemporary surface samples along a 600-km latitudinal gradient of the Antarctic Peninsula (AP) to provide a spatial record of environmental change. The isotopic composition of moss tissue water represented an annually integrated precipitation signal with the expected isotopic depletion with increasing latitude. There was a weak, but significant, relationship between cellulose δ(18)O and latitude, with predicted source water inputs isotopically enriched compared to measured precipitation. Cellulose δ(13)C values were dependent on moss species and water content, and may reflect site exposure to strong winds. Testate amoebae assemblages were characterised by low concentrations and taxonomic diversity, with Corythion dubium and Microcorycia radiata types the most cosmopolitan taxa. The similarity between the intra- and inter-site ranges measured in all proxies suggests that microclimate and micro-topographical conditions around the moss surface were important determinants of proxy values. Isotope and testate amoebae analyses have proven value as palaeoclimatic, temporal proxies of climate change, whereas this study demonstrates that variations in isotopic and amoeboid proxies between microsites can be beyond the bounds of the current spatial variability in AP climate.
NERC Open Research A... arrow_drop_down NERC Open Research Archive2016 . Peer-reviewedFull-Text: http://nora.nerc.ac.uk/510920/1/Royles.pdfData sources: NERC Open Research ArchiveNatural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-016-3608-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down NERC Open Research Archive2016 . Peer-reviewedFull-Text: http://nora.nerc.ac.uk/510920/1/Royles.pdfData sources: NERC Open Research ArchiveNatural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-016-3608-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016Embargo end date: 09 Aug 2017 United Kingdom, United KingdomPublisher:Springer Science and Business Media LLC Dominic A. Hodgson; Matthew J. Amesbury; Glyn D. Jones; Peter Convey; Dan J. Charman; Howard Griffiths; Thomas P. Roland; Jessica Royles; Jessica Royles;The stable isotope compositions of moss tissue water (δ(2)H and δ(18)O) and cellulose (δ(13)C and δ(18)O), and testate amoebae populations were sampled from 61 contemporary surface samples along a 600-km latitudinal gradient of the Antarctic Peninsula (AP) to provide a spatial record of environmental change. The isotopic composition of moss tissue water represented an annually integrated precipitation signal with the expected isotopic depletion with increasing latitude. There was a weak, but significant, relationship between cellulose δ(18)O and latitude, with predicted source water inputs isotopically enriched compared to measured precipitation. Cellulose δ(13)C values were dependent on moss species and water content, and may reflect site exposure to strong winds. Testate amoebae assemblages were characterised by low concentrations and taxonomic diversity, with Corythion dubium and Microcorycia radiata types the most cosmopolitan taxa. The similarity between the intra- and inter-site ranges measured in all proxies suggests that microclimate and micro-topographical conditions around the moss surface were important determinants of proxy values. Isotope and testate amoebae analyses have proven value as palaeoclimatic, temporal proxies of climate change, whereas this study demonstrates that variations in isotopic and amoeboid proxies between microsites can be beyond the bounds of the current spatial variability in AP climate.
NERC Open Research A... arrow_drop_down NERC Open Research Archive2016 . Peer-reviewedFull-Text: http://nora.nerc.ac.uk/510920/1/Royles.pdfData sources: NERC Open Research ArchiveNatural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-016-3608-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down NERC Open Research Archive2016 . Peer-reviewedFull-Text: http://nora.nerc.ac.uk/510920/1/Royles.pdfData sources: NERC Open Research ArchiveNatural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-016-3608-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 United Kingdom, Australia, Switzerland, AustraliaPublisher:Cambridge University Press (CUP) Authors: Saunders, Krystyna M.; Hodgson, Dominic A.; McMinn, Andrew;AbstractThis study is the first published survey of diatom-environment relationships on sub-Antarctic Macquarie Island. Fifty-eight sites in 50 coastal and inland lakes were sampled for benthic diatoms and water chemistry. 208 diatom species from 34 genera were identified. Multivariate analyses indicated that the lakes were distributed along nutrient and conductivity gradients. Conductivity, pH, phosphate (SRP), silicate and temperature all explained independent portions of the variance in the diatom data. Transfer functions provide a quantitative basis for palaeolimnological studies of past climate change and human impacts, and can be used to establish baseline conditions for assessing the impacts of recent climate change and the introduction of non-native plants and animals. Statistically robust diatom transfer functions for conductivity, phosphate and silicate were developed, while pH and temperature transfer functions performed less well. The lower predictive abilities of the pH and temperature transfer functions probably reflect the broad pH tolerance range of diatoms on Macquarie Island and uneven distribution of lakes along the temperature gradient. This study contributes to understanding the current ecological distribution of Macquarie Island diatoms and provides transfer functions that will be applied in studies of diatoms in lake sediment cores to quantitatively reconstruct past environmental changes.
NERC Open Research A... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2009 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Antarctic ScienceArticle . 2008 . Peer-reviewedLicense: Cambridge Core User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/s0954102008001442&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 23 citations 23 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2009 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Antarctic ScienceArticle . 2008 . Peer-reviewedLicense: Cambridge Core User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/s0954102008001442&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 United Kingdom, Australia, Switzerland, AustraliaPublisher:Cambridge University Press (CUP) Authors: Saunders, Krystyna M.; Hodgson, Dominic A.; McMinn, Andrew;AbstractThis study is the first published survey of diatom-environment relationships on sub-Antarctic Macquarie Island. Fifty-eight sites in 50 coastal and inland lakes were sampled for benthic diatoms and water chemistry. 208 diatom species from 34 genera were identified. Multivariate analyses indicated that the lakes were distributed along nutrient and conductivity gradients. Conductivity, pH, phosphate (SRP), silicate and temperature all explained independent portions of the variance in the diatom data. Transfer functions provide a quantitative basis for palaeolimnological studies of past climate change and human impacts, and can be used to establish baseline conditions for assessing the impacts of recent climate change and the introduction of non-native plants and animals. Statistically robust diatom transfer functions for conductivity, phosphate and silicate were developed, while pH and temperature transfer functions performed less well. The lower predictive abilities of the pH and temperature transfer functions probably reflect the broad pH tolerance range of diatoms on Macquarie Island and uneven distribution of lakes along the temperature gradient. This study contributes to understanding the current ecological distribution of Macquarie Island diatoms and provides transfer functions that will be applied in studies of diatoms in lake sediment cores to quantitatively reconstruct past environmental changes.
NERC Open Research A... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2009 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Antarctic ScienceArticle . 2008 . Peer-reviewedLicense: Cambridge Core User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/s0954102008001442&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 23 citations 23 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2009 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Antarctic ScienceArticle . 2008 . Peer-reviewedLicense: Cambridge Core User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/s0954102008001442&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 United KingdomPublisher:Wiley Authors: Convey, Peter; Gibson, John A.E.; Hillenbrand, Claus-Dieter; Hodgson, Dominic A.; +3 AuthorsConvey, Peter; Gibson, John A.E.; Hillenbrand, Claus-Dieter; Hodgson, Dominic A.; Pugh, Philip J.A.; Smellie, John L.; Stevens, Mark I.;AbstractAntarctica is a continent locked in ice, with almost 99.7% of current terrain covered by permanent ice and snow, and clear evidence that, as recently as the Last Glacial Maximum (LGM), ice sheets were both thicker and much more extensive than they are now. Ice sheet modelling of both the LGM and estimated previous ice maxima across the continent give broad support to the concept that most if not all currently ice‐free ground would have been overridden during previous glaciations. This has given rise to a widely held perception that all Mesozoic (pre‐glacial) terrestrial life of Antarctica was wiped out by successive and deepening glacial events. The implicit conclusion of such destruction is that most, possibly all, contemporary terrestrial life has colonised the continent during subsequent periods of glacial retreat. However, several recently emerged and complementary strands of biological and geological research cannot be reconciled comfortably with the current reconstruction of Antarctic glacial history, and therefore provide a fundamental challenge to the existing paradigms. Here, we summarise and synthesise evidence across these lines of research. The emerging fundamental insights corroborate substantial elements of the contemporary Antarctic terrestrial biota being continuously isolated in situ on a multi‐million year, even pre‐Gondwana break‐up timescale. This new and complex terrestrial Antarctic biogeography parallels recent work suggesting greater regionalisation and evolutionary isolation than previously suspected in the circum‐Antarctic marine fauna. These findings both require the adoption of a new biological paradigm within Antarctica and challenge current understanding of Antarctic glacial history. This has major implications for our understanding of the key role of Antarctica in the Earth System.
Biological Reviews arrow_drop_down Biological ReviewsArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-185x.2008.00034.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu274 citations 274 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Biological Reviews arrow_drop_down Biological ReviewsArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-185x.2008.00034.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 United KingdomPublisher:Wiley Authors: Convey, Peter; Gibson, John A.E.; Hillenbrand, Claus-Dieter; Hodgson, Dominic A.; +3 AuthorsConvey, Peter; Gibson, John A.E.; Hillenbrand, Claus-Dieter; Hodgson, Dominic A.; Pugh, Philip J.A.; Smellie, John L.; Stevens, Mark I.;AbstractAntarctica is a continent locked in ice, with almost 99.7% of current terrain covered by permanent ice and snow, and clear evidence that, as recently as the Last Glacial Maximum (LGM), ice sheets were both thicker and much more extensive than they are now. Ice sheet modelling of both the LGM and estimated previous ice maxima across the continent give broad support to the concept that most if not all currently ice‐free ground would have been overridden during previous glaciations. This has given rise to a widely held perception that all Mesozoic (pre‐glacial) terrestrial life of Antarctica was wiped out by successive and deepening glacial events. The implicit conclusion of such destruction is that most, possibly all, contemporary terrestrial life has colonised the continent during subsequent periods of glacial retreat. However, several recently emerged and complementary strands of biological and geological research cannot be reconciled comfortably with the current reconstruction of Antarctic glacial history, and therefore provide a fundamental challenge to the existing paradigms. Here, we summarise and synthesise evidence across these lines of research. The emerging fundamental insights corroborate substantial elements of the contemporary Antarctic terrestrial biota being continuously isolated in situ on a multi‐million year, even pre‐Gondwana break‐up timescale. This new and complex terrestrial Antarctic biogeography parallels recent work suggesting greater regionalisation and evolutionary isolation than previously suspected in the circum‐Antarctic marine fauna. These findings both require the adoption of a new biological paradigm within Antarctica and challenge current understanding of Antarctic glacial history. This has major implications for our understanding of the key role of Antarctica in the Earth System.
Biological Reviews arrow_drop_down Biological ReviewsArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-185x.2008.00034.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu274 citations 274 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Biological Reviews arrow_drop_down Biological ReviewsArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-185x.2008.00034.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2012 United Kingdom, FrancePublisher:American Geophysical Union (AGU) L G Collins; L G Collins; Claire S. Allen; Dominic A. Hodgson; Jennifer Pike;doi: 10.1029/2011pa002264
Recent modeling suggests that changes in Southern Ocean sea‐ice extent potentially regulated the exchange of CO2release between the ocean and atmosphere during glacials. Unfortunately, a lack of high‐resolution sea‐ice records from the Southern Ocean has prevented detailed testing of these model‐based hypotheses with field data. Here we present high‐resolution records of Southern Ocean sea‐ice, for the period 35–15 cal ka BP, derived from diatom assemblages measured in three glacial sediment cores forming an ∼8° transect across the Scotia Sea, southwest Atlantic. Chronological control was achieved through a novel combination of diatom abundance stratigraphy, relative geomagnetic paleointensity data, and down‐core magnetic susceptibility and ice core dust correlation. Results showed that the winter sea‐ice edge reached its maximum northward extent of ∼53°S, at least 3° north of its modern limit, between ∼25 and ∼23.5 cal ka BP, predating the Last Glacial Maximum (LGM). Maximum northward expansion of the summer sea‐ice edge also pre‐dated the LGM, advancing to at least 61°S, and possibly as far north as 55°S between ∼31 and ∼23.5 cal ka BP, a ∼12° advance from its modern position. A clear shift in the seasonal sea‐ice zone is evident following summer sea‐ice edge retreat at ∼23.5 cal ka BP, potentially related to austral insolation forcing. This resulted in an expanded seasonal sea‐ice zone between ∼22.5 cal ka BP and deglaciation. Our field data confirm that Southern Ocean sea‐ice had the physical potential to influence the carbon cycle both as a physical barrier and more importantly through the suppression of vertical mixing and cycling of pre‐formed nutrients. Our data indicates that Southern Ocean sea‐ice was most effective as a physical barrier between ∼31 and ∼23.5 cal ka BP and as a mechanism capable of reducing vertical mixing between ∼22.5 cal ka BP and deglaciation. However, poor correlations with atmospheric CO2 variability recorded in ice cores, particularly the lack of a CO2response during a rapid sea‐ice meltback event, recorded at our study sites at the same time as Antarctic Isotopic Maximum 2, suggest that Southern Ocean sea‐ice in the Scotia Sea did not play a controlling role in atmospheric CO2 variation during the glacial.
École Polytechnique,... arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2012Full-Text: https://hal.science/hal-01495045Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2012Full-Text: https://hal.science/hal-01495045Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Full-Text: https://hal.science/hal-01495045Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverPaleoceanographyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2011pa002264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert École Polytechnique,... arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2012Full-Text: https://hal.science/hal-01495045Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2012Full-Text: https://hal.science/hal-01495045Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Full-Text: https://hal.science/hal-01495045Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverPaleoceanographyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2011pa002264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United Kingdom, FrancePublisher:American Geophysical Union (AGU) L G Collins; L G Collins; Claire S. Allen; Dominic A. Hodgson; Jennifer Pike;doi: 10.1029/2011pa002264
Recent modeling suggests that changes in Southern Ocean sea‐ice extent potentially regulated the exchange of CO2release between the ocean and atmosphere during glacials. Unfortunately, a lack of high‐resolution sea‐ice records from the Southern Ocean has prevented detailed testing of these model‐based hypotheses with field data. Here we present high‐resolution records of Southern Ocean sea‐ice, for the period 35–15 cal ka BP, derived from diatom assemblages measured in three glacial sediment cores forming an ∼8° transect across the Scotia Sea, southwest Atlantic. Chronological control was achieved through a novel combination of diatom abundance stratigraphy, relative geomagnetic paleointensity data, and down‐core magnetic susceptibility and ice core dust correlation. Results showed that the winter sea‐ice edge reached its maximum northward extent of ∼53°S, at least 3° north of its modern limit, between ∼25 and ∼23.5 cal ka BP, predating the Last Glacial Maximum (LGM). Maximum northward expansion of the summer sea‐ice edge also pre‐dated the LGM, advancing to at least 61°S, and possibly as far north as 55°S between ∼31 and ∼23.5 cal ka BP, a ∼12° advance from its modern position. A clear shift in the seasonal sea‐ice zone is evident following summer sea‐ice edge retreat at ∼23.5 cal ka BP, potentially related to austral insolation forcing. This resulted in an expanded seasonal sea‐ice zone between ∼22.5 cal ka BP and deglaciation. Our field data confirm that Southern Ocean sea‐ice had the physical potential to influence the carbon cycle both as a physical barrier and more importantly through the suppression of vertical mixing and cycling of pre‐formed nutrients. Our data indicates that Southern Ocean sea‐ice was most effective as a physical barrier between ∼31 and ∼23.5 cal ka BP and as a mechanism capable of reducing vertical mixing between ∼22.5 cal ka BP and deglaciation. However, poor correlations with atmospheric CO2 variability recorded in ice cores, particularly the lack of a CO2response during a rapid sea‐ice meltback event, recorded at our study sites at the same time as Antarctic Isotopic Maximum 2, suggest that Southern Ocean sea‐ice in the Scotia Sea did not play a controlling role in atmospheric CO2 variation during the glacial.
École Polytechnique,... arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2012Full-Text: https://hal.science/hal-01495045Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2012Full-Text: https://hal.science/hal-01495045Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Full-Text: https://hal.science/hal-01495045Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverPaleoceanographyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2011pa002264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert École Polytechnique,... arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2012Full-Text: https://hal.science/hal-01495045Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2012Full-Text: https://hal.science/hal-01495045Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Full-Text: https://hal.science/hal-01495045Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverPaleoceanographyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2011pa002264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United KingdomPublisher:Elsevier BV Funded by:UKRI | Terrestrial Holocene clim...UKRI| Terrestrial Holocene climate variability on the Antarctic PeninsulaJessica Royles; Jessica Royles; Howard Griffiths; Matthew J. Amesbury; Melanie J. Leng; Melanie J. Leng; Dan J. Charman; Dominic A. Hodgson; Peter Convey;pmid: 23993839
Annual temperatures on the Antarctic Peninsula, one of the most rapidly warming regions on Earth, have risen by up to 0.56°C per decade since the 1950s. Terrestrial and marine organisms have shown changes in populations and distributions over this time, suggesting that the ecology of the Antarctic Peninsula is changing rapidly. However, these biological records are shorter in length than the meteorological data, and observed population changes cannot be securely linked to longer-term trends apparent in paleoclimate data. We developed a unique time series of past moss growth and soil microbial activity from a 150-year-old moss bank at the southern limit of significant plant growth based on accumulation rates, cellulose δ(13)C, and fossil testate amoebae. We show that growth rates and microbial productivity have risen rapidly since the 1960s, consistent with temperature changes, although recently they may have stalled. The recent increase in terrestrial plant growth rates and soil microbial activity are unprecedented in the last 150 years and are consistent with climate change. Future changes in terrestrial biota are likely to track projected temperature increases closely and will fundamentally change the ecology and appearance of the Antarctic Peninsula.
NERC Open Research A... arrow_drop_down Current BiologyArticle . 2013License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Current BiologyArticle . 2013 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2013.07.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 66 citations 66 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Current BiologyArticle . 2013License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Current BiologyArticle . 2013 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2013.07.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United KingdomPublisher:Elsevier BV Funded by:UKRI | Terrestrial Holocene clim...UKRI| Terrestrial Holocene climate variability on the Antarctic PeninsulaJessica Royles; Jessica Royles; Howard Griffiths; Matthew J. Amesbury; Melanie J. Leng; Melanie J. Leng; Dan J. Charman; Dominic A. Hodgson; Peter Convey;pmid: 23993839
Annual temperatures on the Antarctic Peninsula, one of the most rapidly warming regions on Earth, have risen by up to 0.56°C per decade since the 1950s. Terrestrial and marine organisms have shown changes in populations and distributions over this time, suggesting that the ecology of the Antarctic Peninsula is changing rapidly. However, these biological records are shorter in length than the meteorological data, and observed population changes cannot be securely linked to longer-term trends apparent in paleoclimate data. We developed a unique time series of past moss growth and soil microbial activity from a 150-year-old moss bank at the southern limit of significant plant growth based on accumulation rates, cellulose δ(13)C, and fossil testate amoebae. We show that growth rates and microbial productivity have risen rapidly since the 1960s, consistent with temperature changes, although recently they may have stalled. The recent increase in terrestrial plant growth rates and soil microbial activity are unprecedented in the last 150 years and are consistent with climate change. Future changes in terrestrial biota are likely to track projected temperature increases closely and will fundamentally change the ecology and appearance of the Antarctic Peninsula.
NERC Open Research A... arrow_drop_down Current BiologyArticle . 2013License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Current BiologyArticle . 2013 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2013.07.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 66 citations 66 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Current BiologyArticle . 2013License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Current BiologyArticle . 2013 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2013.07.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 Australia, Australia, Netherlands, United KingdomPublisher:Elsevier BV Verleyen, Elie; Hodgson, Dominic A.; Koen, Sabbe; Holger, Cremer; Emslie, Steven D.; Gibson, John; Hall, Brenda; Imura, Satoshi; Kudoh, Sakae; Marshall, Gareth J.; McMinn, Andrew; Melles, Martin; Newman, Louise; Roberts, Donna; Roberts, Steve J.; Singh, Shiv M.; Sterken, Mieke; Tavernier, Ines; Verkulich, Sergey; Van de Vyver, Evelien; Van Nieuwenhuyze, Wim; Wagner, Bernd; Vyverman, Wim;We review the post-glacial climate variability along the East Antarctic coastline using terrestrial and shallow marine geological records and compare these reconstructions with data from elsewhere. Nearly all East Antarctic records show a near-synchronous Early Holocene climate optimum (11.5-9 ka BP), coinciding with the deglaciation of currently ice-free regions and the optimum recorded in Antarctic ice and marine sediment cores. Shallow marine and coastal terrestrial climate anomalies appear to be out of phase after the Early Holocene warm period, and show complex regional patterns, but an overall trend of cooling in the terrestrial records. A Mid to Late Holocene warm period is present in many East Antarctic lake and shallow coastal marine records. Although there are some differences in the regional timing of this warm period, it typically occurs somewhere between 4.7 and 1 ka BP, which overlaps with a similar optimum found in Antarctic Peninsula terrestrial records. The differences in the timing of these sometimes abrupt warm events in different records and regions points to a number of mechanisms that we have yet to identify. Nearly all records show a neoglacial cooling from 2 ka BP onwards. There is no evidence along the East Antarctic coastline for an equivalent to the Northern Hemisphere Medieval Warm Period and there is only weak circumstantial evidence in a few places for a cool event crudely equivalent in time to the Northern Hemisphere's Little Ice Age. There is a need for well-dated, high resolution climate records in coastal East Antarctica and particularly in Terre Adélie, Dronning Maud Land and Enderby Land to fully understand the regional climate anomalies, the disparity between marine and terrestrial records, and to determine the significance of the heterogeneous temperature trends being measured in the Antarctic today. © 2010 Elsevier B.V.
Earth-Science Review... arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2011Data sources: DANS (Data Archiving and Networked Services)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.earscirev.2010.10.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu74 citations 74 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Earth-Science Review... arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2011Data sources: DANS (Data Archiving and Networked Services)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.earscirev.2010.10.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 Australia, Australia, Netherlands, United KingdomPublisher:Elsevier BV Verleyen, Elie; Hodgson, Dominic A.; Koen, Sabbe; Holger, Cremer; Emslie, Steven D.; Gibson, John; Hall, Brenda; Imura, Satoshi; Kudoh, Sakae; Marshall, Gareth J.; McMinn, Andrew; Melles, Martin; Newman, Louise; Roberts, Donna; Roberts, Steve J.; Singh, Shiv M.; Sterken, Mieke; Tavernier, Ines; Verkulich, Sergey; Van de Vyver, Evelien; Van Nieuwenhuyze, Wim; Wagner, Bernd; Vyverman, Wim;We review the post-glacial climate variability along the East Antarctic coastline using terrestrial and shallow marine geological records and compare these reconstructions with data from elsewhere. Nearly all East Antarctic records show a near-synchronous Early Holocene climate optimum (11.5-9 ka BP), coinciding with the deglaciation of currently ice-free regions and the optimum recorded in Antarctic ice and marine sediment cores. Shallow marine and coastal terrestrial climate anomalies appear to be out of phase after the Early Holocene warm period, and show complex regional patterns, but an overall trend of cooling in the terrestrial records. A Mid to Late Holocene warm period is present in many East Antarctic lake and shallow coastal marine records. Although there are some differences in the regional timing of this warm period, it typically occurs somewhere between 4.7 and 1 ka BP, which overlaps with a similar optimum found in Antarctic Peninsula terrestrial records. The differences in the timing of these sometimes abrupt warm events in different records and regions points to a number of mechanisms that we have yet to identify. Nearly all records show a neoglacial cooling from 2 ka BP onwards. There is no evidence along the East Antarctic coastline for an equivalent to the Northern Hemisphere Medieval Warm Period and there is only weak circumstantial evidence in a few places for a cool event crudely equivalent in time to the Northern Hemisphere's Little Ice Age. There is a need for well-dated, high resolution climate records in coastal East Antarctica and particularly in Terre Adélie, Dronning Maud Land and Enderby Land to fully understand the regional climate anomalies, the disparity between marine and terrestrial records, and to determine the significance of the heterogeneous temperature trends being measured in the Antarctic today. © 2010 Elsevier B.V.
Earth-Science Review... arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2011Data sources: DANS (Data Archiving and Networked Services)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.earscirev.2010.10.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu74 citations 74 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Earth-Science Review... arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2011Data sources: DANS (Data Archiving and Networked Services)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.earscirev.2010.10.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United Kingdom, Switzerland, SpainPublisher:Elsevier BV Sterken, Mieke; Roberts, Stephen; Hodgson, Dominic; Vyverman, Wim; Balbo, Andrea L.; Sabbe, Koen; Moreton, Steven G.; Verleyen, Elie;handle: 10261/97593
The Antarctic Peninsula is one of the most rapidly warming regions on Earth, as evidenced by a recent increase in the intensity and duration of summer melting, the recession of glaciers and the retreat and collapse of ice shelves. Despite this, only a limited number of well-dated near shore marine and lake sediment based palaeoenvironmental records exist from this region; so our understanding of the longer-term context of this rapid climate change is limited. Here we provide new well-dated constraints on the deglaciation history, and changes in sea ice and climate based on analyses of sedimentological proxies, diatoms and fossil pigments in a sediment core collected from an isolation basin on Beak Island in Prince Gustav Channel, NE Antarctic Peninsula (63°36′S, 57°20′W). Twenty two radiocarbon dates provided a chronology for the core including a minimum modelled age for deglaciation of 10,602 cal yr BP, following the onset of marine sedimentation. Conditions remained cold and perennial sea ice persisted in this part of Prince Gustav Channel until c. 9372 cal yr BP. This was followed by a seasonally open marine environment until at least 6988 cal yr BP, corresponding with the early retreat and disintegration of the ice shelf in southern Prince Gustav Channel. Following isolation of the basin from 6988 cal yr BP a relatively cold climate persisted until 3169 cal yr BP. A Mid-late Holocene climate optimum occurred between 3169 and 2120 cal yr BP, inferred from multiple indicators of increased biological production. This postdates the onset of the Mid-late Holocene climate optimum in the South Shetland Islands (4380 cal yr BP) and the South Orkney Islands (3800 cal yr BP) suggesting that cooler climate systems of the Weddell Sea Gyre to the east of the Peninsula may have buffered the onset of warming. Climate deterioration is inferred from c. 2120 cal yr BP until 543 cal yr BP. This was followed by warming. Superimposed on this warming trend, the instrumental record of recent warming at nearby Hope Bay is mirrored by a recent increase in the lake’s primary production and a shift in the diatom communities in the uppermost 3 cm of sediments, suggesting that this is amongst the first records to show an ecological response to recent rapid temperature increase. These new constraints on glaciological and climate events in Prince Gustav Channel are reviewed in the context of wider changes in the Antarctic region. Peer reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAQuaternary Science ReviewsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.quascirev.2011.10.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 37visibility views 37 download downloads 31 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAQuaternary Science ReviewsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.quascirev.2011.10.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United Kingdom, Switzerland, SpainPublisher:Elsevier BV Sterken, Mieke; Roberts, Stephen; Hodgson, Dominic; Vyverman, Wim; Balbo, Andrea L.; Sabbe, Koen; Moreton, Steven G.; Verleyen, Elie;handle: 10261/97593
The Antarctic Peninsula is one of the most rapidly warming regions on Earth, as evidenced by a recent increase in the intensity and duration of summer melting, the recession of glaciers and the retreat and collapse of ice shelves. Despite this, only a limited number of well-dated near shore marine and lake sediment based palaeoenvironmental records exist from this region; so our understanding of the longer-term context of this rapid climate change is limited. Here we provide new well-dated constraints on the deglaciation history, and changes in sea ice and climate based on analyses of sedimentological proxies, diatoms and fossil pigments in a sediment core collected from an isolation basin on Beak Island in Prince Gustav Channel, NE Antarctic Peninsula (63°36′S, 57°20′W). Twenty two radiocarbon dates provided a chronology for the core including a minimum modelled age for deglaciation of 10,602 cal yr BP, following the onset of marine sedimentation. Conditions remained cold and perennial sea ice persisted in this part of Prince Gustav Channel until c. 9372 cal yr BP. This was followed by a seasonally open marine environment until at least 6988 cal yr BP, corresponding with the early retreat and disintegration of the ice shelf in southern Prince Gustav Channel. Following isolation of the basin from 6988 cal yr BP a relatively cold climate persisted until 3169 cal yr BP. A Mid-late Holocene climate optimum occurred between 3169 and 2120 cal yr BP, inferred from multiple indicators of increased biological production. This postdates the onset of the Mid-late Holocene climate optimum in the South Shetland Islands (4380 cal yr BP) and the South Orkney Islands (3800 cal yr BP) suggesting that cooler climate systems of the Weddell Sea Gyre to the east of the Peninsula may have buffered the onset of warming. Climate deterioration is inferred from c. 2120 cal yr BP until 543 cal yr BP. This was followed by warming. Superimposed on this warming trend, the instrumental record of recent warming at nearby Hope Bay is mirrored by a recent increase in the lake’s primary production and a shift in the diatom communities in the uppermost 3 cm of sediments, suggesting that this is amongst the first records to show an ecological response to recent rapid temperature increase. These new constraints on glaciological and climate events in Prince Gustav Channel are reviewed in the context of wider changes in the Antarctic region. Peer reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAQuaternary Science ReviewsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.quascirev.2011.10.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 37visibility views 37 download downloads 31 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAQuaternary Science ReviewsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.quascirev.2011.10.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United KingdomPublisher:Elsevier BV Hodgson, Dominic A.; Roberts, Stephen J.; Smith, James A.; Verleyen, Elie; Sterken, Mieke; Labarque, Minke; Sabbe, Koen; Vyverman, Wim; Allen, Claire S.; Leng, Melanie J.; Bryant, Charlotte;The Antarctic Peninsula is one of the fastest-warming regions on Earth, but its palaeoenvironmental history south of 63° latitude is relatively poorly documented, relying principally on the marine geological record and short ice cores. In this paper, we present evidence of late-Quaternary environmental change from the Marguerite Bay region combining data from lake sediment records on Horseshoe Island and Pourquoi-Pas Island, and raised beaches at Horseshoe Island, Pourquoi-Pas Island and Calmette Bay. Lake sediments were radiocarbon dated and analysed using a combination of sedimentological, geochemical and microfossil methods. Raised beaches were surveyed and analysed for changes in clast composition, size and roundness. Results suggest a non-erosive glacial regime could have existed on Horseshoe Island from 35,780 (38,650–33,380) or 32,910 (34,630–31,370) cal yr BP onwards. There is radiocarbon and macrofossil evidence for possible local deglaciation events at 28,830 (29,370–28,320) cal yr BP, immediately post-dating Antarctic Isotopic Maximum 4, and 21,110 (21,510–20,730 interpolated) cal yr BP coinciding with, or immediately post-dating, Antarctic Isotopic Maximum 2. The Holocene deglaciation of Horseshoe Island commenced from 10,610 (11,000–10,300) cal yr BP at the same time as the early Holocene temperature maximum recorded in Antarctic ice cores. This was followed by the onset of marine sedimentation in The Narrows, Pourquoi-Pas Island, before 8850 (8480–9260) cal yr BP. Relative sea level high stands of 40.79 m above present at Pourquoi-Pas Island and 40.55 m above present at Calmette Bay occurred sometime after 9000 cal yr BP and suggest that a thicker ice sheet, including grounded ice streams, was present in this region of the Antarctic Peninsula than that recorded at sites further north. Isolation of the Narrows Lake basin on Pourquoi-Pas Island shows relative sea level in this region had fallen rapidly to 19.41 m by 7270 (7385–7155) cal yr BP. Chaetoceros resting spores suggest high productivity and stratified surface waters in The Narrows after 8850 (9260–8480) cal yr BP and beach clasts provide evidence of a period of increased wave energy at approximately 8000 yr BP. Lake sediment and beach data suggest an extended period of regional warming sometime between 6200 and 2030 cal yr BP followed by the onset of Neoglacial conditions from 2630 and 2030 cal yr BP in Narrows Lake and Col Lake 1, respectively. Diatom and δ13C vs C/N and macrofossil evidence suggest a potential increase in the number of birds and seals visiting the Narrows Lake catchment sometime after 2100 (2250–2000) cal yr BP, with enhanced nutrient enrichment evident after 1150 (1230–1080) cal yr BP, and particularly from c. 460 (540–380) cal yr BP. A very recent increase in Gomphonema species and organic carbon in the top centimetre of the Narrows Lake sediment core after c. 410 (490–320) cal yr BP, and increased sedimentation rates in the Col Lake 1 sediment core, after c. 400 (490–310) cal yr BP may be a response to the regional late-Holocene warming of the Antarctic Peninsula.
NERC Open Research A... arrow_drop_down Quaternary Science ReviewsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.quascirev.2013.02.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Quaternary Science ReviewsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.quascirev.2013.02.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United KingdomPublisher:Elsevier BV Hodgson, Dominic A.; Roberts, Stephen J.; Smith, James A.; Verleyen, Elie; Sterken, Mieke; Labarque, Minke; Sabbe, Koen; Vyverman, Wim; Allen, Claire S.; Leng, Melanie J.; Bryant, Charlotte;The Antarctic Peninsula is one of the fastest-warming regions on Earth, but its palaeoenvironmental history south of 63° latitude is relatively poorly documented, relying principally on the marine geological record and short ice cores. In this paper, we present evidence of late-Quaternary environmental change from the Marguerite Bay region combining data from lake sediment records on Horseshoe Island and Pourquoi-Pas Island, and raised beaches at Horseshoe Island, Pourquoi-Pas Island and Calmette Bay. Lake sediments were radiocarbon dated and analysed using a combination of sedimentological, geochemical and microfossil methods. Raised beaches were surveyed and analysed for changes in clast composition, size and roundness. Results suggest a non-erosive glacial regime could have existed on Horseshoe Island from 35,780 (38,650–33,380) or 32,910 (34,630–31,370) cal yr BP onwards. There is radiocarbon and macrofossil evidence for possible local deglaciation events at 28,830 (29,370–28,320) cal yr BP, immediately post-dating Antarctic Isotopic Maximum 4, and 21,110 (21,510–20,730 interpolated) cal yr BP coinciding with, or immediately post-dating, Antarctic Isotopic Maximum 2. The Holocene deglaciation of Horseshoe Island commenced from 10,610 (11,000–10,300) cal yr BP at the same time as the early Holocene temperature maximum recorded in Antarctic ice cores. This was followed by the onset of marine sedimentation in The Narrows, Pourquoi-Pas Island, before 8850 (8480–9260) cal yr BP. Relative sea level high stands of 40.79 m above present at Pourquoi-Pas Island and 40.55 m above present at Calmette Bay occurred sometime after 9000 cal yr BP and suggest that a thicker ice sheet, including grounded ice streams, was present in this region of the Antarctic Peninsula than that recorded at sites further north. Isolation of the Narrows Lake basin on Pourquoi-Pas Island shows relative sea level in this region had fallen rapidly to 19.41 m by 7270 (7385–7155) cal yr BP. Chaetoceros resting spores suggest high productivity and stratified surface waters in The Narrows after 8850 (9260–8480) cal yr BP and beach clasts provide evidence of a period of increased wave energy at approximately 8000 yr BP. Lake sediment and beach data suggest an extended period of regional warming sometime between 6200 and 2030 cal yr BP followed by the onset of Neoglacial conditions from 2630 and 2030 cal yr BP in Narrows Lake and Col Lake 1, respectively. Diatom and δ13C vs C/N and macrofossil evidence suggest a potential increase in the number of birds and seals visiting the Narrows Lake catchment sometime after 2100 (2250–2000) cal yr BP, with enhanced nutrient enrichment evident after 1150 (1230–1080) cal yr BP, and particularly from c. 460 (540–380) cal yr BP. A very recent increase in Gomphonema species and organic carbon in the top centimetre of the Narrows Lake sediment core after c. 410 (490–320) cal yr BP, and increased sedimentation rates in the Col Lake 1 sediment core, after c. 400 (490–310) cal yr BP may be a response to the regional late-Holocene warming of the Antarctic Peninsula.
NERC Open Research A... arrow_drop_down Quaternary Science ReviewsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.quascirev.2013.02.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Quaternary Science ReviewsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.quascirev.2013.02.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 United KingdomPublisher:Proceedings of the National Academy of Sciences Authors: Hodgson, Dominic A.;It is now 10 y since field observations and RADARSAT imagery witnessed the breakup of the Ward Hunt Ice Shelf on Ellesmere Island, Canada. This was the largest remaining ice shelf in the Arctic and one of the last fragments of the 8,900-km2 Ellesmere Ice Shelf charted by the Aldrich 1875–1876 and Peary 1906 expeditions (1). Its breakup has been linked to the polar amplification of climate change being witnessed in the wider Arctic region (2), including the ongoing reduction in the extent and duration of sea ice (3). Similar ice shelf retreats have been reported from the Antarctic Peninsula region (4). The key question is the following: Have the polar ice shelves broken up before under natural conditions, or are these unique events triggered by anthropogenic climate forcing? In PNAS, Antoniades et al. (5) report a marine geological reconstruction of the Holocene history of the Ward Hunt Ice Shelf. They found that the northern coast of Ellesmere Island has been free of a bounding ice shelf through most of the past ca. 11,500 y (the Holocene epoch) and that ice shelves have only been present there between 4,000 and 1,400 calibrated radiocarbon years before present (cal. y B.P.) and from 800 cal. y B.P. until the recent break-up event. This has built on previous work on radiocarbon-dated ancient driftwood deposited along the northern coast of Ellesmere Island that could have arrived there either during periods of ice shelf absence or as a result of changes in the configuration of ocean currents and sea ice (6).
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2011 . Peer-reviewedData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1116515108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2011 . Peer-reviewedData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1116515108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 United KingdomPublisher:Proceedings of the National Academy of Sciences Authors: Hodgson, Dominic A.;It is now 10 y since field observations and RADARSAT imagery witnessed the breakup of the Ward Hunt Ice Shelf on Ellesmere Island, Canada. This was the largest remaining ice shelf in the Arctic and one of the last fragments of the 8,900-km2 Ellesmere Ice Shelf charted by the Aldrich 1875–1876 and Peary 1906 expeditions (1). Its breakup has been linked to the polar amplification of climate change being witnessed in the wider Arctic region (2), including the ongoing reduction in the extent and duration of sea ice (3). Similar ice shelf retreats have been reported from the Antarctic Peninsula region (4). The key question is the following: Have the polar ice shelves broken up before under natural conditions, or are these unique events triggered by anthropogenic climate forcing? In PNAS, Antoniades et al. (5) report a marine geological reconstruction of the Holocene history of the Ward Hunt Ice Shelf. They found that the northern coast of Ellesmere Island has been free of a bounding ice shelf through most of the past ca. 11,500 y (the Holocene epoch) and that ice shelves have only been present there between 4,000 and 1,400 calibrated radiocarbon years before present (cal. y B.P.) and from 800 cal. y B.P. until the recent break-up event. This has built on previous work on radiocarbon-dated ancient driftwood deposited along the northern coast of Ellesmere Island that could have arrived there either during periods of ice shelf absence or as a result of changes in the configuration of ocean currents and sea ice (6).
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2011 . Peer-reviewedData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1116515108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2011 . Peer-reviewedData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1116515108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 Belgium, United KingdomPublisher:Springer Science and Business Media LLC Wim Vyverman; Elie Verleyen; Louise C. Sime; Stephen Roberts; Dominic A. Hodgson; Dominic A. Hodgson; Wim Van Nieuwenhuyze; Bianca B. Perren;handle: 1854/LU-8734914
AbstractRecent changes in the strength and location of the Southern Hemisphere westerly winds (SHW) have been linked to continental droughts and wildfires, changes in the Southern Ocean carbon sink, sea ice extent, ocean circulation, and ice shelf stability. Despite their critical role, our ability to predict their impacts under future climates is limited by a lack of data on SHW behaviour over centennial timescales. Here, we present a 700-year record of changes in SHW intensity from sub-Antarctic Marion Island using diatom and geochemical proxies and compare it with paleoclimate records and recent instrumental data. During cool periods, such as the Little Ice Age (c. 1400–1870 CE), the winds weakened and shifted towards the equator, and during warm periods they intensified and migrated poleward. These results imply that changes in the latitudinal temperature gradient drive century-scale SHW migrations, and that intensification of impacts can be anticipated in the coming century.
NERC Open Research A... arrow_drop_down Communications Earth & EnvironmentArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43247-020-00059-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 60 citations 60 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Communications Earth & EnvironmentArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43247-020-00059-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 Belgium, United KingdomPublisher:Springer Science and Business Media LLC Wim Vyverman; Elie Verleyen; Louise C. Sime; Stephen Roberts; Dominic A. Hodgson; Dominic A. Hodgson; Wim Van Nieuwenhuyze; Bianca B. Perren;handle: 1854/LU-8734914
AbstractRecent changes in the strength and location of the Southern Hemisphere westerly winds (SHW) have been linked to continental droughts and wildfires, changes in the Southern Ocean carbon sink, sea ice extent, ocean circulation, and ice shelf stability. Despite their critical role, our ability to predict their impacts under future climates is limited by a lack of data on SHW behaviour over centennial timescales. Here, we present a 700-year record of changes in SHW intensity from sub-Antarctic Marion Island using diatom and geochemical proxies and compare it with paleoclimate records and recent instrumental data. During cool periods, such as the Little Ice Age (c. 1400–1870 CE), the winds weakened and shifted towards the equator, and during warm periods they intensified and migrated poleward. These results imply that changes in the latitudinal temperature gradient drive century-scale SHW migrations, and that intensification of impacts can be anticipated in the coming century.
NERC Open Research A... arrow_drop_down Communications Earth & EnvironmentArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43247-020-00059-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 60 citations 60 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Communications Earth & EnvironmentArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43247-020-00059-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016Embargo end date: 09 Aug 2017 United Kingdom, United KingdomPublisher:Springer Science and Business Media LLC Dominic A. Hodgson; Matthew J. Amesbury; Glyn D. Jones; Peter Convey; Dan J. Charman; Howard Griffiths; Thomas P. Roland; Jessica Royles; Jessica Royles;The stable isotope compositions of moss tissue water (δ(2)H and δ(18)O) and cellulose (δ(13)C and δ(18)O), and testate amoebae populations were sampled from 61 contemporary surface samples along a 600-km latitudinal gradient of the Antarctic Peninsula (AP) to provide a spatial record of environmental change. The isotopic composition of moss tissue water represented an annually integrated precipitation signal with the expected isotopic depletion with increasing latitude. There was a weak, but significant, relationship between cellulose δ(18)O and latitude, with predicted source water inputs isotopically enriched compared to measured precipitation. Cellulose δ(13)C values were dependent on moss species and water content, and may reflect site exposure to strong winds. Testate amoebae assemblages were characterised by low concentrations and taxonomic diversity, with Corythion dubium and Microcorycia radiata types the most cosmopolitan taxa. The similarity between the intra- and inter-site ranges measured in all proxies suggests that microclimate and micro-topographical conditions around the moss surface were important determinants of proxy values. Isotope and testate amoebae analyses have proven value as palaeoclimatic, temporal proxies of climate change, whereas this study demonstrates that variations in isotopic and amoeboid proxies between microsites can be beyond the bounds of the current spatial variability in AP climate.
NERC Open Research A... arrow_drop_down NERC Open Research Archive2016 . Peer-reviewedFull-Text: http://nora.nerc.ac.uk/510920/1/Royles.pdfData sources: NERC Open Research ArchiveNatural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-016-3608-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down NERC Open Research Archive2016 . Peer-reviewedFull-Text: http://nora.nerc.ac.uk/510920/1/Royles.pdfData sources: NERC Open Research ArchiveNatural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-016-3608-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016Embargo end date: 09 Aug 2017 United Kingdom, United KingdomPublisher:Springer Science and Business Media LLC Dominic A. Hodgson; Matthew J. Amesbury; Glyn D. Jones; Peter Convey; Dan J. Charman; Howard Griffiths; Thomas P. Roland; Jessica Royles; Jessica Royles;The stable isotope compositions of moss tissue water (δ(2)H and δ(18)O) and cellulose (δ(13)C and δ(18)O), and testate amoebae populations were sampled from 61 contemporary surface samples along a 600-km latitudinal gradient of the Antarctic Peninsula (AP) to provide a spatial record of environmental change. The isotopic composition of moss tissue water represented an annually integrated precipitation signal with the expected isotopic depletion with increasing latitude. There was a weak, but significant, relationship between cellulose δ(18)O and latitude, with predicted source water inputs isotopically enriched compared to measured precipitation. Cellulose δ(13)C values were dependent on moss species and water content, and may reflect site exposure to strong winds. Testate amoebae assemblages were characterised by low concentrations and taxonomic diversity, with Corythion dubium and Microcorycia radiata types the most cosmopolitan taxa. The similarity between the intra- and inter-site ranges measured in all proxies suggests that microclimate and micro-topographical conditions around the moss surface were important determinants of proxy values. Isotope and testate amoebae analyses have proven value as palaeoclimatic, temporal proxies of climate change, whereas this study demonstrates that variations in isotopic and amoeboid proxies between microsites can be beyond the bounds of the current spatial variability in AP climate.
NERC Open Research A... arrow_drop_down NERC Open Research Archive2016 . Peer-reviewedFull-Text: http://nora.nerc.ac.uk/510920/1/Royles.pdfData sources: NERC Open Research ArchiveNatural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-016-3608-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down NERC Open Research Archive2016 . Peer-reviewedFull-Text: http://nora.nerc.ac.uk/510920/1/Royles.pdfData sources: NERC Open Research ArchiveNatural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-016-3608-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 United Kingdom, Australia, Switzerland, AustraliaPublisher:Cambridge University Press (CUP) Authors: Saunders, Krystyna M.; Hodgson, Dominic A.; McMinn, Andrew;AbstractThis study is the first published survey of diatom-environment relationships on sub-Antarctic Macquarie Island. Fifty-eight sites in 50 coastal and inland lakes were sampled for benthic diatoms and water chemistry. 208 diatom species from 34 genera were identified. Multivariate analyses indicated that the lakes were distributed along nutrient and conductivity gradients. Conductivity, pH, phosphate (SRP), silicate and temperature all explained independent portions of the variance in the diatom data. Transfer functions provide a quantitative basis for palaeolimnological studies of past climate change and human impacts, and can be used to establish baseline conditions for assessing the impacts of recent climate change and the introduction of non-native plants and animals. Statistically robust diatom transfer functions for conductivity, phosphate and silicate were developed, while pH and temperature transfer functions performed less well. The lower predictive abilities of the pH and temperature transfer functions probably reflect the broad pH tolerance range of diatoms on Macquarie Island and uneven distribution of lakes along the temperature gradient. This study contributes to understanding the current ecological distribution of Macquarie Island diatoms and provides transfer functions that will be applied in studies of diatoms in lake sediment cores to quantitatively reconstruct past environmental changes.
NERC Open Research A... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2009 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Antarctic ScienceArticle . 2008 . Peer-reviewedLicense: Cambridge Core User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/s0954102008001442&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 23 citations 23 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2009 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Antarctic ScienceArticle . 2008 . Peer-reviewedLicense: Cambridge Core User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/s0954102008001442&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 United Kingdom, Australia, Switzerland, AustraliaPublisher:Cambridge University Press (CUP) Authors: Saunders, Krystyna M.; Hodgson, Dominic A.; McMinn, Andrew;AbstractThis study is the first published survey of diatom-environment relationships on sub-Antarctic Macquarie Island. Fifty-eight sites in 50 coastal and inland lakes were sampled for benthic diatoms and water chemistry. 208 diatom species from 34 genera were identified. Multivariate analyses indicated that the lakes were distributed along nutrient and conductivity gradients. Conductivity, pH, phosphate (SRP), silicate and temperature all explained independent portions of the variance in the diatom data. Transfer functions provide a quantitative basis for palaeolimnological studies of past climate change and human impacts, and can be used to establish baseline conditions for assessing the impacts of recent climate change and the introduction of non-native plants and animals. Statistically robust diatom transfer functions for conductivity, phosphate and silicate were developed, while pH and temperature transfer functions performed less well. The lower predictive abilities of the pH and temperature transfer functions probably reflect the broad pH tolerance range of diatoms on Macquarie Island and uneven distribution of lakes along the temperature gradient. This study contributes to understanding the current ecological distribution of Macquarie Island diatoms and provides transfer functions that will be applied in studies of diatoms in lake sediment cores to quantitatively reconstruct past environmental changes.
NERC Open Research A... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2009 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Antarctic ScienceArticle . 2008 . Peer-reviewedLicense: Cambridge Core User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/s0954102008001442&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 23 citations 23 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2009 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Antarctic ScienceArticle . 2008 . Peer-reviewedLicense: Cambridge Core User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/s0954102008001442&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 United KingdomPublisher:Wiley Authors: Convey, Peter; Gibson, John A.E.; Hillenbrand, Claus-Dieter; Hodgson, Dominic A.; +3 AuthorsConvey, Peter; Gibson, John A.E.; Hillenbrand, Claus-Dieter; Hodgson, Dominic A.; Pugh, Philip J.A.; Smellie, John L.; Stevens, Mark I.;AbstractAntarctica is a continent locked in ice, with almost 99.7% of current terrain covered by permanent ice and snow, and clear evidence that, as recently as the Last Glacial Maximum (LGM), ice sheets were both thicker and much more extensive than they are now. Ice sheet modelling of both the LGM and estimated previous ice maxima across the continent give broad support to the concept that most if not all currently ice‐free ground would have been overridden during previous glaciations. This has given rise to a widely held perception that all Mesozoic (pre‐glacial) terrestrial life of Antarctica was wiped out by successive and deepening glacial events. The implicit conclusion of such destruction is that most, possibly all, contemporary terrestrial life has colonised the continent during subsequent periods of glacial retreat. However, several recently emerged and complementary strands of biological and geological research cannot be reconciled comfortably with the current reconstruction of Antarctic glacial history, and therefore provide a fundamental challenge to the existing paradigms. Here, we summarise and synthesise evidence across these lines of research. The emerging fundamental insights corroborate substantial elements of the contemporary Antarctic terrestrial biota being continuously isolated in situ on a multi‐million year, even pre‐Gondwana break‐up timescale. This new and complex terrestrial Antarctic biogeography parallels recent work suggesting greater regionalisation and evolutionary isolation than previously suspected in the circum‐Antarctic marine fauna. These findings both require the adoption of a new biological paradigm within Antarctica and challenge current understanding of Antarctic glacial history. This has major implications for our understanding of the key role of Antarctica in the Earth System.
Biological Reviews arrow_drop_down Biological ReviewsArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-185x.2008.00034.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu274 citations 274 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Biological Reviews arrow_drop_down Biological ReviewsArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-185x.2008.00034.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 United KingdomPublisher:Wiley Authors: Convey, Peter; Gibson, John A.E.; Hillenbrand, Claus-Dieter; Hodgson, Dominic A.; +3 AuthorsConvey, Peter; Gibson, John A.E.; Hillenbrand, Claus-Dieter; Hodgson, Dominic A.; Pugh, Philip J.A.; Smellie, John L.; Stevens, Mark I.;AbstractAntarctica is a continent locked in ice, with almost 99.7% of current terrain covered by permanent ice and snow, and clear evidence that, as recently as the Last Glacial Maximum (LGM), ice sheets were both thicker and much more extensive than they are now. Ice sheet modelling of both the LGM and estimated previous ice maxima across the continent give broad support to the concept that most if not all currently ice‐free ground would have been overridden during previous glaciations. This has given rise to a widely held perception that all Mesozoic (pre‐glacial) terrestrial life of Antarctica was wiped out by successive and deepening glacial events. The implicit conclusion of such destruction is that most, possibly all, contemporary terrestrial life has colonised the continent during subsequent periods of glacial retreat. However, several recently emerged and complementary strands of biological and geological research cannot be reconciled comfortably with the current reconstruction of Antarctic glacial history, and therefore provide a fundamental challenge to the existing paradigms. Here, we summarise and synthesise evidence across these lines of research. The emerging fundamental insights corroborate substantial elements of the contemporary Antarctic terrestrial biota being continuously isolated in situ on a multi‐million year, even pre‐Gondwana break‐up timescale. This new and complex terrestrial Antarctic biogeography parallels recent work suggesting greater regionalisation and evolutionary isolation than previously suspected in the circum‐Antarctic marine fauna. These findings both require the adoption of a new biological paradigm within Antarctica and challenge current understanding of Antarctic glacial history. This has major implications for our understanding of the key role of Antarctica in the Earth System.
Biological Reviews arrow_drop_down Biological ReviewsArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-185x.2008.00034.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu274 citations 274 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Biological Reviews arrow_drop_down Biological ReviewsArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-185x.2008.00034.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu