- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Country
Language
Source
Research community
Organization
- Energy Research
- Energy Research
Research data keyboard_double_arrow_right Dataset 2024Publisher:Environmental System Science Data Infrastructure for a Virtual Ecosystem; River Corridor and Watershed Biogeochemistry SFA Kassianov, Evgueni; Flynn, Connor; Barnard, James; Berg, Larry; Beus, Sherman; Chen, Xingyuan; China, Swarup; Comstock, Jennifer; Ermold, Brian; Fakoya, Abdulamid; Kulkarni, Gourihar; Lata, Nurun Nahar; Mcdowell, Nate; Morris, Victor; Pekour, Mikhail; Powers-McCormack, Beck; Rasmussen, Joseph; Riihimaki, Laura; Shi, Mingjie; Shrivastava, Manish; Telg, Hagen; Zelenyuk, Alla;doi: 10.15485/2335802
This data package is associated with the publication “Radiative impact of record-breaking wildfires from integrated ground-based data” submitted to Nature Scientific Reports (Kassianov et al., 2024). Data from ground-based measurements of shortwave and spectrally resolved irradiance and aerosol optical depth (AOD) in the visible and near-infrared spectral ranges were assessed to quantify the radiative impact of the September 2020 wildfires that occurred in the Western United States. Data were collected in September 2020 by several ground-based instruments at the Atmospheric Measurements Laboratory (AML) located in Richland, Washington (46.3451, -119.2792). These data include (1) Aerosol Optical Depth (AOD); (2) spectrally resolved and shortwave (SW) irradiances; (3) backscatter profiles; (4) total sky images; and (5) near-surface ambient air temperatures.The data package consists of five sub-directories: (1) “AML_Ceilometer_”; (2)” AML_CSPHOT_”; (3) “AML_MFRSR_irradiances_”; (4) “AML_SW_irradiances_and_Temp_”; (5) “AML_TSI_images_”; and 6 files stored at the directory level, including the readme, file-level metadata file, and data dictionary. The file-level metadata file (the file ending in “_flmd.csv”) lists all files contained in this data package and descriptions for each. The data dictionary (the file ending in “_dd.csv”) describes each tabular column header’s unit, definition, and structure. Below are descriptions of each sub-directory:“AML_Ceilometer_” includes ceilometer data collected at the AML. These files contain the corresponding narratives of data. Details related to the ceilometer data can be found in Morris (2016). “AML_CSPHOT_” includes ascii files with high-temporal resolution (about 10-15 min) AML CSPHOT data and their daily-averaged counterparts. These two files contain the corresponding narratives of data. Details related to the CSPHOT data can be found in Gregory (2011). “AML_MFRSR_irradiances_” includes ascii files with the AML MFRSR-measured diffuse, normal, and total spectrally resolved irradiance. Details related to the MFRSR data can be found in Hodges and Michalsky (2016) and Koontz et al. (2013). “AML_SW_irradiances_+_Temp_” includes near-surface ambient air temperature and SW irradiances, namely direct normal, diffuse hemispherical, and total hemispheric (global), measured at the AML. These files also incorporate the corresponding narratives of data. Details related to the SW irradiances can be found in Andreas et al. (2018). “AML_TSI_images_” includes Total Sky Images (TSIs) collected at the AML. Details related to the TSI data can be found in Morris (2005).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15485/2335802&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15485/2335802&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:AIP Publishing Patrick Moriarty; Nicola Bodini; Stefano Letizia; Aliza Abraham; Tyler Ashley; Konrad B. Bärfuss; Rebecca J. Barthelmie; Alan Brewer; Peter Brugger; Thomas Feuerle; Ariane Frère; Lexie Goldberger; Julia Gottschall; Nicholas Hamilton; Thomas Herges; Brian Hirth; Lin-Ya (Lilian) Hung; Giacomo Valerio Iungo; Hristo Ivanov; Colleen Kaul; Stefan Kern; Petra Klein; Raghavendra Krishnamurthy; Astrid Lampert; Julie K. Lundquist; Victor R. Morris; Rob Newsom; Mikhail Pekour; Yelena Pichugina; Fernando Porté-Angel; Sara C. Pryor; Andrew Scholbrock; John Schroeder; Samuel Shartzer; Eric Simley; Lilén Vöhringer; Sonia Wharton; Daniel Zalkind;doi: 10.1063/5.0141683
The American WAKE ExperimeNt (AWAKEN) is a multi-institutional field campaign focused on gathering critical observations of wind farm–atmosphere interactions. These interactions are responsible for a large portion of the uncertainty in wind plant modeling tools that are used to represent wind plant performance both prior to construction and during operation and can negatively impact wind energy profitability. The AWAKEN field campaign will provide data for validation, ultimately improving modeling and lowering these uncertainties. The field campaign is designed to address seven testable hypotheses through the analysis of the observations collected by numerous instruments at 13 ground-based locations and on five wind turbines. The location of the field campaign in Northern Oklahoma was chosen to leverage existing observational facilities operated by the U.S. Department of Energy Atmospheric Radiation Measurement program in close proximity to five operating wind plants. The vast majority of the observations from the experiment are publicly available to researchers and industry members worldwide, which the authors hope will advance the state of the science for wind plants and lead to lower cost and increased reliability of wind energy systems.
Journal of Renewable... arrow_drop_down Journal of Renewable and Sustainable EnergyArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0141683&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Renewable... arrow_drop_down Journal of Renewable and Sustainable EnergyArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0141683&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2024Publisher:Environmental System Science Data Infrastructure for a Virtual Ecosystem; River Corridor and Watershed Biogeochemistry SFA Kassianov, Evgueni; Flynn, Connor; Barnard, James; Berg, Larry; Beus, Sherman; Chen, Xingyuan; China, Swarup; Comstock, Jennifer; Ermold, Brian; Fakoya, Abdulamid; Kulkarni, Gourihar; Lata, Nurun Nahar; Mcdowell, Nate; Morris, Victor; Pekour, Mikhail; Powers-McCormack, Beck; Rasmussen, Joseph; Riihimaki, Laura; Shi, Mingjie; Shrivastava, Manish; Telg, Hagen; Zelenyuk, Alla;doi: 10.15485/2335802
This data package is associated with the publication “Radiative impact of record-breaking wildfires from integrated ground-based data” submitted to Nature Scientific Reports (Kassianov et al., 2024). Data from ground-based measurements of shortwave and spectrally resolved irradiance and aerosol optical depth (AOD) in the visible and near-infrared spectral ranges were assessed to quantify the radiative impact of the September 2020 wildfires that occurred in the Western United States. Data were collected in September 2020 by several ground-based instruments at the Atmospheric Measurements Laboratory (AML) located in Richland, Washington (46.3451, -119.2792). These data include (1) Aerosol Optical Depth (AOD); (2) spectrally resolved and shortwave (SW) irradiances; (3) backscatter profiles; (4) total sky images; and (5) near-surface ambient air temperatures.The data package consists of five sub-directories: (1) “AML_Ceilometer_”; (2)” AML_CSPHOT_”; (3) “AML_MFRSR_irradiances_”; (4) “AML_SW_irradiances_and_Temp_”; (5) “AML_TSI_images_”; and 6 files stored at the directory level, including the readme, file-level metadata file, and data dictionary. The file-level metadata file (the file ending in “_flmd.csv”) lists all files contained in this data package and descriptions for each. The data dictionary (the file ending in “_dd.csv”) describes each tabular column header’s unit, definition, and structure. Below are descriptions of each sub-directory:“AML_Ceilometer_” includes ceilometer data collected at the AML. These files contain the corresponding narratives of data. Details related to the ceilometer data can be found in Morris (2016). “AML_CSPHOT_” includes ascii files with high-temporal resolution (about 10-15 min) AML CSPHOT data and their daily-averaged counterparts. These two files contain the corresponding narratives of data. Details related to the CSPHOT data can be found in Gregory (2011). “AML_MFRSR_irradiances_” includes ascii files with the AML MFRSR-measured diffuse, normal, and total spectrally resolved irradiance. Details related to the MFRSR data can be found in Hodges and Michalsky (2016) and Koontz et al. (2013). “AML_SW_irradiances_+_Temp_” includes near-surface ambient air temperature and SW irradiances, namely direct normal, diffuse hemispherical, and total hemispheric (global), measured at the AML. These files also incorporate the corresponding narratives of data. Details related to the SW irradiances can be found in Andreas et al. (2018). “AML_TSI_images_” includes Total Sky Images (TSIs) collected at the AML. Details related to the TSI data can be found in Morris (2005).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15485/2335802&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15485/2335802&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:AIP Publishing Patrick Moriarty; Nicola Bodini; Stefano Letizia; Aliza Abraham; Tyler Ashley; Konrad B. Bärfuss; Rebecca J. Barthelmie; Alan Brewer; Peter Brugger; Thomas Feuerle; Ariane Frère; Lexie Goldberger; Julia Gottschall; Nicholas Hamilton; Thomas Herges; Brian Hirth; Lin-Ya (Lilian) Hung; Giacomo Valerio Iungo; Hristo Ivanov; Colleen Kaul; Stefan Kern; Petra Klein; Raghavendra Krishnamurthy; Astrid Lampert; Julie K. Lundquist; Victor R. Morris; Rob Newsom; Mikhail Pekour; Yelena Pichugina; Fernando Porté-Angel; Sara C. Pryor; Andrew Scholbrock; John Schroeder; Samuel Shartzer; Eric Simley; Lilén Vöhringer; Sonia Wharton; Daniel Zalkind;doi: 10.1063/5.0141683
The American WAKE ExperimeNt (AWAKEN) is a multi-institutional field campaign focused on gathering critical observations of wind farm–atmosphere interactions. These interactions are responsible for a large portion of the uncertainty in wind plant modeling tools that are used to represent wind plant performance both prior to construction and during operation and can negatively impact wind energy profitability. The AWAKEN field campaign will provide data for validation, ultimately improving modeling and lowering these uncertainties. The field campaign is designed to address seven testable hypotheses through the analysis of the observations collected by numerous instruments at 13 ground-based locations and on five wind turbines. The location of the field campaign in Northern Oklahoma was chosen to leverage existing observational facilities operated by the U.S. Department of Energy Atmospheric Radiation Measurement program in close proximity to five operating wind plants. The vast majority of the observations from the experiment are publicly available to researchers and industry members worldwide, which the authors hope will advance the state of the science for wind plants and lead to lower cost and increased reliability of wind energy systems.
Journal of Renewable... arrow_drop_down Journal of Renewable and Sustainable EnergyArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0141683&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Renewable... arrow_drop_down Journal of Renewable and Sustainable EnergyArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0141683&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu