- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2019 GermanyPublisher:MDPI AG Authors: Hardinghaus, Michael; Seidel, Christian; Anderson, John Erik;doi: 10.3390/su11215925
Electric vehicles require sufficient public charging infrastructure. This in turn necessitates detailed information on charging demand. In this paper we present a four-step approach to estimating public charging demand of electric vehicles. Previous methods are limited in their ability to provide differentiated results and adapt to future developments. Therefore, we account for user groups (private, carsharing, commercial), technical developments (vehicles, infrastructure), infrastructure availability, and carsharing development (operational area, business models, autonomous vehicles). Our approach also considers the interactions between these factors and allows for scenario analysis yielding the quantity and spatial distribution of public charging demand. We demonstrate our approach for Berlin, Germany. We find that the majority of public charging demand results from carsharing. This demand is concentrated in the city center, even when carsharing is available citywide. Public charging demand for commercial users is relatively low and located outside the city center. For private users, public charging demand shifts to the city center with an increasing market penetration of electric vehicles and technological advancements (increased range, charging speed). Public demand from private users increases dramatically when private infrastructure is absent. Finally, public charging demand shifts to the city center when private users do not have private infrastructure.
Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/21/5925/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11215925&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/21/5925/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11215925&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2018 GermanyPublisher:Zenodo Authors: Kolarova, Viktoriya; Anderson, John E.; Hardinghaus, Michael;Greenhouse gas emissions, in particular CO2 emissions, are a major environmental problem caused mainly by the transportation and the energy sectors. Electric vehicles have been proposed as a solution for mitigating greenhouse gas emissions in road transport. At the same time their potential emission reduction depends on the emissions from the generation of electricity used to charge the vehicles. This study analyzes indirect emissions of electric vehicles to examine optimization potential using real-world data. The results of the study suggest that charging during the daytime is associated with the usage of more electricity from renewable energy sources than charging in typical non-work hours. However, due to the highly violate character of renewable energy sources the differences are rather small. Also, CO2 emissions per kilometer driven depend on driving patterns influencing the energy demand of the vehicles. Accordingly, optimization potential using renewable energy-oriented time course of charging is found to be rather small with an average greenhouse gas emission reduction of 4%. Thus to achieve the potential of electric vehicles to solve environmental issues requires the optimization of driving and charging patterns as well as measures for reducing the carbon intensity in the electricity grid.
ZENODO arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1435605&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert ZENODO arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1435605&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object , Other literature type 2016 GermanyPublisher:Elsevier BV Authors: Hardinghaus, Michael; Blümel, Hermann; Seidel, Christian;AbstractIn order to launch and facilitate the uptake of e-mobility, many major cities are facing the challenge of supporting the development of a cost-efficient and demand-meeting system of charging points. To tackle this task, the city of Berlin performed an innovative procedure. The approach included different working steps, beginning with planning the locations, followed by working out definitions of technical and contractual requirements to the actual implementation of charging infrastructure and its integration into the overall traffic system. The individual components of this overall process are described in this paper.In the location concept, as a starting point of the overall concept, a methodology based on theoretical concern and stakeholder consultations was developed. Furthermore this approach uses empirical mobility data, traffic models, user groups and usage patterns to indicate a spatial distribution of charging points in the city that matches demand.Subsequently, the construction of these charging points was tendered out Europe-wide. Seven bidders and consortia were chosen to participate in a 15-month-long competitive dialogue process. In this structured process a role-based model for operating the public charging infrastructure was developed. All technical details of the contract were developed in this dialog process as well.Another important step towards successful implementation of an efficient charging infrastructure is the challenge of operator-independent user information. For this purpose real-time information about the location and occupation status of charging stations was integrated into Berlin's Traffic Information Center. In addition, an authentication platform was set up to ensure operator-independent and non-discriminatory access to the publicly funded charging stations.
Transportation Resea... arrow_drop_down Transportation Research ProcediaArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefTransportation Research ProcediaArticle . 2016License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.trpro.2016.05.410&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Transportation Resea... arrow_drop_down Transportation Research ProcediaArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefTransportation Research ProcediaArticle . 2016License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.trpro.2016.05.410&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Preprint 2022 GermanyPublisher:MDPI AG Hardinghaus, Michael; Anderson, John Erik; Nobis, Claudia; Stark, Kerstin; Vladova, Galya;Electric vehicles offer a means to reduce greenhouse gas emissions in passenger transport. The availability of reliable charging infrastructure is crucial for the successful uptake of electric vehicles in dense urban areas. In a pilot project in the city of Hamburg, Germany, public charging infrastructure is equipped with a reservation option providing exclusive access for local residents and businesses. The present paper combines quantitative and qualitative methods to investigate the effects of the newly introduced neighborhood charging concept. We use a methodology combining a quantitative questionnaire survey and qualitative focus group discussions as well as the analyses of charging infrastructure utilization data. Results show that inner-city charging and parking options are of key importance for (potential) users of electric vehicles. Hence, the neighborhood concept is rated very positively. Providing guaranteed charging and parking facilities are therefore likely to increase the stock of EVs. On the other hand, these could to a large extent be additional cars with consequential disadvantages. The study shows that openly accessible infrastructure is presently utilized much more intense than the exclusive option. Consequentially, the concept evaluated should be part of an integrated approach managing parking and supporting efficient concepts like car sharing.
Electronics arrow_drop_down ElectronicsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2079-9292/11/16/2476/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202207.0445.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Electronics arrow_drop_down ElectronicsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2079-9292/11/16/2476/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202207.0445.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2021 GermanyPublisher:MDPI AG Authors: Hardinghaus, Michael; Nieland, Simon; Lehne, Marius; Weschke, Jan Volker;doi: 10.3390/su132111584
The present study aims to deduce bikeability based on a collective understanding and provides a methodology to operationalize its calculation based on open data. The approach contains four steps building on each other and combines qualitative and quantitative methods. The first three steps include the definition and operationalization of the index. First, findings from the literature are condensed to determine relevant categories influencing bikeability. Second, an expert survey is conducted to estimate the importance of these categories to gain a common understanding of bikeability and merge the impacting factors. Third, the defined categories are calculated based on OpenStreetMap data and combined to a comprehensive spatial bikeability index in an automated workflow. The fourth step evaluates the proposed index using a multinomial logit mode choice model to derive the effects of bikeability on travel behavior. The expert process shows a stable interaction between the components defining bikeability, linking specific spatial characteristics of bikeability and associated components. Applied components are, in order of importance, biking facilities along main streets, street connectivity, the prevalence of neighborhood streets, green pathways and other cycle facilities, such as rental and repair facilities. The mode choice model shows a strong positive effect of a high bikeability along the route on choosing the bike as the preferred mode. This confirms that the bike friendliness on a route surrounding has a significant impact on the mode choice. Using universal open data and applying stable weighting in an automated workflow renders the approach of assessing urban bike-friendliness fully transferable and the results comparable. It, therefore, lays the foundation for various large-scale cross-sectional analyses.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der Humboldt-Universität zu BerlinArticle . 2021 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132111584&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 89visibility views 89 download downloads 70 Powered bymore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der Humboldt-Universität zu BerlinArticle . 2021 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132111584&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2020 GermanyPublisher:IOP Publishing Authors: Hardinghaus, Michael; Löcher, Markus; Anderson, John Erik;Abstract The city of Berlin has significantly expanded public charging infrastructure for electric vehicles. As a result of this investment, real-world charging data for the city of Berlin are available for the first time. In addition to other metrics, this dataset contains specific information about carsharing vehicles. This research letter offers numerous insights into public charging demand and infrastructure. The results are only now available due to a sufficient fleet size of electric vehicles. The analysis shows that the distribution of charging stations is very unequal in Berlin. The data also show that the infrastructure network is much denser in the city center. While there is an unequal distribution of infrastructure, we see that the utilization of infrastructure is relatively equal. This reflects unequal charging demand, as can be expected based on the location of the infrastructure. We also determine that the majority of public charging events come from free-floating carsharing vehicles. The analysis of infrastructure use shows that the edge of the city center has the highest rates of stations occupied by vehicles after completing charging. Carsharing users occupy infrastructure after charging significantly more than individual private and commercial users. However, if the pricing scheme allows, individual users also occupy infrastructure after completing charging. The research letter provides several policy recommendations for the build-up and operation of charging infrastructure. These focus on charging demand from individual users, infrastructure efficiency, and carsharing operators and their business models. The results are timely as decisions on public charging infrastructure must be made now to meet electric vehicle demand.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aba716&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aba716&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2020Embargo end date: 18 Feb 2021 GermanyPublisher:MDPI AG Authors: Hardinghaus, Michael; Papantoniou, Panagiotis;doi: 10.3390/su12083375 , 10.18452/22501
Providing a sufficiently appropriate route environment is crucial to ensuring fair and safe biking, thus encouraging cycling as a sustainable mode of transport. At the same time, better understanding of cyclists’ preferences regarding the features of their routes and their infrastructure requirements is fundamental to evaluating improvement of the current infrastructure or the development of new infrastructure. The present study has two objectives. The first is to investigate cyclists’ route preferences by means of a choice experiment based on a stated preference survey. Subsequently, the second objective is to compare cyclist preferences in two countries with different cycling characteristics (both in infrastructure as well as cyclists’ behavior). For this purpose, a graphical online stated preferences survey was conducted in Greece and Germany. Within the framework of statistical analyses, multinomial mixed logit discrete choice models were developed that allow us to quantify the trade-offs of interest, while distinguishing between the preferences of different user groups. In addition, user requirements in Greece, as a country with a low cycling share and very little dedicated bike infrastructure, were compared to the requirements in Germany, where cycling is popular and the infrastructure is well developed. The results over the whole sample indicate that subgroups value infrastructure differently according to their specific needs. When looking at country specifics, users from Greece are significantly more willing to accept longer travel times in return for higher-quality facilities. The utility of low speed limits in mixed traffic is also different. In Germany, low speed limits offset the disturbance caused by motorized traffic, but in Greece they do not. Consequently, the results help to asses which types of infrastructure are most sustainable from a user perspective and help to set priorities when the aim is to adapt the road infrastructure efficiently in a stable strategy.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/8/3375/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der Humboldt-Universität zu BerlinArticle . 2020 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12083375&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 66visibility views 66 download downloads 49 Powered bymore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/8/3375/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der Humboldt-Universität zu BerlinArticle . 2020 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12083375&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2018 GermanyAuthors: Hardinghaus, Michael; Grätz, Matthias;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1640::b9b392c587dc320a1ecbfd797df21fc7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1640::b9b392c587dc320a1ecbfd797df21fc7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2019 GermanyPublisher:MDPI AG Authors: Hardinghaus, Michael; Seidel, Christian; Anderson, John Erik;doi: 10.3390/su11215925
Electric vehicles require sufficient public charging infrastructure. This in turn necessitates detailed information on charging demand. In this paper we present a four-step approach to estimating public charging demand of electric vehicles. Previous methods are limited in their ability to provide differentiated results and adapt to future developments. Therefore, we account for user groups (private, carsharing, commercial), technical developments (vehicles, infrastructure), infrastructure availability, and carsharing development (operational area, business models, autonomous vehicles). Our approach also considers the interactions between these factors and allows for scenario analysis yielding the quantity and spatial distribution of public charging demand. We demonstrate our approach for Berlin, Germany. We find that the majority of public charging demand results from carsharing. This demand is concentrated in the city center, even when carsharing is available citywide. Public charging demand for commercial users is relatively low and located outside the city center. For private users, public charging demand shifts to the city center with an increasing market penetration of electric vehicles and technological advancements (increased range, charging speed). Public demand from private users increases dramatically when private infrastructure is absent. Finally, public charging demand shifts to the city center when private users do not have private infrastructure.
Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/21/5925/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11215925&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/21/5925/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11215925&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2018 GermanyPublisher:Zenodo Authors: Kolarova, Viktoriya; Anderson, John E.; Hardinghaus, Michael;Greenhouse gas emissions, in particular CO2 emissions, are a major environmental problem caused mainly by the transportation and the energy sectors. Electric vehicles have been proposed as a solution for mitigating greenhouse gas emissions in road transport. At the same time their potential emission reduction depends on the emissions from the generation of electricity used to charge the vehicles. This study analyzes indirect emissions of electric vehicles to examine optimization potential using real-world data. The results of the study suggest that charging during the daytime is associated with the usage of more electricity from renewable energy sources than charging in typical non-work hours. However, due to the highly violate character of renewable energy sources the differences are rather small. Also, CO2 emissions per kilometer driven depend on driving patterns influencing the energy demand of the vehicles. Accordingly, optimization potential using renewable energy-oriented time course of charging is found to be rather small with an average greenhouse gas emission reduction of 4%. Thus to achieve the potential of electric vehicles to solve environmental issues requires the optimization of driving and charging patterns as well as measures for reducing the carbon intensity in the electricity grid.
ZENODO arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1435605&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert ZENODO arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1435605&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object , Other literature type 2016 GermanyPublisher:Elsevier BV Authors: Hardinghaus, Michael; Blümel, Hermann; Seidel, Christian;AbstractIn order to launch and facilitate the uptake of e-mobility, many major cities are facing the challenge of supporting the development of a cost-efficient and demand-meeting system of charging points. To tackle this task, the city of Berlin performed an innovative procedure. The approach included different working steps, beginning with planning the locations, followed by working out definitions of technical and contractual requirements to the actual implementation of charging infrastructure and its integration into the overall traffic system. The individual components of this overall process are described in this paper.In the location concept, as a starting point of the overall concept, a methodology based on theoretical concern and stakeholder consultations was developed. Furthermore this approach uses empirical mobility data, traffic models, user groups and usage patterns to indicate a spatial distribution of charging points in the city that matches demand.Subsequently, the construction of these charging points was tendered out Europe-wide. Seven bidders and consortia were chosen to participate in a 15-month-long competitive dialogue process. In this structured process a role-based model for operating the public charging infrastructure was developed. All technical details of the contract were developed in this dialog process as well.Another important step towards successful implementation of an efficient charging infrastructure is the challenge of operator-independent user information. For this purpose real-time information about the location and occupation status of charging stations was integrated into Berlin's Traffic Information Center. In addition, an authentication platform was set up to ensure operator-independent and non-discriminatory access to the publicly funded charging stations.
Transportation Resea... arrow_drop_down Transportation Research ProcediaArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefTransportation Research ProcediaArticle . 2016License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.trpro.2016.05.410&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Transportation Resea... arrow_drop_down Transportation Research ProcediaArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefTransportation Research ProcediaArticle . 2016License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.trpro.2016.05.410&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Preprint 2022 GermanyPublisher:MDPI AG Hardinghaus, Michael; Anderson, John Erik; Nobis, Claudia; Stark, Kerstin; Vladova, Galya;Electric vehicles offer a means to reduce greenhouse gas emissions in passenger transport. The availability of reliable charging infrastructure is crucial for the successful uptake of electric vehicles in dense urban areas. In a pilot project in the city of Hamburg, Germany, public charging infrastructure is equipped with a reservation option providing exclusive access for local residents and businesses. The present paper combines quantitative and qualitative methods to investigate the effects of the newly introduced neighborhood charging concept. We use a methodology combining a quantitative questionnaire survey and qualitative focus group discussions as well as the analyses of charging infrastructure utilization data. Results show that inner-city charging and parking options are of key importance for (potential) users of electric vehicles. Hence, the neighborhood concept is rated very positively. Providing guaranteed charging and parking facilities are therefore likely to increase the stock of EVs. On the other hand, these could to a large extent be additional cars with consequential disadvantages. The study shows that openly accessible infrastructure is presently utilized much more intense than the exclusive option. Consequentially, the concept evaluated should be part of an integrated approach managing parking and supporting efficient concepts like car sharing.
Electronics arrow_drop_down ElectronicsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2079-9292/11/16/2476/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202207.0445.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Electronics arrow_drop_down ElectronicsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2079-9292/11/16/2476/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202207.0445.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2021 GermanyPublisher:MDPI AG Authors: Hardinghaus, Michael; Nieland, Simon; Lehne, Marius; Weschke, Jan Volker;doi: 10.3390/su132111584
The present study aims to deduce bikeability based on a collective understanding and provides a methodology to operationalize its calculation based on open data. The approach contains four steps building on each other and combines qualitative and quantitative methods. The first three steps include the definition and operationalization of the index. First, findings from the literature are condensed to determine relevant categories influencing bikeability. Second, an expert survey is conducted to estimate the importance of these categories to gain a common understanding of bikeability and merge the impacting factors. Third, the defined categories are calculated based on OpenStreetMap data and combined to a comprehensive spatial bikeability index in an automated workflow. The fourth step evaluates the proposed index using a multinomial logit mode choice model to derive the effects of bikeability on travel behavior. The expert process shows a stable interaction between the components defining bikeability, linking specific spatial characteristics of bikeability and associated components. Applied components are, in order of importance, biking facilities along main streets, street connectivity, the prevalence of neighborhood streets, green pathways and other cycle facilities, such as rental and repair facilities. The mode choice model shows a strong positive effect of a high bikeability along the route on choosing the bike as the preferred mode. This confirms that the bike friendliness on a route surrounding has a significant impact on the mode choice. Using universal open data and applying stable weighting in an automated workflow renders the approach of assessing urban bike-friendliness fully transferable and the results comparable. It, therefore, lays the foundation for various large-scale cross-sectional analyses.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der Humboldt-Universität zu BerlinArticle . 2021 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132111584&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 89visibility views 89 download downloads 70 Powered bymore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der Humboldt-Universität zu BerlinArticle . 2021 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132111584&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2020 GermanyPublisher:IOP Publishing Authors: Hardinghaus, Michael; Löcher, Markus; Anderson, John Erik;Abstract The city of Berlin has significantly expanded public charging infrastructure for electric vehicles. As a result of this investment, real-world charging data for the city of Berlin are available for the first time. In addition to other metrics, this dataset contains specific information about carsharing vehicles. This research letter offers numerous insights into public charging demand and infrastructure. The results are only now available due to a sufficient fleet size of electric vehicles. The analysis shows that the distribution of charging stations is very unequal in Berlin. The data also show that the infrastructure network is much denser in the city center. While there is an unequal distribution of infrastructure, we see that the utilization of infrastructure is relatively equal. This reflects unequal charging demand, as can be expected based on the location of the infrastructure. We also determine that the majority of public charging events come from free-floating carsharing vehicles. The analysis of infrastructure use shows that the edge of the city center has the highest rates of stations occupied by vehicles after completing charging. Carsharing users occupy infrastructure after charging significantly more than individual private and commercial users. However, if the pricing scheme allows, individual users also occupy infrastructure after completing charging. The research letter provides several policy recommendations for the build-up and operation of charging infrastructure. These focus on charging demand from individual users, infrastructure efficiency, and carsharing operators and their business models. The results are timely as decisions on public charging infrastructure must be made now to meet electric vehicle demand.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aba716&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aba716&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2020Embargo end date: 18 Feb 2021 GermanyPublisher:MDPI AG Authors: Hardinghaus, Michael; Papantoniou, Panagiotis;doi: 10.3390/su12083375 , 10.18452/22501
Providing a sufficiently appropriate route environment is crucial to ensuring fair and safe biking, thus encouraging cycling as a sustainable mode of transport. At the same time, better understanding of cyclists’ preferences regarding the features of their routes and their infrastructure requirements is fundamental to evaluating improvement of the current infrastructure or the development of new infrastructure. The present study has two objectives. The first is to investigate cyclists’ route preferences by means of a choice experiment based on a stated preference survey. Subsequently, the second objective is to compare cyclist preferences in two countries with different cycling characteristics (both in infrastructure as well as cyclists’ behavior). For this purpose, a graphical online stated preferences survey was conducted in Greece and Germany. Within the framework of statistical analyses, multinomial mixed logit discrete choice models were developed that allow us to quantify the trade-offs of interest, while distinguishing between the preferences of different user groups. In addition, user requirements in Greece, as a country with a low cycling share and very little dedicated bike infrastructure, were compared to the requirements in Germany, where cycling is popular and the infrastructure is well developed. The results over the whole sample indicate that subgroups value infrastructure differently according to their specific needs. When looking at country specifics, users from Greece are significantly more willing to accept longer travel times in return for higher-quality facilities. The utility of low speed limits in mixed traffic is also different. In Germany, low speed limits offset the disturbance caused by motorized traffic, but in Greece they do not. Consequently, the results help to asses which types of infrastructure are most sustainable from a user perspective and help to set priorities when the aim is to adapt the road infrastructure efficiently in a stable strategy.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/8/3375/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der Humboldt-Universität zu BerlinArticle . 2020 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12083375&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 66visibility views 66 download downloads 49 Powered bymore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/8/3375/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der Humboldt-Universität zu BerlinArticle . 2020 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12083375&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2018 GermanyAuthors: Hardinghaus, Michael; Grätz, Matthias;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1640::b9b392c587dc320a1ecbfd797df21fc7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1640::b9b392c587dc320a1ecbfd797df21fc7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu