- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Informa UK Limited Funded by:UKRI | Data Analytics and Societ..., UKRI | Energy Demographics: the ..., UKRI | UK Centre for Research on...UKRI| Data Analytics and Society CDT Industrial Strategy 2018 ,UKRI| Energy Demographics: the role of demographic data in understanding UK's demand for energy ,UKRI| UK Centre for Research on Energy DemandAuthors: Kilian, L; Owen, A; Newing, A; Ivanova, D;To estimate household emissions from a consumption-perspective, national accounts are typically disaggregated to a sub-national level using household expenditure data. While limitations around using expenditure data are frequently discussed, differences in emission estimates generated from seemingly comparable expenditure microdata are not well-known. We compare UK neighbourhood greenhouse gas emission estimates derived from three such microdatasets: the Output Area Classification, the Living Costs and Food Survey, and a dataset produced by the credit reference agency TransUnion. Findings indicate moderate similarity between emission estimates from all datasets, even at detailed product and spatial levels; importantly, similarity increases for higher-emission products. Nevertheless, levels of similarity vary by products and geographies, highlighting the impact microdata selection can have on emission estimates. We focus our discussion on how uncertainty from microdata selection can be reduced in other UK and international contexts by selecting data based on the data generation process, the level of disaggregation needed, physical unit availability and research implications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09535314.2022.2034139&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09535314.2022.2034139&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Informa UK Limited Authors: Satoshi Inomata; Anne Owen;This editorial is the introduction to a special issue of Economics Systems Research on the topic of intercomparison of multi-regional input–output (MRIO) databases and analyses. It explains the rationale for dedicating an issue of this journal to this area of research. Then the six papers chosen for this issue are introduced. This is followed by a concluding section outlining future directions for developers and users of MRIO databases.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09535314.2014.940856&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu91 citations 91 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09535314.2014.940856&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Elsevier BV Funded by:UKRI | UK Energy Research Centre..., UKRI | End Use Energy Demand Cen...UKRI| UK Energy Research Centre Phase 3 ,UKRI| End Use Energy Demand Centre titled "Centre for Industrial Energy, Materials, Energy and Products (CIE-MAP)Ambrosio-Albala, P; Middlemiss, L; Owen, A; Hargreaves, T; Emmel, N; Gilbertson, J; Tod, A; Snell, C; Mullen, C; Longhurst, N; Gillard, R;In the sociological tradition, markets are understood to be constituted of social relations: relations of trust, friendship, power and dependence, which have moral and emotional qualities. In this paper, we explore how people in energy poor households construct the energy market and its impact on energy policy. Drawing on secondary analysis of a large collection of qualitative interviews on the lived experience of energy poverty carried out from 2003 to 2018 (n = 197 interviews and 20 selected), and the results of an OFGEM quantitative survey on consumer engagement released in 2018, we document the experience of the energy poor as actors in the British retail energy market. We uncover a number of challenges and opportunities facing energy poor participants in the market: having access to good quality information about suppliers, energy tariffs and grants, and having the skills and resources to act on this is important, without these it can be difficult for people to take action. In explaining people’s engagement with the market, we draw on the concept of ‘socio-economic attachments’, showing how a supportive network of family and friends, and people’s trust of and resulting loyalty to their energy supplier mediate their engagement. These findings lead us to relational explanations of the retail energy market, with related policy recommendations: if we are to aim for people to act ‘rationally’, they will need support to navigate the market from intermediaries.
CORE arrow_drop_down University of East Anglia digital repositoryArticle . 2020 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Energy Research & Social ScienceArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2020.101765&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down University of East Anglia digital repositoryArticle . 2020 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Energy Research & Social ScienceArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2020.101765&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2019Publisher:University of Leeds Authors: Brockway, Paul; Owen, Anne; Brand Correa, Lina I.; Bunse, Lukas;doi: 10.5518/598
Datasets for Nature Energy journal article 'Estimation of global final stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources'. The dataset contains the three concordance matrices (A,B,C) in a single Excel File used in the EXIOBASE-based EROI calculations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5518/598&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5518/598&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United KingdomPublisher:Elsevier BV Funded by:WT | Lancet Countdown: Trackin...WT| Lancet Countdown: Tracking Progress on Health and Climate ChangeTennison, I; Roschnik, S; Ashby, B; Boyd, R; Hamilton, I; Oreszczyn, T; Owen, A; Romanello, M; Ruyssevelt, P; Sherman, JD; Smith, AZP; Steele, K; Watts, N; Eckelman, MJ;Climate change threatens to undermine the past 50 years of gains in public health. In response, the National Health Service (NHS) in England has been working since 2008 to quantify and reduce its carbon footprint. This Article presents the latest update to its greenhouse gas accounting, identifying interventions for mitigation efforts and describing an approach applicable to other health systems across the world.A hybrid model was used to quantify emissions within Scopes 1, 2, and 3 of the Greenhouse Gas Protocol, as well as patient and visitor travel emissions, from 1990 to 2019. This approach complements the broad coverage of top-down economic modelling with the high accuracy of bottom-up data wherever available. Available data were backcasted or forecasted to cover all years. To enable the identification of measures to reduce carbon emissions, results were disaggregated by organisation type.In 2019, the health service's emissions totalled 25 megatonnes of carbon dioxide equivalent, a reduction of 26% since 1990, and a decrease of 64% in the emissions per inpatient finished admission episode. Of the 2019 footprint, 62% came from the supply chain, 24% from the direct delivery of care, 10% from staff commute and patient and visitor travel, and 4% from private health and care services commissioned by the NHS.This work represents the longest and most comprehensive accounting of national health-care emissions globally, and underscores the importance of incorporating bottom-up data to improve the accuracy of top-down modelling and enabling detailed monitoring of progress as health systems act to reduce emissions.Wellcome Trust.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s2542-5196(20)30271-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 397 citations 397 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s2542-5196(20)30271-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | UK Energy Research Centre..., UKRI | Applying thermodynamic la..., UKRI | End Use Energy Demand Cen... +1 projectsUKRI| UK Energy Research Centre Phase 3 ,UKRI| Applying thermodynamic laws to the energy-GDP decoupling problem ,UKRI| End Use Energy Demand Centre titled "Centre for Industrial Energy, Materials, Energy and Products (CIE-MAP) ,UKRI| Energy Demographics: the role of demographic data in understanding UK's demand for energyAuthors: Paul E. Brockway; Anne Owen; Lina I. Brand-Correa; Lukas Hardt;Under many scenarios, fossil fuels are projected to remain the dominant energy source until at least 2050. However, harder-to-reach fossil fuels require more energy to extract and, hence, are coming at an increasing ‘energy cost’. Associated declines in fossil fuel energy-return-on-investment ratios at first appear of little concern, given that published estimates for oil, coal and gas are typically above 25:1. However, such ratios are measured at the primary energy stage and should instead be estimated at the final stage where energy enters the economy (for example, electricity and petrol). Here, we calculate global time series (1995–2011) energy-return-on-investment ratios for fossil fuels at both primary and final energy stages. We concur with common primary-stage estimates (~30:1), but find very low ratios at the final stage: around 6:1 and declining. This implies that fossil fuel energy-return-on-investment ratios may be much closer to those of renewables than previously expected and that they could decline precipitously in the near future.
CORE arrow_drop_down COREArticle . 2019Full-Text: https://eprints.whiterose.ac.uk/148748/1/2019_05_22_EROI-2_Author_accepted_manuscript.pdfData sources: COREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0425-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 425 citations 425 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert CORE arrow_drop_down COREArticle . 2019Full-Text: https://eprints.whiterose.ac.uk/148748/1/2019_05_22_EROI-2_Author_accepted_manuscript.pdfData sources: COREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0425-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Authors: Yannick Oswald; Anne Owen; Julia K. Steinberger;Correction to: Nature Energy https://doi.org/10.1038/s41560-020-0579-8, published online 16 March 2020.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-0606-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-0606-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 United KingdomPublisher:Elsevier BV Funded by:UKRI | End Use Energy Demand Cen...UKRI| End Use Energy Demand Centre titled "Centre for Industrial Energy, Materials, Energy and Products (CIE-MAP)Owen, A; Brockway, P; Brand-Correa, L; Bunse, L; Sakai, M; Barrett, J;Increasing attention has been focussed on the use of consumption-based approaches to energy accounting via input-output (IO) methods. Of particular interest is the examination of energy supply chains, given the associated risks from supply-chain issues, including availability shocks, taxes on fossil fuels and fluctuating energy prices. Using a multiregional IO (MRIO) database to calculate energy consumption-based accounts (CBA) allows analysts to both determine the quantity and source of energy embodied in products along the supply chain. However, it is recognised in the literature that there is uncertainty as to the most appropriate type of energy data that should be employed in an IO framework. Questions arise as to whether an energy extension vector should show where the energy was extracted or where it was used (burnt). In order to address this gap, we undertake the first empirical MRIO analysis of an energy CBA using both vectors. Our results show that both the energy-extracted and energy-used vectors produce similar estimates of the overall energy CBA for the UK—notably 45% higher than territorial energy requirements. However, at a more granular level, the results show that the type of vector that should be employed ultimately depends on the research question that is considered. For example, the energy-extracted vector reveals that just 20% of the UK's energy CBA includes energy extracted within the UK, an issue that is upmost importance for energy security policy. At the other end, the energy-used vector allows for the attribution of actual energy use to industry sectors, thereby enabling a better understanding of sectoral efficiency gains. These findings are crucial for users and developers of MRIO databases who undertake energy CBA calculations. Since both vectors appear useful for different energy questions, the construction of robust and consistent energy-used and energy-extracted extension vectors as part of commonly-used MRIO model databases is encouraged.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.12.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 72 citations 72 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.12.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Authors: Heun, M; Owen, A; Brockway, PE;In response to the oil crises of the 1970s, energy accounting experienced a revolution and became the much broader field of energy analysis, in part by expanding along the energy conversion chain from primary and final energy to useful energy and energy services, which satisfy human needs. After evolution and specialization, the field of energy analysis today addresses topics along the entire energy conversion chain, including energy conversion systems, energy resources, carbon emissions, and the role of energy services in promoting human well-being and development. And the expanded field would benefit from a common analysis framework that provides data structure uniformity and methodological consistency. Building upon recent advances in related fields, we propose a physical supply-use table energy analysis framework consisting of four matrices from which the input-output structure of an energy conversion chain can be determined and the effects of changes in final demand can be estimated. Real-world examples demonstrate the physical supply-use table framework via investigation of energy analysis questions for a United Kingdom energy conversion chain. The physical supply use table framework has two key methodological advances over the building blocks that precede it, namely extending a common energy analysis framework through to energy services and application of physical supply-use tables to both energy and exergy analysis. The methodological advances enable the following first-time contributions to the literature: (1) performing energy and exergy analyses on an energy conversion chain using physical supply-use table matrices comprised of disaggregated products in physical units when the last stage is any of final energy, useful energy, or energy services; (2) performing structural path analysis on an energy conversion chain; and (3) developing and utilizing a matrix approach to inhomogeneous units. The framework spans the entire energy conversion chain and is suitable for many sub-fields of energy analysis, including net energy analysis, societal energy analysis, human needs and well-being, and structural path analysis, all of which are explored in this paper.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.05.109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.05.109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:UK Data Service Authors: Kilian, Lena; Owen, Anne; Newing, Andy; Ivanova, Diana;National consumption-based emissions of households are typically disaggregated using consumption and expenditure microdata. This data collection contains neighbourhood- and product-level per capita household emissions for the year 2016 estimated using an input-output methodology and three such consumption and expenditure datasets for subnational disaggregation. These datasets include the Output Area Classification (a publicly available geodemographic classification), the Living Costs and Food Survey (an openly available expenditure survey), and a commercial household expenditure dataset by TransUnion. Data are available for Lower and Middle Layer Super Output Areas in England and Wales, to Data Zones and Intermediate Geographies in Scotland and to Super Output Areas and Wards in Northern Ireland. Product-level data are available at Classification of Individual Consumption by Purpose (COICOP) 2 and 3 levels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5255/ukda-sn-854888&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5255/ukda-sn-854888&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Informa UK Limited Funded by:UKRI | Data Analytics and Societ..., UKRI | Energy Demographics: the ..., UKRI | UK Centre for Research on...UKRI| Data Analytics and Society CDT Industrial Strategy 2018 ,UKRI| Energy Demographics: the role of demographic data in understanding UK's demand for energy ,UKRI| UK Centre for Research on Energy DemandAuthors: Kilian, L; Owen, A; Newing, A; Ivanova, D;To estimate household emissions from a consumption-perspective, national accounts are typically disaggregated to a sub-national level using household expenditure data. While limitations around using expenditure data are frequently discussed, differences in emission estimates generated from seemingly comparable expenditure microdata are not well-known. We compare UK neighbourhood greenhouse gas emission estimates derived from three such microdatasets: the Output Area Classification, the Living Costs and Food Survey, and a dataset produced by the credit reference agency TransUnion. Findings indicate moderate similarity between emission estimates from all datasets, even at detailed product and spatial levels; importantly, similarity increases for higher-emission products. Nevertheless, levels of similarity vary by products and geographies, highlighting the impact microdata selection can have on emission estimates. We focus our discussion on how uncertainty from microdata selection can be reduced in other UK and international contexts by selecting data based on the data generation process, the level of disaggregation needed, physical unit availability and research implications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09535314.2022.2034139&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09535314.2022.2034139&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Informa UK Limited Authors: Satoshi Inomata; Anne Owen;This editorial is the introduction to a special issue of Economics Systems Research on the topic of intercomparison of multi-regional input–output (MRIO) databases and analyses. It explains the rationale for dedicating an issue of this journal to this area of research. Then the six papers chosen for this issue are introduced. This is followed by a concluding section outlining future directions for developers and users of MRIO databases.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09535314.2014.940856&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu91 citations 91 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09535314.2014.940856&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Elsevier BV Funded by:UKRI | UK Energy Research Centre..., UKRI | End Use Energy Demand Cen...UKRI| UK Energy Research Centre Phase 3 ,UKRI| End Use Energy Demand Centre titled "Centre for Industrial Energy, Materials, Energy and Products (CIE-MAP)Ambrosio-Albala, P; Middlemiss, L; Owen, A; Hargreaves, T; Emmel, N; Gilbertson, J; Tod, A; Snell, C; Mullen, C; Longhurst, N; Gillard, R;In the sociological tradition, markets are understood to be constituted of social relations: relations of trust, friendship, power and dependence, which have moral and emotional qualities. In this paper, we explore how people in energy poor households construct the energy market and its impact on energy policy. Drawing on secondary analysis of a large collection of qualitative interviews on the lived experience of energy poverty carried out from 2003 to 2018 (n = 197 interviews and 20 selected), and the results of an OFGEM quantitative survey on consumer engagement released in 2018, we document the experience of the energy poor as actors in the British retail energy market. We uncover a number of challenges and opportunities facing energy poor participants in the market: having access to good quality information about suppliers, energy tariffs and grants, and having the skills and resources to act on this is important, without these it can be difficult for people to take action. In explaining people’s engagement with the market, we draw on the concept of ‘socio-economic attachments’, showing how a supportive network of family and friends, and people’s trust of and resulting loyalty to their energy supplier mediate their engagement. These findings lead us to relational explanations of the retail energy market, with related policy recommendations: if we are to aim for people to act ‘rationally’, they will need support to navigate the market from intermediaries.
CORE arrow_drop_down University of East Anglia digital repositoryArticle . 2020 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Energy Research & Social ScienceArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2020.101765&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down University of East Anglia digital repositoryArticle . 2020 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Energy Research & Social ScienceArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2020.101765&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2019Publisher:University of Leeds Authors: Brockway, Paul; Owen, Anne; Brand Correa, Lina I.; Bunse, Lukas;doi: 10.5518/598
Datasets for Nature Energy journal article 'Estimation of global final stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources'. The dataset contains the three concordance matrices (A,B,C) in a single Excel File used in the EXIOBASE-based EROI calculations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5518/598&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5518/598&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United KingdomPublisher:Elsevier BV Funded by:WT | Lancet Countdown: Trackin...WT| Lancet Countdown: Tracking Progress on Health and Climate ChangeTennison, I; Roschnik, S; Ashby, B; Boyd, R; Hamilton, I; Oreszczyn, T; Owen, A; Romanello, M; Ruyssevelt, P; Sherman, JD; Smith, AZP; Steele, K; Watts, N; Eckelman, MJ;Climate change threatens to undermine the past 50 years of gains in public health. In response, the National Health Service (NHS) in England has been working since 2008 to quantify and reduce its carbon footprint. This Article presents the latest update to its greenhouse gas accounting, identifying interventions for mitigation efforts and describing an approach applicable to other health systems across the world.A hybrid model was used to quantify emissions within Scopes 1, 2, and 3 of the Greenhouse Gas Protocol, as well as patient and visitor travel emissions, from 1990 to 2019. This approach complements the broad coverage of top-down economic modelling with the high accuracy of bottom-up data wherever available. Available data were backcasted or forecasted to cover all years. To enable the identification of measures to reduce carbon emissions, results were disaggregated by organisation type.In 2019, the health service's emissions totalled 25 megatonnes of carbon dioxide equivalent, a reduction of 26% since 1990, and a decrease of 64% in the emissions per inpatient finished admission episode. Of the 2019 footprint, 62% came from the supply chain, 24% from the direct delivery of care, 10% from staff commute and patient and visitor travel, and 4% from private health and care services commissioned by the NHS.This work represents the longest and most comprehensive accounting of national health-care emissions globally, and underscores the importance of incorporating bottom-up data to improve the accuracy of top-down modelling and enabling detailed monitoring of progress as health systems act to reduce emissions.Wellcome Trust.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s2542-5196(20)30271-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 397 citations 397 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s2542-5196(20)30271-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | UK Energy Research Centre..., UKRI | Applying thermodynamic la..., UKRI | End Use Energy Demand Cen... +1 projectsUKRI| UK Energy Research Centre Phase 3 ,UKRI| Applying thermodynamic laws to the energy-GDP decoupling problem ,UKRI| End Use Energy Demand Centre titled "Centre for Industrial Energy, Materials, Energy and Products (CIE-MAP) ,UKRI| Energy Demographics: the role of demographic data in understanding UK's demand for energyAuthors: Paul E. Brockway; Anne Owen; Lina I. Brand-Correa; Lukas Hardt;Under many scenarios, fossil fuels are projected to remain the dominant energy source until at least 2050. However, harder-to-reach fossil fuels require more energy to extract and, hence, are coming at an increasing ‘energy cost’. Associated declines in fossil fuel energy-return-on-investment ratios at first appear of little concern, given that published estimates for oil, coal and gas are typically above 25:1. However, such ratios are measured at the primary energy stage and should instead be estimated at the final stage where energy enters the economy (for example, electricity and petrol). Here, we calculate global time series (1995–2011) energy-return-on-investment ratios for fossil fuels at both primary and final energy stages. We concur with common primary-stage estimates (~30:1), but find very low ratios at the final stage: around 6:1 and declining. This implies that fossil fuel energy-return-on-investment ratios may be much closer to those of renewables than previously expected and that they could decline precipitously in the near future.
CORE arrow_drop_down COREArticle . 2019Full-Text: https://eprints.whiterose.ac.uk/148748/1/2019_05_22_EROI-2_Author_accepted_manuscript.pdfData sources: COREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0425-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 425 citations 425 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert CORE arrow_drop_down COREArticle . 2019Full-Text: https://eprints.whiterose.ac.uk/148748/1/2019_05_22_EROI-2_Author_accepted_manuscript.pdfData sources: COREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0425-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Authors: Yannick Oswald; Anne Owen; Julia K. Steinberger;Correction to: Nature Energy https://doi.org/10.1038/s41560-020-0579-8, published online 16 March 2020.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-0606-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-0606-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 United KingdomPublisher:Elsevier BV Funded by:UKRI | End Use Energy Demand Cen...UKRI| End Use Energy Demand Centre titled "Centre for Industrial Energy, Materials, Energy and Products (CIE-MAP)Owen, A; Brockway, P; Brand-Correa, L; Bunse, L; Sakai, M; Barrett, J;Increasing attention has been focussed on the use of consumption-based approaches to energy accounting via input-output (IO) methods. Of particular interest is the examination of energy supply chains, given the associated risks from supply-chain issues, including availability shocks, taxes on fossil fuels and fluctuating energy prices. Using a multiregional IO (MRIO) database to calculate energy consumption-based accounts (CBA) allows analysts to both determine the quantity and source of energy embodied in products along the supply chain. However, it is recognised in the literature that there is uncertainty as to the most appropriate type of energy data that should be employed in an IO framework. Questions arise as to whether an energy extension vector should show where the energy was extracted or where it was used (burnt). In order to address this gap, we undertake the first empirical MRIO analysis of an energy CBA using both vectors. Our results show that both the energy-extracted and energy-used vectors produce similar estimates of the overall energy CBA for the UK—notably 45% higher than territorial energy requirements. However, at a more granular level, the results show that the type of vector that should be employed ultimately depends on the research question that is considered. For example, the energy-extracted vector reveals that just 20% of the UK's energy CBA includes energy extracted within the UK, an issue that is upmost importance for energy security policy. At the other end, the energy-used vector allows for the attribution of actual energy use to industry sectors, thereby enabling a better understanding of sectoral efficiency gains. These findings are crucial for users and developers of MRIO databases who undertake energy CBA calculations. Since both vectors appear useful for different energy questions, the construction of robust and consistent energy-used and energy-extracted extension vectors as part of commonly-used MRIO model databases is encouraged.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.12.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 72 citations 72 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.12.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Authors: Heun, M; Owen, A; Brockway, PE;In response to the oil crises of the 1970s, energy accounting experienced a revolution and became the much broader field of energy analysis, in part by expanding along the energy conversion chain from primary and final energy to useful energy and energy services, which satisfy human needs. After evolution and specialization, the field of energy analysis today addresses topics along the entire energy conversion chain, including energy conversion systems, energy resources, carbon emissions, and the role of energy services in promoting human well-being and development. And the expanded field would benefit from a common analysis framework that provides data structure uniformity and methodological consistency. Building upon recent advances in related fields, we propose a physical supply-use table energy analysis framework consisting of four matrices from which the input-output structure of an energy conversion chain can be determined and the effects of changes in final demand can be estimated. Real-world examples demonstrate the physical supply-use table framework via investigation of energy analysis questions for a United Kingdom energy conversion chain. The physical supply use table framework has two key methodological advances over the building blocks that precede it, namely extending a common energy analysis framework through to energy services and application of physical supply-use tables to both energy and exergy analysis. The methodological advances enable the following first-time contributions to the literature: (1) performing energy and exergy analyses on an energy conversion chain using physical supply-use table matrices comprised of disaggregated products in physical units when the last stage is any of final energy, useful energy, or energy services; (2) performing structural path analysis on an energy conversion chain; and (3) developing and utilizing a matrix approach to inhomogeneous units. The framework spans the entire energy conversion chain and is suitable for many sub-fields of energy analysis, including net energy analysis, societal energy analysis, human needs and well-being, and structural path analysis, all of which are explored in this paper.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.05.109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.05.109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:UK Data Service Authors: Kilian, Lena; Owen, Anne; Newing, Andy; Ivanova, Diana;National consumption-based emissions of households are typically disaggregated using consumption and expenditure microdata. This data collection contains neighbourhood- and product-level per capita household emissions for the year 2016 estimated using an input-output methodology and three such consumption and expenditure datasets for subnational disaggregation. These datasets include the Output Area Classification (a publicly available geodemographic classification), the Living Costs and Food Survey (an openly available expenditure survey), and a commercial household expenditure dataset by TransUnion. Data are available for Lower and Middle Layer Super Output Areas in England and Wales, to Data Zones and Intermediate Geographies in Scotland and to Super Output Areas and Wards in Northern Ireland. Product-level data are available at Classification of Individual Consumption by Purpose (COICOP) 2 and 3 levels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5255/ukda-sn-854888&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5255/ukda-sn-854888&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu