- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Iman Falsafi; H. Nemati;Abstract In this study, the thermal performance of an unsteady, one-dimensional model, and irreversible of a CH4-air reacting process is investigated. Due to the fundamental differences between the free flame and porous structures such as flame thickness and the length of the preheated zone, it is necessary to employ a chemical kinetic which in accordance with the structure of a porous duct made of cellular ceramic, even if it is very simple. To achieve this aim, CH4 oxidation with the five-step reaction mechanism is considered to simulate the combustion phenomenon in the porous burner. In order to solve the governing equations, a finite volume method is used to discretize the governing conservation equations of the problem. Transient, displacement and diffusion terms were respectively solved using completely implicit schemes, Upwind, and discretized central difference and the resulting algebraic equations by the TDMA repeated procedure. In this research, the segregated method was used to solve the set of equations, in which the suitable convergence condition for the governing variables of the problem was used. After validation of the obtained results with available experimental data, the effects of the solid matrix porosity density, porosity, length, extinction coefficient as well as the effects of fire rate, equilibrium ratio, and inlet temperature are investigated. The results show any changes in solid matrix properties and inlet conditions lead to significant changes in combustion structure.
Aerospace Science an... arrow_drop_down Aerospace Science and TechnologyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ast.2019.105304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Aerospace Science an... arrow_drop_down Aerospace Science and TechnologyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ast.2019.105304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Faculty of Engineering, Chulalongkorn University Authors: H. Nemati;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4186/ej.2018.22.1.159&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4186/ej.2018.22.1.159&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: H. Nemati; V. Souriaee; M. Habibi; Kambiz Vafai;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.125947&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.125947&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: S. Samivand; H. Nemati;AbstractEfficiency of annular elliptical fin has been studied numerically. It has been shown that constant temperature lines do not preserve their circular shape in fins with high aspect ratio and therefore, the common methods such as equivalent fin area or sector method may not be applicable. For this reason, a new simple correlation has been proposed to approximate annular elliptical fin efficiency and then the fin geometry optimized, to maximize the rate of heat dissipation for a specified fin volume, when there is a space restriction on the fin minor axis. Results have been presented graphically and a correlation has been deduced also.
Alexandria Engineeri... arrow_drop_down Alexandria Engineering JournalArticle . 2015 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefAlexandria Engineering JournalArticle . 2015License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aej.2015.09.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 16 citations 16 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Alexandria Engineeri... arrow_drop_down Alexandria Engineering JournalArticle . 2015 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefAlexandria Engineering JournalArticle . 2015License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aej.2015.09.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Ali Sadeghianjahromi; Saeid Kheradmand; Hossain Nemati;Abstract 3D turbulent flow numerical simulations were performed in order to develop correlations for heat transfer and flow friction characteristics in louvered fin and tube heat exchangers. A detailed sensitivity analysis was done on the effects of Reynolds number, fin pitch, longitudinal tube pitch and transversal tube pitch on parameters j/j0 and f/f0. Developed correlations are based on ratio of Colburn and friction factors of louvered fin heat exchanger to that of flat fin heat exchanger (j/j0 and f/f0) respectively which are much simpler than other correlations. Also, as it is expected, when louver angle approaches zero (flat fin), parameters j/j0 and f/f0 reach 1. This approach cannot be seen in previous developed correlations. The developed correlations can describe 100% and 86% of parameters j/j0 and f/f0 respectively among 186 numerical simulation data within ±15%. Optimum louver angle was also obtained by genetic algorithm using the developed correlations.
International Journa... arrow_drop_down International Journal of Thermal SciencesArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijthermalsci.2018.03.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Thermal SciencesArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijthermalsci.2018.03.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Informa UK Limited Authors: Azam Zare; Iman Falsafi; H. Nemati;Porous burner offers attractive advantages including high combustion performance and power ranges, and approximately zero pollutant emission. In this paper, the thermal behavior of premixed flame o...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00986445.2021.1986702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00986445.2021.1986702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Informa UK Limited Authors: Reza Soleimanpour; Azam Zare; H. Nemati;In this work, the two dimensional transition of H2-O2 deflagration-to-detonation was examined in some porous closed-ducts by an in-house high speed reacting flow solver in OpenFoam package—a pressu...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00986445.2021.1969923&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00986445.2021.1969923&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:International Information and Engineering Technology Association Authors: H. Nemati; Ali Akbar Golneshan;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3166/acsm.42.281-301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3166/acsm.42.281-301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Elsevier BV Authors: Nemati, H; Moghimi, MA; Sapin, P; Markides, CN;handle: 10044/1/75839
The use of annular fins in air-cooled heat exchangers is a well-known solution, commonly used in air-conditioning and heat-recovery systems, for enhancing the air-side heat transfer. Although associated with additional material and manufacturing costs, custom-designed finned-tube heat exchangers can be cost-effective. In this article, the shape of the annular fins in a multi-row air heat exchanger is optimised in order to enhance performance without incurring a manufacturing cost penalty. The air-side heat transfer, pressure drop and entropy generation in a regular, four-row heat exchanger are predicted using a steady-state turbulent CFD model and validated against experimental data. The validated simulation tool is then used to perform model-based optimisation of the fin shapes. The originality of the proposed approach lies in optimising the shape of each fin row individually, resulting in a non-homogenous custom bundle of tubes. Evidence of this local-optimisation potential is first provided by a short preliminary study, followed by four distinct optimisation studies (with four distinct objective functions), aimed at addressing the major problems faced by designers. Response-surface methods – namely, NLPQL for single-objective and MOGA for multi-objective optimisations – are used to determine the optimum configuration for each optimisation strategy. It is shown that elliptical annular-shaped fins minimise the pressure drop and entropy generation, while circular-shaped fins at the entrance region (i.e., first row) can be employed to maximise heat transfer. The results also show that, for the scenario in which the total heat transfer rate is maximised and the pressure drop minimised, the pressure drop is reduced by up to 31%, the fin weight is reduced up to 23 %, with as little as a 14 % decrease in the total air-side heat transfer, relative to the case in which all the fins across the tube bundle are circular. Moreover, in all optimised cases, the entropy generation rate is also reduced, which shows a thermodynamic improvement in tube bundle performance.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/75839Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2019Data sources: Spiral - Imperial College Digital RepositoryInternational Journal of Thermal SciencesArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijthermalsci.2019.106233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 42 citations 42 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/75839Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2019Data sources: Spiral - Imperial College Digital RepositoryInternational Journal of Thermal SciencesArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijthermalsci.2019.106233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: M. Habibi; H. Nemati;Abstract Phase change materials (PCM) play an important role in energy storing and waste heat recovery. A great amount of energy can be stored in PCM in the form of latent heat within a narrow temperature change. However, due to a large difference between the density of solid and liquid phases, a considerable volume change is experienced during a phase change. Consequently, for a constant pressure phase change process, it is necessary to provide a reserved space on top of the PCM surface. This study was devoted to the numerical simulation of RT27 solidification in the spherical capsule filled partially by PCM. The capsule was allowed to breathe freely, so it was necessary to consider the convection in the free space over the PCM surface as well. Moreover, it was shown that filling the capsule partially is a passive method to control the heat release rate. In all, three spheres were considered with 20, 40, and 60 mm diameters and wall temperatures of 20 and 40 K below the PCM mean solidification temperature. Each capsule was assumed to be initially filled with liquid PCM by 25%, 50%, 75%, and 98.5% (approximately full) of the sphere volume. After validating the result, a deep parametric study was performed. It was shown that the PCM volume changed sharply at the beginning and later approached an asymptomatic value. This volume reduction caused a downward velocity field at the beginning of solidification, which was disturbed later by convectional flow and a secondary flow appeared due to air convection. For spheres with the same diameter and different amounts of PCM, except FR=75%, by decreasing the filling ratio, the solidification time decreased considerably. For example, the solidification time of FR=25% was around 60% of FR=98.5%. In return, for spheres with the same amount of PCM but different diameters, on average, FR=98.5% and FR=50% had the highest and the lowest solidification rates respectively. All these observations could be interpreted under the light of the wetted area to PCM volume ratio.
Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2021.102725&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2021.102725&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Iman Falsafi; H. Nemati;Abstract In this study, the thermal performance of an unsteady, one-dimensional model, and irreversible of a CH4-air reacting process is investigated. Due to the fundamental differences between the free flame and porous structures such as flame thickness and the length of the preheated zone, it is necessary to employ a chemical kinetic which in accordance with the structure of a porous duct made of cellular ceramic, even if it is very simple. To achieve this aim, CH4 oxidation with the five-step reaction mechanism is considered to simulate the combustion phenomenon in the porous burner. In order to solve the governing equations, a finite volume method is used to discretize the governing conservation equations of the problem. Transient, displacement and diffusion terms were respectively solved using completely implicit schemes, Upwind, and discretized central difference and the resulting algebraic equations by the TDMA repeated procedure. In this research, the segregated method was used to solve the set of equations, in which the suitable convergence condition for the governing variables of the problem was used. After validation of the obtained results with available experimental data, the effects of the solid matrix porosity density, porosity, length, extinction coefficient as well as the effects of fire rate, equilibrium ratio, and inlet temperature are investigated. The results show any changes in solid matrix properties and inlet conditions lead to significant changes in combustion structure.
Aerospace Science an... arrow_drop_down Aerospace Science and TechnologyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ast.2019.105304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Aerospace Science an... arrow_drop_down Aerospace Science and TechnologyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ast.2019.105304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Faculty of Engineering, Chulalongkorn University Authors: H. Nemati;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4186/ej.2018.22.1.159&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4186/ej.2018.22.1.159&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: H. Nemati; V. Souriaee; M. Habibi; Kambiz Vafai;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.125947&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.125947&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: S. Samivand; H. Nemati;AbstractEfficiency of annular elliptical fin has been studied numerically. It has been shown that constant temperature lines do not preserve their circular shape in fins with high aspect ratio and therefore, the common methods such as equivalent fin area or sector method may not be applicable. For this reason, a new simple correlation has been proposed to approximate annular elliptical fin efficiency and then the fin geometry optimized, to maximize the rate of heat dissipation for a specified fin volume, when there is a space restriction on the fin minor axis. Results have been presented graphically and a correlation has been deduced also.
Alexandria Engineeri... arrow_drop_down Alexandria Engineering JournalArticle . 2015 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefAlexandria Engineering JournalArticle . 2015License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aej.2015.09.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 16 citations 16 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Alexandria Engineeri... arrow_drop_down Alexandria Engineering JournalArticle . 2015 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefAlexandria Engineering JournalArticle . 2015License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aej.2015.09.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Ali Sadeghianjahromi; Saeid Kheradmand; Hossain Nemati;Abstract 3D turbulent flow numerical simulations were performed in order to develop correlations for heat transfer and flow friction characteristics in louvered fin and tube heat exchangers. A detailed sensitivity analysis was done on the effects of Reynolds number, fin pitch, longitudinal tube pitch and transversal tube pitch on parameters j/j0 and f/f0. Developed correlations are based on ratio of Colburn and friction factors of louvered fin heat exchanger to that of flat fin heat exchanger (j/j0 and f/f0) respectively which are much simpler than other correlations. Also, as it is expected, when louver angle approaches zero (flat fin), parameters j/j0 and f/f0 reach 1. This approach cannot be seen in previous developed correlations. The developed correlations can describe 100% and 86% of parameters j/j0 and f/f0 respectively among 186 numerical simulation data within ±15%. Optimum louver angle was also obtained by genetic algorithm using the developed correlations.
International Journa... arrow_drop_down International Journal of Thermal SciencesArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijthermalsci.2018.03.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Thermal SciencesArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijthermalsci.2018.03.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Informa UK Limited Authors: Azam Zare; Iman Falsafi; H. Nemati;Porous burner offers attractive advantages including high combustion performance and power ranges, and approximately zero pollutant emission. In this paper, the thermal behavior of premixed flame o...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00986445.2021.1986702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00986445.2021.1986702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Informa UK Limited Authors: Reza Soleimanpour; Azam Zare; H. Nemati;In this work, the two dimensional transition of H2-O2 deflagration-to-detonation was examined in some porous closed-ducts by an in-house high speed reacting flow solver in OpenFoam package—a pressu...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00986445.2021.1969923&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00986445.2021.1969923&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:International Information and Engineering Technology Association Authors: H. Nemati; Ali Akbar Golneshan;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3166/acsm.42.281-301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3166/acsm.42.281-301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Elsevier BV Authors: Nemati, H; Moghimi, MA; Sapin, P; Markides, CN;handle: 10044/1/75839
The use of annular fins in air-cooled heat exchangers is a well-known solution, commonly used in air-conditioning and heat-recovery systems, for enhancing the air-side heat transfer. Although associated with additional material and manufacturing costs, custom-designed finned-tube heat exchangers can be cost-effective. In this article, the shape of the annular fins in a multi-row air heat exchanger is optimised in order to enhance performance without incurring a manufacturing cost penalty. The air-side heat transfer, pressure drop and entropy generation in a regular, four-row heat exchanger are predicted using a steady-state turbulent CFD model and validated against experimental data. The validated simulation tool is then used to perform model-based optimisation of the fin shapes. The originality of the proposed approach lies in optimising the shape of each fin row individually, resulting in a non-homogenous custom bundle of tubes. Evidence of this local-optimisation potential is first provided by a short preliminary study, followed by four distinct optimisation studies (with four distinct objective functions), aimed at addressing the major problems faced by designers. Response-surface methods – namely, NLPQL for single-objective and MOGA for multi-objective optimisations – are used to determine the optimum configuration for each optimisation strategy. It is shown that elliptical annular-shaped fins minimise the pressure drop and entropy generation, while circular-shaped fins at the entrance region (i.e., first row) can be employed to maximise heat transfer. The results also show that, for the scenario in which the total heat transfer rate is maximised and the pressure drop minimised, the pressure drop is reduced by up to 31%, the fin weight is reduced up to 23 %, with as little as a 14 % decrease in the total air-side heat transfer, relative to the case in which all the fins across the tube bundle are circular. Moreover, in all optimised cases, the entropy generation rate is also reduced, which shows a thermodynamic improvement in tube bundle performance.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/75839Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2019Data sources: Spiral - Imperial College Digital RepositoryInternational Journal of Thermal SciencesArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijthermalsci.2019.106233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 42 citations 42 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/75839Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2019Data sources: Spiral - Imperial College Digital RepositoryInternational Journal of Thermal SciencesArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijthermalsci.2019.106233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: M. Habibi; H. Nemati;Abstract Phase change materials (PCM) play an important role in energy storing and waste heat recovery. A great amount of energy can be stored in PCM in the form of latent heat within a narrow temperature change. However, due to a large difference between the density of solid and liquid phases, a considerable volume change is experienced during a phase change. Consequently, for a constant pressure phase change process, it is necessary to provide a reserved space on top of the PCM surface. This study was devoted to the numerical simulation of RT27 solidification in the spherical capsule filled partially by PCM. The capsule was allowed to breathe freely, so it was necessary to consider the convection in the free space over the PCM surface as well. Moreover, it was shown that filling the capsule partially is a passive method to control the heat release rate. In all, three spheres were considered with 20, 40, and 60 mm diameters and wall temperatures of 20 and 40 K below the PCM mean solidification temperature. Each capsule was assumed to be initially filled with liquid PCM by 25%, 50%, 75%, and 98.5% (approximately full) of the sphere volume. After validating the result, a deep parametric study was performed. It was shown that the PCM volume changed sharply at the beginning and later approached an asymptomatic value. This volume reduction caused a downward velocity field at the beginning of solidification, which was disturbed later by convectional flow and a secondary flow appeared due to air convection. For spheres with the same diameter and different amounts of PCM, except FR=75%, by decreasing the filling ratio, the solidification time decreased considerably. For example, the solidification time of FR=25% was around 60% of FR=98.5%. In return, for spheres with the same amount of PCM but different diameters, on average, FR=98.5% and FR=50% had the highest and the lowest solidification rates respectively. All these observations could be interpreted under the light of the wetted area to PCM volume ratio.
Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2021.102725&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2021.102725&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu