- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Serhiy Cherevko; Zarina Pawolek; Karl Johann Jakob Mayrhofer; Peter Strasser; Aleksandar R. Zeradjanin; Tobias Reier;AbstractThe electrochemical stability of thermally prepared Ir oxide films is investigated using a scanning flow cell (SFC)–inductively coupled plasma mass-spectrometer (ICP-MS) setup under transient and stationary potential and/or current conditions. Time-resolved dissolution rates provide important insights into critical conditions for material breakdown and a fully quantitative in-situ assessment of the electrochemical stability during oxygen evolution reaction (OER) conditions. In particular, the results demonstrate that stability and OER activity of the IrOx catalysts strongly depend on the chemical and structural nature of Ir oxide species and their synthesis conditions.
Electrochemistry Com... arrow_drop_down Electrochemistry CommunicationsArticle . 2014 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefElectrochemistry CommunicationsArticle . 2014License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.elecom.2014.08.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 264 citations 264 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Electrochemistry Com... arrow_drop_down Electrochemistry CommunicationsArticle . 2014 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefElectrochemistry CommunicationsArticle . 2014License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.elecom.2014.08.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 13 Sep 2021 GermanyPublisher:American Chemical Society (ACS) Christian Hoffmann; Jessica Hübner; Franziska Klaucke; Nataša Milojević; Robert Müller; Maximilian Neumann; Joris Weigert; Erik Esche; Mathias Hofmann; Jens-Uwe Repke; Reinhard Schomäcker; Peter Strasser; George Tsatsaronis;Demand response is a viable concept to deal with and benefit from fluctuating electricity prices and is of growing interest to the electrochemical industry. To assess the flexibility potential of such processes, a generic, interdisciplinary methodology is required. We propose such a methodology, in which the electrochemical fundamentals and the theoretical potential are determined first by analyzing strengths, weaknesses, opportunities, and threats. Afterward, experiments are conducted to determine selectivity and yield under varying loads and to assess the additional long-term costs associated with flexible operation. An industrial-scale electrochemical process is assessed regarding its technical, economic, and practical potential. The required steps include a flow sheet analysis, the formulation and solution of a simplified model for operation scheduling under various business options, and a dynamic optimization based on rigorous, dynamic process models. We apply the methodology to three electrochemical processes of different technology readiness levels—the syntheses of hydrogen peroxide, adiponitrile, and 1,2-dichloroethane via chloralkali electrolysis—to illustrate the individual steps of the proposed methodology.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Industrial & Engineering Chemistry ResearchArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.iecr.1c01360&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Industrial & Engineering Chemistry ResearchArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.iecr.1c01360&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 26 Jun 2020 Germany, GermanyPublisher:Royal Society of Chemistry (RSC) Funded by:DFGDFGSören Dresp; Trung Ngo Thanh; Malte Klingenhof; Sven Brückner; Philipp Hauke; Peter Strasser;Increasing the performance of seawater electrolyser and enabling direct natural seawater feed by asymmetric electrolyte flow scheme.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee01125h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 269 citations 269 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee01125h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Embargo end date: 04 Mar 2024 GermanyPublisher:Royal Society of Chemistry (RSC) Funded by:EC | EcoFuelEC| EcoFuelAuthors: Michael Filippi; Tim Möller; Liang Liang; Peter Strasser;Catholyte flow compartment design impacts the CO2RR product selectivity by influencing gas bubble transport and local pH. According to the hydrodynamic volcano model, an optimal catholyte fluid velocity enables the highest CO2 reduction selectivity.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee02243a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee02243a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 IrelandPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:DFGDFGWenming Tong; Mark Forster; Fabio Dionigi; Sören Dresp; Roghayeh Sadeghi Erami; Peter Strasser; Alexander J. Cowan; Pau Farràs;handle: 10379/15835
Review Article Published: 17 February 2020 Electrolysis of low-grade and saline surface water Wenming Tong, Mark Forster, Fabio Dionigi, Sören Dresp, Roghayeh Sadeghi Erami, Peter Strasser, Alexander J. Cowan & Pau Farràs Nature Energy (2020)Cite this article 1779 Accesses 1 Citations 60 Altmetric Metricsdetails Abstract Powered by renewable energy sources such as solar, marine, geothermal and wind, generation of storable hydrogen fuel through water electrolysis provides a promising path towards energy sustainability. However, state-of-the-art electrolysis requires support from associated processes such as desalination of water sources, further purification of desalinated water, and transportation of water, which often contribute financial and energy costs. One strategy to avoid these operations is to develop electrolysers that are capable of operating with impure water feeds directly. Here we review recent developments in electrode materials/catalysts for water electrolysis using low-grade and saline water, a significantly more abundant resource worldwide compared to potable water. We address the associated challenges in design of electrolysers, and discuss future potential approaches that may yield highly active and selective materials for water electrolysis in the presence of common impurities such as metal ions, chloride and bio-organisms.
National University ... arrow_drop_down National University of Ireland (NUI), Galway: ARANArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10379/15835Data sources: Bielefeld Academic Search Engine (BASE)University of Galway Research RepositoryArticle . 2020License: CC BY NC NDData sources: University of Galway Research Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-0550-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 859 citations 859 popularity Top 0.01% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert National University ... arrow_drop_down National University of Ireland (NUI), Galway: ARANArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10379/15835Data sources: Bielefeld Academic Search Engine (BASE)University of Galway Research RepositoryArticle . 2020License: CC BY NC NDData sources: University of Galway Research Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-0550-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 15 Sep 2023Publisher:Springer Science and Business Media LLC Funded by:DFG, EC | ANEMEL, EC | EcoFuel +1 projectsDFG ,EC| ANEMEL ,EC| EcoFuel ,EC| SELECTCO2Authors: Hauke, Philipp; Merzdorf, Thomas; Klingenhof, Malte; Strasser, Peter;AbstractThe electrochemical conversion of 5-Hydroxymethylfurfural, especially its reduction, is an attractive green production pathway for carbonaceous e-chemicals. We demonstrate the reduction of 5-Hydroxymethylfurfural to 5-Methylfurfurylalcohol under strongly alkaline reaction environments over oxide-derived Cu bimetallic electrocatalysts. We investigate whether and how the surface catalysis of the MOx phases tune the catalytic selectivity of oxide-derived Cu with respect to the 2-electron hydrogenation to 2.5-Bishydroxymethylfuran and the (2 + 2)-electron hydrogenation/hydrogenolysis to 5-Methylfurfurylalcohol. We provide evidence for a kinetic competition between the evolution of H2 and the 2-electron hydrogenolysis of 2.5-Bishydroxymethylfuran to 5-Methylfurfurylalcohol and discuss its mechanistic implications. Finally, we demonstrate that the ability to conduct 5-Hydroxymethylfurfural reduction to 5-Methylfurfurylalcohol in alkaline conditions over oxide-derived Cu/MOx Cu foam electrodes enable an efficiently operating alkaline exchange membranes electrolyzer, in which the cathodic 5-Hydroxymethylfurfural valorization is coupled to either alkaline oxygen evolution anode or to oxidative 5-Hydroxymethylfurfural valorization.
Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-40463-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 32 citations 32 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-40463-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Germany, United Kingdom, GermanyPublisher:Royal Society of Chemistry (RSC) Funded by:EC | CRESCENDOEC| CRESCENDOMathias Primbs; Yanyan Sun; Aaron Roy; Daniel Malko; Asad Mehmood; Moulay-Tahar Sougrati; Pierre-Yves Blanchard; Gaetano Granozzi; Tomasz Kosmala; Giorgia Daniel; Plamen Atanassov; Jonathan Sharman; Christian Durante; Anthony Kucernak; Deborah Jones; Frédéric Jaouen; Peter Strasser;doi: 10.1039/d0ee01013h
handle: 10044/1/81139
Establishing new reactivity map descriptor of TOF–SD for PGM-free Fe–N–C catalysts ORR activity.
Hyper Article en Lig... arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/81139Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital RepositoryEnergy & Environmental ScienceArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee01013h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 220 citations 220 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/81139Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital RepositoryEnergy & Environmental ScienceArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee01013h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 GermanyPublisher:Royal Society of Chemistry (RSC) Authors: Bergmann, Arno; Zaharieva, Ivelina; Dau, Holger; Strasser, Peter;doi: 10.1039/c3ee41194j
Manganese based precious metal-free electrocatalysts for the oxygen evolution reaction (OER) are promising materials for energy storage systems based on dark or photo-coupled water electrolysis, because they are active, inexpensive and of low toxicity. In this work, atomic scale structure–activity relationships of two different nano-structured manganese oxides, MnOx, are established using a combination of X-ray absorption, diffraction and electrochemistry. Prepared by chemical symproportionation (s-MnOx) and impregnation (i-MnOx), the s-MnOx catalyst consisted of a layered structure similar to δ-MnO2 while the i-MnOx catalyst displayed a mixture of tunnelled, 3D cross-linked β- and defective γ-MnO2 structures. During electrocatalytic oxygen evolution the structural motifs of both MnOx remain largely unchanged, but the oxidation state of Mn increases from 3.5 to 3.9–4. Kinetic parameters of the electrocatalytic oxygen evolution reaction were extracted using Tafel slope analysis and pH titration experiment, and the role of the protons abstracted was analyzed. The study reveals fundamental differences of general importance in the catalytic activity between layered and cross-linked structures. The exclusive presence of di-μ-oxo-bridged Mn ions in the layered structure is coupled to a pronounced redox and charge capacity behaviour. This ensured efficient use of surface and bulk active sites, and resulted in a relatively large Tafel slope. Consequently, the intrinsic OER activity is especially high in s-MnOx. In contrast, 3D cross-linked structures with both mono- and di-μ-oxo-bridged Mn ions resulted in lower intrinsic activity but smaller Tafel slope, and thus favourable activity at technological water-splitting rates. The insights from this comparative study will provide guidance in the structural design and optimization of other non precious metal oxide OER catalysts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c3ee41194j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 260 citations 260 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c3ee41194j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 GermanyPublisher:Royal Society of Chemistry (RSC) Manos Mavrikakis; Peter Strasser; Stanko R. Brankovic; Shirlaine Koh; Shirlaine Koh; Sang-Eun Bae; Jan Rossmeisl; Jan Rossmeisl; Peter Ferrin; Anand Udaykumar Nilekar; Georgios A. Tritsaris;doi: 10.1039/c2ee21455e
Using the binding energy of OH* and CO* on close-packed surfaces as reactivity descriptors, we screen bulk and surface alloy catalysts for methanol electro-oxidation activity. Using these two descriptors, we illustrate that a good methanol electro-oxidation catalyst must have three key properties: (1) the ability to activate methanol, (2) the ability to activate water, and (3) the ability to react off surface intermediates (such as CO* and OH*). Based on this analysis, an alloy catalyst made up of Cu and Pt should have a synergistic effect facilitating the activity towards methanol electro-oxidation. Using these two reactivity descriptors, a surface PtCu3 alloy is proposed to have the best catalytic properties of the Pt–Cu model catalysts tested, similar to those of a Pt–Ru bulk alloy. To validate the model, experiments on a Pt(111) surface modified with different amounts of Cu adatoms are performed. Adding Cu to a Pt(111) surface increases the methanol oxidation current by more than a factor of three, supporting our theoretical predictions for improved electrocatalysts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2ee21455e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 160 citations 160 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2ee21455e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 DenmarkPublisher:Royal Society of Chemistry (RSC) Funded by:EC | CRESCENDOEC| CRESCENDOTim Möller; Wen Ju; Alexander Bagger; Xingli Wang; Fang Luo; Trung Ngo Thanh; Ana Sofia Varela; Jan Rossmeisl; Peter Strasser;doi: 10.1039/c8ee02662a
We demonstrate the direct electrochemical conversion of CO2 to CO using solid state Ni–N–C carbon catalysts characterized by a coordinative molecular Ni–Nx active moiety at industrial current densities of up to 700 mA cm−2 with faradaic efficiencies superior to those of the state-of-the-art AgOx electrocatalysts.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8ee02662a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu356 citations 356 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8ee02662a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Serhiy Cherevko; Zarina Pawolek; Karl Johann Jakob Mayrhofer; Peter Strasser; Aleksandar R. Zeradjanin; Tobias Reier;AbstractThe electrochemical stability of thermally prepared Ir oxide films is investigated using a scanning flow cell (SFC)–inductively coupled plasma mass-spectrometer (ICP-MS) setup under transient and stationary potential and/or current conditions. Time-resolved dissolution rates provide important insights into critical conditions for material breakdown and a fully quantitative in-situ assessment of the electrochemical stability during oxygen evolution reaction (OER) conditions. In particular, the results demonstrate that stability and OER activity of the IrOx catalysts strongly depend on the chemical and structural nature of Ir oxide species and their synthesis conditions.
Electrochemistry Com... arrow_drop_down Electrochemistry CommunicationsArticle . 2014 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefElectrochemistry CommunicationsArticle . 2014License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.elecom.2014.08.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 264 citations 264 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Electrochemistry Com... arrow_drop_down Electrochemistry CommunicationsArticle . 2014 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefElectrochemistry CommunicationsArticle . 2014License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.elecom.2014.08.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 13 Sep 2021 GermanyPublisher:American Chemical Society (ACS) Christian Hoffmann; Jessica Hübner; Franziska Klaucke; Nataša Milojević; Robert Müller; Maximilian Neumann; Joris Weigert; Erik Esche; Mathias Hofmann; Jens-Uwe Repke; Reinhard Schomäcker; Peter Strasser; George Tsatsaronis;Demand response is a viable concept to deal with and benefit from fluctuating electricity prices and is of growing interest to the electrochemical industry. To assess the flexibility potential of such processes, a generic, interdisciplinary methodology is required. We propose such a methodology, in which the electrochemical fundamentals and the theoretical potential are determined first by analyzing strengths, weaknesses, opportunities, and threats. Afterward, experiments are conducted to determine selectivity and yield under varying loads and to assess the additional long-term costs associated with flexible operation. An industrial-scale electrochemical process is assessed regarding its technical, economic, and practical potential. The required steps include a flow sheet analysis, the formulation and solution of a simplified model for operation scheduling under various business options, and a dynamic optimization based on rigorous, dynamic process models. We apply the methodology to three electrochemical processes of different technology readiness levels—the syntheses of hydrogen peroxide, adiponitrile, and 1,2-dichloroethane via chloralkali electrolysis—to illustrate the individual steps of the proposed methodology.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Industrial & Engineering Chemistry ResearchArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.iecr.1c01360&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Industrial & Engineering Chemistry ResearchArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.iecr.1c01360&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 26 Jun 2020 Germany, GermanyPublisher:Royal Society of Chemistry (RSC) Funded by:DFGDFGSören Dresp; Trung Ngo Thanh; Malte Klingenhof; Sven Brückner; Philipp Hauke; Peter Strasser;Increasing the performance of seawater electrolyser and enabling direct natural seawater feed by asymmetric electrolyte flow scheme.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee01125h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 269 citations 269 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee01125h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Embargo end date: 04 Mar 2024 GermanyPublisher:Royal Society of Chemistry (RSC) Funded by:EC | EcoFuelEC| EcoFuelAuthors: Michael Filippi; Tim Möller; Liang Liang; Peter Strasser;Catholyte flow compartment design impacts the CO2RR product selectivity by influencing gas bubble transport and local pH. According to the hydrodynamic volcano model, an optimal catholyte fluid velocity enables the highest CO2 reduction selectivity.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee02243a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee02243a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 IrelandPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:DFGDFGWenming Tong; Mark Forster; Fabio Dionigi; Sören Dresp; Roghayeh Sadeghi Erami; Peter Strasser; Alexander J. Cowan; Pau Farràs;handle: 10379/15835
Review Article Published: 17 February 2020 Electrolysis of low-grade and saline surface water Wenming Tong, Mark Forster, Fabio Dionigi, Sören Dresp, Roghayeh Sadeghi Erami, Peter Strasser, Alexander J. Cowan & Pau Farràs Nature Energy (2020)Cite this article 1779 Accesses 1 Citations 60 Altmetric Metricsdetails Abstract Powered by renewable energy sources such as solar, marine, geothermal and wind, generation of storable hydrogen fuel through water electrolysis provides a promising path towards energy sustainability. However, state-of-the-art electrolysis requires support from associated processes such as desalination of water sources, further purification of desalinated water, and transportation of water, which often contribute financial and energy costs. One strategy to avoid these operations is to develop electrolysers that are capable of operating with impure water feeds directly. Here we review recent developments in electrode materials/catalysts for water electrolysis using low-grade and saline water, a significantly more abundant resource worldwide compared to potable water. We address the associated challenges in design of electrolysers, and discuss future potential approaches that may yield highly active and selective materials for water electrolysis in the presence of common impurities such as metal ions, chloride and bio-organisms.
National University ... arrow_drop_down National University of Ireland (NUI), Galway: ARANArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10379/15835Data sources: Bielefeld Academic Search Engine (BASE)University of Galway Research RepositoryArticle . 2020License: CC BY NC NDData sources: University of Galway Research Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-0550-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 859 citations 859 popularity Top 0.01% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert National University ... arrow_drop_down National University of Ireland (NUI), Galway: ARANArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10379/15835Data sources: Bielefeld Academic Search Engine (BASE)University of Galway Research RepositoryArticle . 2020License: CC BY NC NDData sources: University of Galway Research Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-0550-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 15 Sep 2023Publisher:Springer Science and Business Media LLC Funded by:DFG, EC | ANEMEL, EC | EcoFuel +1 projectsDFG ,EC| ANEMEL ,EC| EcoFuel ,EC| SELECTCO2Authors: Hauke, Philipp; Merzdorf, Thomas; Klingenhof, Malte; Strasser, Peter;AbstractThe electrochemical conversion of 5-Hydroxymethylfurfural, especially its reduction, is an attractive green production pathway for carbonaceous e-chemicals. We demonstrate the reduction of 5-Hydroxymethylfurfural to 5-Methylfurfurylalcohol under strongly alkaline reaction environments over oxide-derived Cu bimetallic electrocatalysts. We investigate whether and how the surface catalysis of the MOx phases tune the catalytic selectivity of oxide-derived Cu with respect to the 2-electron hydrogenation to 2.5-Bishydroxymethylfuran and the (2 + 2)-electron hydrogenation/hydrogenolysis to 5-Methylfurfurylalcohol. We provide evidence for a kinetic competition between the evolution of H2 and the 2-electron hydrogenolysis of 2.5-Bishydroxymethylfuran to 5-Methylfurfurylalcohol and discuss its mechanistic implications. Finally, we demonstrate that the ability to conduct 5-Hydroxymethylfurfural reduction to 5-Methylfurfurylalcohol in alkaline conditions over oxide-derived Cu/MOx Cu foam electrodes enable an efficiently operating alkaline exchange membranes electrolyzer, in which the cathodic 5-Hydroxymethylfurfural valorization is coupled to either alkaline oxygen evolution anode or to oxidative 5-Hydroxymethylfurfural valorization.
Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-40463-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 32 citations 32 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-40463-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Germany, United Kingdom, GermanyPublisher:Royal Society of Chemistry (RSC) Funded by:EC | CRESCENDOEC| CRESCENDOMathias Primbs; Yanyan Sun; Aaron Roy; Daniel Malko; Asad Mehmood; Moulay-Tahar Sougrati; Pierre-Yves Blanchard; Gaetano Granozzi; Tomasz Kosmala; Giorgia Daniel; Plamen Atanassov; Jonathan Sharman; Christian Durante; Anthony Kucernak; Deborah Jones; Frédéric Jaouen; Peter Strasser;doi: 10.1039/d0ee01013h
handle: 10044/1/81139
Establishing new reactivity map descriptor of TOF–SD for PGM-free Fe–N–C catalysts ORR activity.
Hyper Article en Lig... arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/81139Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital RepositoryEnergy & Environmental ScienceArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee01013h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 220 citations 220 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/81139Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital RepositoryEnergy & Environmental ScienceArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee01013h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 GermanyPublisher:Royal Society of Chemistry (RSC) Authors: Bergmann, Arno; Zaharieva, Ivelina; Dau, Holger; Strasser, Peter;doi: 10.1039/c3ee41194j
Manganese based precious metal-free electrocatalysts for the oxygen evolution reaction (OER) are promising materials for energy storage systems based on dark or photo-coupled water electrolysis, because they are active, inexpensive and of low toxicity. In this work, atomic scale structure–activity relationships of two different nano-structured manganese oxides, MnOx, are established using a combination of X-ray absorption, diffraction and electrochemistry. Prepared by chemical symproportionation (s-MnOx) and impregnation (i-MnOx), the s-MnOx catalyst consisted of a layered structure similar to δ-MnO2 while the i-MnOx catalyst displayed a mixture of tunnelled, 3D cross-linked β- and defective γ-MnO2 structures. During electrocatalytic oxygen evolution the structural motifs of both MnOx remain largely unchanged, but the oxidation state of Mn increases from 3.5 to 3.9–4. Kinetic parameters of the electrocatalytic oxygen evolution reaction were extracted using Tafel slope analysis and pH titration experiment, and the role of the protons abstracted was analyzed. The study reveals fundamental differences of general importance in the catalytic activity between layered and cross-linked structures. The exclusive presence of di-μ-oxo-bridged Mn ions in the layered structure is coupled to a pronounced redox and charge capacity behaviour. This ensured efficient use of surface and bulk active sites, and resulted in a relatively large Tafel slope. Consequently, the intrinsic OER activity is especially high in s-MnOx. In contrast, 3D cross-linked structures with both mono- and di-μ-oxo-bridged Mn ions resulted in lower intrinsic activity but smaller Tafel slope, and thus favourable activity at technological water-splitting rates. The insights from this comparative study will provide guidance in the structural design and optimization of other non precious metal oxide OER catalysts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c3ee41194j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 260 citations 260 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c3ee41194j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 GermanyPublisher:Royal Society of Chemistry (RSC) Manos Mavrikakis; Peter Strasser; Stanko R. Brankovic; Shirlaine Koh; Shirlaine Koh; Sang-Eun Bae; Jan Rossmeisl; Jan Rossmeisl; Peter Ferrin; Anand Udaykumar Nilekar; Georgios A. Tritsaris;doi: 10.1039/c2ee21455e
Using the binding energy of OH* and CO* on close-packed surfaces as reactivity descriptors, we screen bulk and surface alloy catalysts for methanol electro-oxidation activity. Using these two descriptors, we illustrate that a good methanol electro-oxidation catalyst must have three key properties: (1) the ability to activate methanol, (2) the ability to activate water, and (3) the ability to react off surface intermediates (such as CO* and OH*). Based on this analysis, an alloy catalyst made up of Cu and Pt should have a synergistic effect facilitating the activity towards methanol electro-oxidation. Using these two reactivity descriptors, a surface PtCu3 alloy is proposed to have the best catalytic properties of the Pt–Cu model catalysts tested, similar to those of a Pt–Ru bulk alloy. To validate the model, experiments on a Pt(111) surface modified with different amounts of Cu adatoms are performed. Adding Cu to a Pt(111) surface increases the methanol oxidation current by more than a factor of three, supporting our theoretical predictions for improved electrocatalysts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2ee21455e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 160 citations 160 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2ee21455e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 DenmarkPublisher:Royal Society of Chemistry (RSC) Funded by:EC | CRESCENDOEC| CRESCENDOTim Möller; Wen Ju; Alexander Bagger; Xingli Wang; Fang Luo; Trung Ngo Thanh; Ana Sofia Varela; Jan Rossmeisl; Peter Strasser;doi: 10.1039/c8ee02662a
We demonstrate the direct electrochemical conversion of CO2 to CO using solid state Ni–N–C carbon catalysts characterized by a coordinative molecular Ni–Nx active moiety at industrial current densities of up to 700 mA cm−2 with faradaic efficiencies superior to those of the state-of-the-art AgOx electrocatalysts.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8ee02662a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu356 citations 356 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8ee02662a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu