- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Bruno César Comini de Andrade; Olavo Correa Pedrollo; Anderson Ruhoff; Adriana Aparecida Moreira; +11 AuthorsBruno César Comini de Andrade; Olavo Correa Pedrollo; Anderson Ruhoff; Adriana Aparecida Moreira; Leonardo Laipelt; Rafael Bloedow Kayser; Marcelo Sacardi Biudes; Carlos Antonio Costa dos Santos; Debora Regina Roberti; Nadja Gomes Machado; Higo Jose Dalmagro; Antonio Celso Dantas Antonino; José Romualdo de Sousa Lima; Eduardo Soares de Souza; Rodolfo Souza;doi: 10.3390/rs13122337
Soil heat flux (G) is an important component for the closure of the surface energy balance (SEB) and the estimation of evapotranspiration (ET) by remote sensing algorithms. Over the last decades, efforts have been focused on parameterizing empirical models for G prediction, based on biophysical parameters estimated by remote sensing. However, due to the existing models’ empirical nature and the restricted conditions in which they were developed, using these models in large-scale applications may lead to significant errors. Thus, the objective of this study was to assess the ability of the artificial neural network (ANN) to predict mid-morning G using extensive remote sensing and meteorological reanalysis data over a broad range of climates and land covers in South America. Surface temperature (Ts), albedo (α), and enhanced vegetation index (EVI), obtained from a moderate resolution imaging spectroradiometer (MODIS), and net radiation (Rn) from the global land data assimilation system 2.1 (GLDAS 2.1) product, were used as inputs. The ANN’s predictions were validated against measurements obtained by 23 flux towers over multiple land cover types in South America, and their performance was compared to that of existing and commonly used models. The Jackson et al. (1987) and Bastiaanssen (1995) G prediction models were calibrated using the flux tower data for quadratic errors minimization. The ANN outperformed existing models, with mean absolute error (MAE) reductions of 43% and 36%, respectively. Additionally, the inclusion of land cover information as an input in the ANN reduced MAE by 22%. This study indicates that the ANN’s structure is more suited for large-scale G prediction than existing models, which can potentially refine SEB fluxes and ET estimates in South America.
Remote Sensing arrow_drop_down Remote SensingOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2072-4292/13/12/2337/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs13122337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Remote Sensing arrow_drop_down Remote SensingOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2072-4292/13/12/2337/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs13122337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Cristiano Maboni; Tiago Bremm; Leonardo José Gonçalves Aguiar; Walkyria Bueno Scivittaro; +7 AuthorsCristiano Maboni; Tiago Bremm; Leonardo José Gonçalves Aguiar; Walkyria Bueno Scivittaro; Vanessa de Arruda Souza; Hans Rogério Zimermann; Claudio Alberto Teichrieb; Pablo Eli Soares de Oliveira; Dirceu Luis Herdies; Gervásio Annes Degrazia; Débora Regina Roberti;doi: 10.3390/su132011336
Paddy fields are significant anthropogenic sources of methane (CH4) emissions. In southern Brazil, rice is grown in lowland flooded areas once a year, followed by a long fallow period. This study aimed to measure CH4 fluxes in a rice paddy field in southern Brazil during the rice-growing season of 2015/2016 and the following fallow period. The fluxes were estimated using the eddy covariance (EC) technique and soil chamber (SC). Diurnal and seasonal variations of CH4 fluxes and potential meteorological drivers were analyzed. The CH4 fluxes showed distinct diurnal variations in each analyzed subperiod (vegetative, reproductive, pre-harvest, no rice, and land preparation), characterized by a single-peak diurnal pattern. The variables that most influenced methane emissions were air and surface temperatures. In the growing season, the rice vegetative stage was responsible for most of the measured emissions. The accumulated annual emission estimated was 44.88 g CH4 m−2 y−1, being 64% (28.50 g CH4 m−2) due to the rice-growing season and 36% (16.38 g CH4 m−2) due to the fallow period. These results show the importance of including fallow periods in strategies to mitigate methane emissions in flood irrigated rice-growing areas.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132011336&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132011336&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Other literature type , Journal 2020Publisher:IEEE Nájila Souza da Rocha; Pâmela Suélen Käfer; D. Skokovic; Gustavo Pujol Veeck; Lucas Ribeiro Diaz; Eduardo André Kaiser; Cibelle Machado Carvalho; Bijeesh Kozhikkodan Veettil; S. T. L. Costa; Rafael Cabral Cruz; Débora Regina Roberti; Sílvia Beatriz Alves Rolim;Abstract. Evapotranspiration (ET) is one of the least understood components of the hydrological cycle. Its application is varied, from agricultural, ecological and hydrological monitoring, to control of the evolution of climate change. The goal of this work was to analyze the influence that uncertainties in the estimate of Land Surface Temperature (LST) can cause on ET estimates by S-SEBI model in Pampa Biome area. The results indicate that the daily evapotranspiration is higher when the pixel LST is lower, which also shows the influence of land use on the variability of ET. They also demonstrated the importance of LST's accuracy in the selection of the driest and wettest pixels in applying S-SEBI model, because when there are uncertainties in estimates of LST, the errors in the estimates of the energy components multiply. The Pampa Biome native grass crops have lower Latent Heat Flux (LET) than other land uses, with higher values of LET during the spring-summer period when compared to autumn-winter.
The International Ar... arrow_drop_down The International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesArticleLicense: CC BYData sources: UnpayWallThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesArticle . 2020Data sources: DOAJhttps://doi.org/10.1109/lagirs...Conference object . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/lagirs48042.2020.9165570&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert The International Ar... arrow_drop_down The International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesArticleLicense: CC BYData sources: UnpayWallThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesArticle . 2020Data sources: DOAJhttps://doi.org/10.1109/lagirs...Conference object . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/lagirs48042.2020.9165570&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:MDPI AG Authors: Gisele Cristina Dotto Rubert; Vanessa de Arruda Souza; Tamíres Zimmer; Gustavo Pujol Veeck; +5 AuthorsGisele Cristina Dotto Rubert; Vanessa de Arruda Souza; Tamíres Zimmer; Gustavo Pujol Veeck; Alecsander Mergen; Tiago Bremm; Anderson Ruhoff; Luis Gustavo Gonçalves de Gonçalves; Débora Regina Roberti;Energy and water exchange between the surface and the atmosphere are important drivers to Earth’s climate from local to global scale. In this study, the energy dynamic and the biophysical mechanisms that control the energy partitioning over a natural grassland pasture over the Brazilian Pampa biome are investigated using two micrometeorological sites located 300 km apart, in Southern Brazil. The latent heat flux, LE, was the main component of the energy balance in both autumn-winter (AW) and spring-summer (SS) periods. Annually, approximately 60% of the available energy is used for evapotranspiration (ET). However, the Bowen ratio presents seasonal variability greater in AW than SS. Global radiation, Rg, is the atmospheric variable controlling LE and sensible heat flux, H. Hysteresis curves in the daily cycle were observed for ET and surface conductance, Cs, regarding the environmental variables, net radiation, vapor pressure deficit, and air temperature. Among the variables analyzed in the Pampa biome, surface conductance and evapotranspiration respond more strongly to the vapor pressure deficit. The hysteresis cycles formed by ET and conductance show a substantial biophysical control in the ET process. The results obtained here allowed a comprehension of the biophysical mechanisms involved in the energy partition process in natural grassland. Therefore, this study can be used as a base for research on land-use changes in this unique ecosystem of the Pampa biome.
Atmosphere arrow_drop_down AtmosphereOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4433/13/1/23/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/atmos13010023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Atmosphere arrow_drop_down AtmosphereOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4433/13/1/23/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/atmos13010023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 ItalyPublisher:Elsevier BV Funded by:NSF | CAREER: Developing climat..., EC | OEMCNSF| CAREER: Developing climate-smart irrigation strategies for rice agriculture in Arkansas ,EC| OEMCZutao Ouyang; Robert B. Jackson; Gavin McNicol; Etienne Fluet‐Chouinard; Benjamin R. K. Runkle; Dario Papale; Sara Knox; S. W. Cooley; Kyle Delwiche; Sarah Féron; Jeremy Irvin; Avni Malhotra; Muhammad Muddasir; Simone Sabbatini; Ma. Carmelita Alberto; Alessandro Cescatti; Chi–Ling Chen; Dong Jiang; B. Fong; Haiqiang Guo; Hao Lu; Hiroyasu Iwata; Qingyu Jia; Weimin Ju; Minseok Kang; Hong Li; Joon Kim; Michele L. Reba; Amaresh Kumar Nayak; Débora Regina Roberti; Youngryel Ryu; Chinmaya Kumar Swain; Benjei Tsuang; Xiangming Xiao; Wenping Yuan; Geli Zhang; Yongguang Zhang;Aunque el cultivo de arroz es una de las fuentes agrícolas más importantes de metano (CH4) y contribuye con ~8% del total de las emisiones antropogénicas globales, persisten grandes discrepancias entre las estimaciones de las emisiones globales de CH4 del cultivo de arroz (que van de 18 a 115 Tg CH4 año−1) debido a la falta de limitaciones observables. La distribución espacial de las emisiones de arrozales se ha evaluado a escalas regionales a globales mediante inventarios ascendentes y modelos de superficie terrestre sobre resolución espacial gruesa (por ejemplo, > 0,5°) o unidades espaciales (por ejemplo, zonas agroecológicas). Sin embargo, las estimaciones de flujo de CH4 de alta resolución capaces de capturar los efectos del clima local y las prácticas de gestión sobre las emisiones, así como la replicación de datos in situ, siguen siendo difíciles de producir debido a la escasez de mapas de arroz de alta resolución y a la insuficiente comprensión de los predictores de CH4. Aquí, combinamos datos de flujo de metano de arroz con arroz de 23 sitios de covarianza de remolinos globales y datos de teledetección MODIS con aprendizaje automático para 1) evaluar el rendimiento del modelo basado en datos y la importancia variable para predecir los flujos de CH4 de arroz; y 2) producir estimaciones cuadriculadas de aumento de escala de las emisiones de CH4 de arroz a una resolución de 5000 m en toda Asia monzónica, donde se cultiva ~87% del área mundial de arroz y se produce ~ 90% de la producción mundial de arroz. Nuestro modelo de bosque aleatorio logró valores de eficiencia de Nash-Sutcliffe de 0,59 y 0,69 para flujos de CH4 de 8 días y flujos de CH4 medios del sitio, respectivamente, con índices relacionados con la temperatura de la superficie terrestre, la biomasa y la disponibilidad de agua como los predictores más importantes. Estimamos que las emisiones anuales promedio de arroz con cáscara CH4 (excluida la temporada de barbecho invernal) en toda Asia monzónica son de 20.6 ± 1.1 Tg año−1 para 2001–2015, que se encuentra en el rango más bajo de las estimaciones anteriores basadas en el inventario (20–32 CH4 Tg año−1). Nuestras estimaciones también sugieren que las emisiones de CH4 del arroz con cáscara en esta región han estado disminuyendo desde 2007 hasta 2015 después de las disminuciones tanto en el área de cultivo de arroz con cáscara como en las tasas de emisión por unidad de área, lo que sugiere que las emisiones de CH4 del arroz con cáscara en el monzón de Asia probablemente no hayan contribuido al renovado crecimiento del CH4 atmosférico en los últimos años. Bien que la riziculture soit l'une des plus importantes sources agricoles de méthane (CH4) et contribue à environ8% des émissions anthropiques mondiales totales, de grands écarts subsistent entre les estimations des émissions mondiales de CH4 provenant de la riziculture (allant de 18 à 115 Tg de CH4 par an) en raison d'un manque de contraintes d'observation. La distribution spatiale des émissions de riz paddy a été évaluée à l'échelle régionale et mondiale par des inventaires ascendants et des modèles de surface terrestre sur une résolution spatiale grossière (par exemple, > 0,5°) ou des unités spatiales (par exemple, des zones agro-écologiques). Cependant, les estimations de flux de CH4 à haute résolution capables de capturer les effets du climat local et des pratiques de gestion sur les émissions, ainsi que de reproduire les données in situ, restent difficiles à produire en raison de la rareté des cartes à haute résolution du riz paddy et d'une compréhension insuffisante des prédicteurs de CH4. Ici, nous combinons les données de flux de méthane de riz paddy provenant de 23 sites mondiaux de covariance des tourbillons et les données de télédétection MODIS avec l'apprentissage automatique pour 1) évaluer les performances du modèle basé sur les données et l'importance variable pour prédire les flux de CH4 du riz ; et 2) produire des estimations maillées des émissions de CH4 du riz à une résolution de 5000 m dans toute l'Asie de la mousson, où ∼87 % de la superficie mondiale du riz est cultivée et ∼ 90 % de la production mondiale de riz se produit. Notre modèle de forêt aléatoire a atteint des valeurs d'efficacité de Nash-Sutcliffe de 0,59 et 0,69 pour les flux de CH4 sur 8 jours et les flux de CH4 moyens du site, respectivement, la température de surface du sol, la biomasse et les indices liés à la disponibilité de l'eau étant les prédicteurs les plus importants. Nous estimons que les émissions annuelles moyennes de CH4 de riz paddy (hors saison de jachère hivernale) dans toute l'Asie de la mousson sont de 20,6 ± 1,1 Tgan-1 pour 2001–2015, ce qui se situe dans la fourchette inférieure des estimations antérieures basées sur les inventaires (20–32 Tgan-1 de CH4). Nos estimations suggèrent également que les émissions de CH4 du riz paddy dans cette région ont diminué de 2007 à 2015 à la suite de baisses à la fois de la superficie cultivée en riz paddy et des taux d'émission par unité de surface, ce qui suggère que les émissions de CH4 du riz paddy dans Monsoon Asia n'ont probablement pas contribué à la croissance renouvelée du CH4 atmosphérique ces dernières années. Although rice cultivation is one of the most important agricultural sources of methane (CH4) and contributes ∼8% of total global anthropogenic emissions, large discrepancies remain among estimates of global CH4 emissions from rice cultivation (ranging from 18 to 115 Tg CH4 yr−1) due to a lack of observational constraints. The spatial distribution of paddy-rice emissions has been assessed at regional-to-global scales by bottom-up inventories and land surface models over coarse spatial resolution (e.g., > 0.5°) or spatial units (e.g., agro-ecological zones). However, high-resolution CH4 flux estimates capable of capturing the effects of local climate and management practices on emissions, as well as replicating in situ data, remain challenging to produce because of the scarcity of high-resolution maps of paddy-rice and insufficient understanding of CH4 predictors. Here, we combine paddy-rice methane-flux data from 23 global eddy covariance sites and MODIS remote sensing data with machine learning to 1) evaluate data-driven model performance and variable importance for predicting rice CH4 fluxes; and 2) produce gridded up-scaling estimates of rice CH4 emissions at 5000-m resolution across Monsoon Asia, where ∼87% of global rice area is cultivated and ∼ 90% of global rice production occurs. Our random-forest model achieved Nash-Sutcliffe Efficiency values of 0.59 and 0.69 for 8-day CH4 fluxes and site mean CH4 fluxes respectively, with land surface temperature, biomass and water-availability-related indices as the most important predictors. We estimate the average annual (winter fallow season excluded) paddy rice CH4 emissions throughout Monsoon Asia to be 20.6 ± 1.1 Tg yr−1 for 2001–2015, which is at the lower range of previous inventory-based estimates (20–32 CH4 Tg yr−1). Our estimates also suggest that CH4 emissions from paddy rice in this region have been declining from 2007 through 2015 following declines in both paddy-rice growing area and emission rates per unit area, suggesting that CH4 emissions from paddy rice in Monsoon Asia have likely not contributed to the renewed growth of atmospheric CH4 in recent years. على الرغم من أن زراعة الأرز هي واحدة من أهم المصادر الزراعية للميثان (CH4) وتساهم بنسبة 8 ٪ من إجمالي الانبعاثات العالمية البشرية المنشأ، إلا أنه لا تزال هناك اختلافات كبيرة بين تقديرات انبعاثات الميثان العالمية من زراعة الأرز (التي تتراوح من 18 إلى 115 تيراغرام من الميثان في السنة−1) بسبب نقص قيود المراقبة. تم تقييم التوزيع المكاني لانبعاثات الأرز والأرز على المستويات الإقليمية إلى العالمية من خلال قوائم الجرد التصاعدية ونماذج سطح الأرض على الدقة المكانية الخشنة (على سبيل المثال، > 0.5درجة) أو الوحدات المكانية (على سبيل المثال، المناطق الزراعية الإيكولوجية). ومع ذلك، لا تزال تقديرات تدفق الميثان عالية الدقة القادرة على التقاط آثار المناخ المحلي وممارسات الإدارة على الانبعاثات، وكذلك تكرار البيانات في الموقع، صعبة الإنتاج بسبب ندرة الخرائط عالية الدقة لأرز الأرز وعدم كفاية فهم تنبؤات الميثان. هنا، نجمع بين بيانات تدفق الميثان من الأرز والأرز من 23 موقعًا عالميًا للتباين الدوامي وبيانات الاستشعار عن بعد MODIS مع التعلم الآلي من أجل 1) تقييم أداء النموذج القائم على البيانات والأهمية المتغيرة للتنبؤ بتدفقات CH4 للأرز ؛ و 2) إنتاج تقديرات شبكية لانبعاثات CH4 للأرز بدقة 5000 متر في جميع أنحاء آسيا الموسمية، حيث تتم زراعة 87 ٪ من مساحة الأرز العالمية و 90 ٪ من إنتاج الأرز العالمي. حقق نموذجنا للغابات العشوائية قيم كفاءة ناش- سوتكليف البالغة 0.59 و 0.69 لتدفقات الميثان لمدة 8 أيام ومتوسط تدفقات الميثان في الموقع على التوالي، مع مؤشرات درجة حرارة سطح الأرض والكتلة الحيوية وتوافر المياه كأهم المؤشرات. نقدر المتوسط السنوي (باستثناء موسم الإراحة الشتوية) لانبعاثات الميثان من الأرز في جميع أنحاء آسيا الموسمية بـ 20.6 ± 1.1 تيراغرام في السنة-1 للفترة 2001–2015، وهو في النطاق الأدنى للتقديرات السابقة القائمة على المخزون (20–32 تيراغرام في السنة-1). تشير تقديراتنا أيضًا إلى أن انبعاثات الميثان من أرز الأرز في هذه المنطقة قد انخفضت من عام 2007 حتى عام 2015 بعد الانخفاضات في كل من مساحة زراعة أرز الأرز ومعدلات الانبعاثات لكل وحدة مساحة، مما يشير إلى أن انبعاثات الميثان من أرز الأرز في الرياح الموسمية في آسيا من المحتمل ألا تساهم في النمو المتجدد للميثان في الغلاف الجوي في السنوات الأخيرة.
Remote Sensing of En... arrow_drop_down Remote Sensing of EnvironmentArticle . 2023License: CC BYData sources: University of Groningen Research PortalRemote Sensing of EnvironmentArticle . 2023 . Peer-reviewedData sources: European Union Open Data PortalUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2022.113335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Remote Sensing of En... arrow_drop_down Remote Sensing of EnvironmentArticle . 2023License: CC BYData sources: University of Groningen Research PortalRemote Sensing of EnvironmentArticle . 2023 . Peer-reviewedData sources: European Union Open Data PortalUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2022.113335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2020Publisher:Copernicus GmbH Nájila Souza da Rocha; Pâmela Suélen Käfer; D. Skokovic; G. Veeck; Lucas Ribeiro Diaz; Eduardo André Kaiser; Cibelle Machado Carvalho; Bijeesh Kozhikkodan Veettil; S. T. L. Costa; Rafael Cabral Cruz; Débora Regina Roberti; Sílvia Beatriz Alves Rolim;Abstract. Ecosystem evapotranspiration (ET) has been quantified around the world by different methodologies to understand the energy balance, especially to control the evolution of climate change. It is known that the vegetation of the pampa biome is natural grasslands, it has a large variety of species (flora and fauna), however is it different in the environmental aspects related to the energy balance when compared to the grassland cultivated? In this study the objective was to analyze the environmental differences of the Pampa Biome related to the energy balance in comparison with the pastures cultivated in Barrax, Spain. In the first one the minimum daily ET is 0.99 mm/day, while in the second is 1.57 mm/day. However, the highest differences between the sites occur during the summer period, in the maximum daily ET, the maximum is 16.25 mm/day in Pampa and in Barrax is 7.31 mm/day. The results of this study have indicated that the characteristics of the Pampa biome, both in terms of soil and climatic issues and land use, generate differences in the energy balance when compared to similar vegetation in other regions of the world.
The International Ar... arrow_drop_down The International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesArticleLicense: CC BYData sources: UnpayWallThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesArticle . 2020Data sources: DOAJhttps://doi.org/10.1109/lagirs...Conference object . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/isprs-archives-xlii-3-w12-2020-477-2020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert The International Ar... arrow_drop_down The International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesArticleLicense: CC BYData sources: UnpayWallThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesArticle . 2020Data sources: DOAJhttps://doi.org/10.1109/lagirs...Conference object . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/isprs-archives-xlii-3-w12-2020-477-2020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Bruno César Comini de Andrade; Olavo Correa Pedrollo; Anderson Ruhoff; Adriana Aparecida Moreira; +11 AuthorsBruno César Comini de Andrade; Olavo Correa Pedrollo; Anderson Ruhoff; Adriana Aparecida Moreira; Leonardo Laipelt; Rafael Bloedow Kayser; Marcelo Sacardi Biudes; Carlos Antonio Costa dos Santos; Debora Regina Roberti; Nadja Gomes Machado; Higo Jose Dalmagro; Antonio Celso Dantas Antonino; José Romualdo de Sousa Lima; Eduardo Soares de Souza; Rodolfo Souza;doi: 10.3390/rs13122337
Soil heat flux (G) is an important component for the closure of the surface energy balance (SEB) and the estimation of evapotranspiration (ET) by remote sensing algorithms. Over the last decades, efforts have been focused on parameterizing empirical models for G prediction, based on biophysical parameters estimated by remote sensing. However, due to the existing models’ empirical nature and the restricted conditions in which they were developed, using these models in large-scale applications may lead to significant errors. Thus, the objective of this study was to assess the ability of the artificial neural network (ANN) to predict mid-morning G using extensive remote sensing and meteorological reanalysis data over a broad range of climates and land covers in South America. Surface temperature (Ts), albedo (α), and enhanced vegetation index (EVI), obtained from a moderate resolution imaging spectroradiometer (MODIS), and net radiation (Rn) from the global land data assimilation system 2.1 (GLDAS 2.1) product, were used as inputs. The ANN’s predictions were validated against measurements obtained by 23 flux towers over multiple land cover types in South America, and their performance was compared to that of existing and commonly used models. The Jackson et al. (1987) and Bastiaanssen (1995) G prediction models were calibrated using the flux tower data for quadratic errors minimization. The ANN outperformed existing models, with mean absolute error (MAE) reductions of 43% and 36%, respectively. Additionally, the inclusion of land cover information as an input in the ANN reduced MAE by 22%. This study indicates that the ANN’s structure is more suited for large-scale G prediction than existing models, which can potentially refine SEB fluxes and ET estimates in South America.
Remote Sensing arrow_drop_down Remote SensingOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2072-4292/13/12/2337/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs13122337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Remote Sensing arrow_drop_down Remote SensingOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2072-4292/13/12/2337/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs13122337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Cristiano Maboni; Tiago Bremm; Leonardo José Gonçalves Aguiar; Walkyria Bueno Scivittaro; +7 AuthorsCristiano Maboni; Tiago Bremm; Leonardo José Gonçalves Aguiar; Walkyria Bueno Scivittaro; Vanessa de Arruda Souza; Hans Rogério Zimermann; Claudio Alberto Teichrieb; Pablo Eli Soares de Oliveira; Dirceu Luis Herdies; Gervásio Annes Degrazia; Débora Regina Roberti;doi: 10.3390/su132011336
Paddy fields are significant anthropogenic sources of methane (CH4) emissions. In southern Brazil, rice is grown in lowland flooded areas once a year, followed by a long fallow period. This study aimed to measure CH4 fluxes in a rice paddy field in southern Brazil during the rice-growing season of 2015/2016 and the following fallow period. The fluxes were estimated using the eddy covariance (EC) technique and soil chamber (SC). Diurnal and seasonal variations of CH4 fluxes and potential meteorological drivers were analyzed. The CH4 fluxes showed distinct diurnal variations in each analyzed subperiod (vegetative, reproductive, pre-harvest, no rice, and land preparation), characterized by a single-peak diurnal pattern. The variables that most influenced methane emissions were air and surface temperatures. In the growing season, the rice vegetative stage was responsible for most of the measured emissions. The accumulated annual emission estimated was 44.88 g CH4 m−2 y−1, being 64% (28.50 g CH4 m−2) due to the rice-growing season and 36% (16.38 g CH4 m−2) due to the fallow period. These results show the importance of including fallow periods in strategies to mitigate methane emissions in flood irrigated rice-growing areas.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132011336&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132011336&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Other literature type , Journal 2020Publisher:IEEE Nájila Souza da Rocha; Pâmela Suélen Käfer; D. Skokovic; Gustavo Pujol Veeck; Lucas Ribeiro Diaz; Eduardo André Kaiser; Cibelle Machado Carvalho; Bijeesh Kozhikkodan Veettil; S. T. L. Costa; Rafael Cabral Cruz; Débora Regina Roberti; Sílvia Beatriz Alves Rolim;Abstract. Evapotranspiration (ET) is one of the least understood components of the hydrological cycle. Its application is varied, from agricultural, ecological and hydrological monitoring, to control of the evolution of climate change. The goal of this work was to analyze the influence that uncertainties in the estimate of Land Surface Temperature (LST) can cause on ET estimates by S-SEBI model in Pampa Biome area. The results indicate that the daily evapotranspiration is higher when the pixel LST is lower, which also shows the influence of land use on the variability of ET. They also demonstrated the importance of LST's accuracy in the selection of the driest and wettest pixels in applying S-SEBI model, because when there are uncertainties in estimates of LST, the errors in the estimates of the energy components multiply. The Pampa Biome native grass crops have lower Latent Heat Flux (LET) than other land uses, with higher values of LET during the spring-summer period when compared to autumn-winter.
The International Ar... arrow_drop_down The International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesArticleLicense: CC BYData sources: UnpayWallThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesArticle . 2020Data sources: DOAJhttps://doi.org/10.1109/lagirs...Conference object . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/lagirs48042.2020.9165570&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert The International Ar... arrow_drop_down The International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesArticleLicense: CC BYData sources: UnpayWallThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesArticle . 2020Data sources: DOAJhttps://doi.org/10.1109/lagirs...Conference object . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/lagirs48042.2020.9165570&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:MDPI AG Authors: Gisele Cristina Dotto Rubert; Vanessa de Arruda Souza; Tamíres Zimmer; Gustavo Pujol Veeck; +5 AuthorsGisele Cristina Dotto Rubert; Vanessa de Arruda Souza; Tamíres Zimmer; Gustavo Pujol Veeck; Alecsander Mergen; Tiago Bremm; Anderson Ruhoff; Luis Gustavo Gonçalves de Gonçalves; Débora Regina Roberti;Energy and water exchange between the surface and the atmosphere are important drivers to Earth’s climate from local to global scale. In this study, the energy dynamic and the biophysical mechanisms that control the energy partitioning over a natural grassland pasture over the Brazilian Pampa biome are investigated using two micrometeorological sites located 300 km apart, in Southern Brazil. The latent heat flux, LE, was the main component of the energy balance in both autumn-winter (AW) and spring-summer (SS) periods. Annually, approximately 60% of the available energy is used for evapotranspiration (ET). However, the Bowen ratio presents seasonal variability greater in AW than SS. Global radiation, Rg, is the atmospheric variable controlling LE and sensible heat flux, H. Hysteresis curves in the daily cycle were observed for ET and surface conductance, Cs, regarding the environmental variables, net radiation, vapor pressure deficit, and air temperature. Among the variables analyzed in the Pampa biome, surface conductance and evapotranspiration respond more strongly to the vapor pressure deficit. The hysteresis cycles formed by ET and conductance show a substantial biophysical control in the ET process. The results obtained here allowed a comprehension of the biophysical mechanisms involved in the energy partition process in natural grassland. Therefore, this study can be used as a base for research on land-use changes in this unique ecosystem of the Pampa biome.
Atmosphere arrow_drop_down AtmosphereOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4433/13/1/23/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/atmos13010023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Atmosphere arrow_drop_down AtmosphereOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4433/13/1/23/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/atmos13010023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 ItalyPublisher:Elsevier BV Funded by:NSF | CAREER: Developing climat..., EC | OEMCNSF| CAREER: Developing climate-smart irrigation strategies for rice agriculture in Arkansas ,EC| OEMCZutao Ouyang; Robert B. Jackson; Gavin McNicol; Etienne Fluet‐Chouinard; Benjamin R. K. Runkle; Dario Papale; Sara Knox; S. W. Cooley; Kyle Delwiche; Sarah Féron; Jeremy Irvin; Avni Malhotra; Muhammad Muddasir; Simone Sabbatini; Ma. Carmelita Alberto; Alessandro Cescatti; Chi–Ling Chen; Dong Jiang; B. Fong; Haiqiang Guo; Hao Lu; Hiroyasu Iwata; Qingyu Jia; Weimin Ju; Minseok Kang; Hong Li; Joon Kim; Michele L. Reba; Amaresh Kumar Nayak; Débora Regina Roberti; Youngryel Ryu; Chinmaya Kumar Swain; Benjei Tsuang; Xiangming Xiao; Wenping Yuan; Geli Zhang; Yongguang Zhang;Aunque el cultivo de arroz es una de las fuentes agrícolas más importantes de metano (CH4) y contribuye con ~8% del total de las emisiones antropogénicas globales, persisten grandes discrepancias entre las estimaciones de las emisiones globales de CH4 del cultivo de arroz (que van de 18 a 115 Tg CH4 año−1) debido a la falta de limitaciones observables. La distribución espacial de las emisiones de arrozales se ha evaluado a escalas regionales a globales mediante inventarios ascendentes y modelos de superficie terrestre sobre resolución espacial gruesa (por ejemplo, > 0,5°) o unidades espaciales (por ejemplo, zonas agroecológicas). Sin embargo, las estimaciones de flujo de CH4 de alta resolución capaces de capturar los efectos del clima local y las prácticas de gestión sobre las emisiones, así como la replicación de datos in situ, siguen siendo difíciles de producir debido a la escasez de mapas de arroz de alta resolución y a la insuficiente comprensión de los predictores de CH4. Aquí, combinamos datos de flujo de metano de arroz con arroz de 23 sitios de covarianza de remolinos globales y datos de teledetección MODIS con aprendizaje automático para 1) evaluar el rendimiento del modelo basado en datos y la importancia variable para predecir los flujos de CH4 de arroz; y 2) producir estimaciones cuadriculadas de aumento de escala de las emisiones de CH4 de arroz a una resolución de 5000 m en toda Asia monzónica, donde se cultiva ~87% del área mundial de arroz y se produce ~ 90% de la producción mundial de arroz. Nuestro modelo de bosque aleatorio logró valores de eficiencia de Nash-Sutcliffe de 0,59 y 0,69 para flujos de CH4 de 8 días y flujos de CH4 medios del sitio, respectivamente, con índices relacionados con la temperatura de la superficie terrestre, la biomasa y la disponibilidad de agua como los predictores más importantes. Estimamos que las emisiones anuales promedio de arroz con cáscara CH4 (excluida la temporada de barbecho invernal) en toda Asia monzónica son de 20.6 ± 1.1 Tg año−1 para 2001–2015, que se encuentra en el rango más bajo de las estimaciones anteriores basadas en el inventario (20–32 CH4 Tg año−1). Nuestras estimaciones también sugieren que las emisiones de CH4 del arroz con cáscara en esta región han estado disminuyendo desde 2007 hasta 2015 después de las disminuciones tanto en el área de cultivo de arroz con cáscara como en las tasas de emisión por unidad de área, lo que sugiere que las emisiones de CH4 del arroz con cáscara en el monzón de Asia probablemente no hayan contribuido al renovado crecimiento del CH4 atmosférico en los últimos años. Bien que la riziculture soit l'une des plus importantes sources agricoles de méthane (CH4) et contribue à environ8% des émissions anthropiques mondiales totales, de grands écarts subsistent entre les estimations des émissions mondiales de CH4 provenant de la riziculture (allant de 18 à 115 Tg de CH4 par an) en raison d'un manque de contraintes d'observation. La distribution spatiale des émissions de riz paddy a été évaluée à l'échelle régionale et mondiale par des inventaires ascendants et des modèles de surface terrestre sur une résolution spatiale grossière (par exemple, > 0,5°) ou des unités spatiales (par exemple, des zones agro-écologiques). Cependant, les estimations de flux de CH4 à haute résolution capables de capturer les effets du climat local et des pratiques de gestion sur les émissions, ainsi que de reproduire les données in situ, restent difficiles à produire en raison de la rareté des cartes à haute résolution du riz paddy et d'une compréhension insuffisante des prédicteurs de CH4. Ici, nous combinons les données de flux de méthane de riz paddy provenant de 23 sites mondiaux de covariance des tourbillons et les données de télédétection MODIS avec l'apprentissage automatique pour 1) évaluer les performances du modèle basé sur les données et l'importance variable pour prédire les flux de CH4 du riz ; et 2) produire des estimations maillées des émissions de CH4 du riz à une résolution de 5000 m dans toute l'Asie de la mousson, où ∼87 % de la superficie mondiale du riz est cultivée et ∼ 90 % de la production mondiale de riz se produit. Notre modèle de forêt aléatoire a atteint des valeurs d'efficacité de Nash-Sutcliffe de 0,59 et 0,69 pour les flux de CH4 sur 8 jours et les flux de CH4 moyens du site, respectivement, la température de surface du sol, la biomasse et les indices liés à la disponibilité de l'eau étant les prédicteurs les plus importants. Nous estimons que les émissions annuelles moyennes de CH4 de riz paddy (hors saison de jachère hivernale) dans toute l'Asie de la mousson sont de 20,6 ± 1,1 Tgan-1 pour 2001–2015, ce qui se situe dans la fourchette inférieure des estimations antérieures basées sur les inventaires (20–32 Tgan-1 de CH4). Nos estimations suggèrent également que les émissions de CH4 du riz paddy dans cette région ont diminué de 2007 à 2015 à la suite de baisses à la fois de la superficie cultivée en riz paddy et des taux d'émission par unité de surface, ce qui suggère que les émissions de CH4 du riz paddy dans Monsoon Asia n'ont probablement pas contribué à la croissance renouvelée du CH4 atmosphérique ces dernières années. Although rice cultivation is one of the most important agricultural sources of methane (CH4) and contributes ∼8% of total global anthropogenic emissions, large discrepancies remain among estimates of global CH4 emissions from rice cultivation (ranging from 18 to 115 Tg CH4 yr−1) due to a lack of observational constraints. The spatial distribution of paddy-rice emissions has been assessed at regional-to-global scales by bottom-up inventories and land surface models over coarse spatial resolution (e.g., > 0.5°) or spatial units (e.g., agro-ecological zones). However, high-resolution CH4 flux estimates capable of capturing the effects of local climate and management practices on emissions, as well as replicating in situ data, remain challenging to produce because of the scarcity of high-resolution maps of paddy-rice and insufficient understanding of CH4 predictors. Here, we combine paddy-rice methane-flux data from 23 global eddy covariance sites and MODIS remote sensing data with machine learning to 1) evaluate data-driven model performance and variable importance for predicting rice CH4 fluxes; and 2) produce gridded up-scaling estimates of rice CH4 emissions at 5000-m resolution across Monsoon Asia, where ∼87% of global rice area is cultivated and ∼ 90% of global rice production occurs. Our random-forest model achieved Nash-Sutcliffe Efficiency values of 0.59 and 0.69 for 8-day CH4 fluxes and site mean CH4 fluxes respectively, with land surface temperature, biomass and water-availability-related indices as the most important predictors. We estimate the average annual (winter fallow season excluded) paddy rice CH4 emissions throughout Monsoon Asia to be 20.6 ± 1.1 Tg yr−1 for 2001–2015, which is at the lower range of previous inventory-based estimates (20–32 CH4 Tg yr−1). Our estimates also suggest that CH4 emissions from paddy rice in this region have been declining from 2007 through 2015 following declines in both paddy-rice growing area and emission rates per unit area, suggesting that CH4 emissions from paddy rice in Monsoon Asia have likely not contributed to the renewed growth of atmospheric CH4 in recent years. على الرغم من أن زراعة الأرز هي واحدة من أهم المصادر الزراعية للميثان (CH4) وتساهم بنسبة 8 ٪ من إجمالي الانبعاثات العالمية البشرية المنشأ، إلا أنه لا تزال هناك اختلافات كبيرة بين تقديرات انبعاثات الميثان العالمية من زراعة الأرز (التي تتراوح من 18 إلى 115 تيراغرام من الميثان في السنة−1) بسبب نقص قيود المراقبة. تم تقييم التوزيع المكاني لانبعاثات الأرز والأرز على المستويات الإقليمية إلى العالمية من خلال قوائم الجرد التصاعدية ونماذج سطح الأرض على الدقة المكانية الخشنة (على سبيل المثال، > 0.5درجة) أو الوحدات المكانية (على سبيل المثال، المناطق الزراعية الإيكولوجية). ومع ذلك، لا تزال تقديرات تدفق الميثان عالية الدقة القادرة على التقاط آثار المناخ المحلي وممارسات الإدارة على الانبعاثات، وكذلك تكرار البيانات في الموقع، صعبة الإنتاج بسبب ندرة الخرائط عالية الدقة لأرز الأرز وعدم كفاية فهم تنبؤات الميثان. هنا، نجمع بين بيانات تدفق الميثان من الأرز والأرز من 23 موقعًا عالميًا للتباين الدوامي وبيانات الاستشعار عن بعد MODIS مع التعلم الآلي من أجل 1) تقييم أداء النموذج القائم على البيانات والأهمية المتغيرة للتنبؤ بتدفقات CH4 للأرز ؛ و 2) إنتاج تقديرات شبكية لانبعاثات CH4 للأرز بدقة 5000 متر في جميع أنحاء آسيا الموسمية، حيث تتم زراعة 87 ٪ من مساحة الأرز العالمية و 90 ٪ من إنتاج الأرز العالمي. حقق نموذجنا للغابات العشوائية قيم كفاءة ناش- سوتكليف البالغة 0.59 و 0.69 لتدفقات الميثان لمدة 8 أيام ومتوسط تدفقات الميثان في الموقع على التوالي، مع مؤشرات درجة حرارة سطح الأرض والكتلة الحيوية وتوافر المياه كأهم المؤشرات. نقدر المتوسط السنوي (باستثناء موسم الإراحة الشتوية) لانبعاثات الميثان من الأرز في جميع أنحاء آسيا الموسمية بـ 20.6 ± 1.1 تيراغرام في السنة-1 للفترة 2001–2015، وهو في النطاق الأدنى للتقديرات السابقة القائمة على المخزون (20–32 تيراغرام في السنة-1). تشير تقديراتنا أيضًا إلى أن انبعاثات الميثان من أرز الأرز في هذه المنطقة قد انخفضت من عام 2007 حتى عام 2015 بعد الانخفاضات في كل من مساحة زراعة أرز الأرز ومعدلات الانبعاثات لكل وحدة مساحة، مما يشير إلى أن انبعاثات الميثان من أرز الأرز في الرياح الموسمية في آسيا من المحتمل ألا تساهم في النمو المتجدد للميثان في الغلاف الجوي في السنوات الأخيرة.
Remote Sensing of En... arrow_drop_down Remote Sensing of EnvironmentArticle . 2023License: CC BYData sources: University of Groningen Research PortalRemote Sensing of EnvironmentArticle . 2023 . Peer-reviewedData sources: European Union Open Data PortalUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2022.113335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Remote Sensing of En... arrow_drop_down Remote Sensing of EnvironmentArticle . 2023License: CC BYData sources: University of Groningen Research PortalRemote Sensing of EnvironmentArticle . 2023 . Peer-reviewedData sources: European Union Open Data PortalUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2022.113335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2020Publisher:Copernicus GmbH Nájila Souza da Rocha; Pâmela Suélen Käfer; D. Skokovic; G. Veeck; Lucas Ribeiro Diaz; Eduardo André Kaiser; Cibelle Machado Carvalho; Bijeesh Kozhikkodan Veettil; S. T. L. Costa; Rafael Cabral Cruz; Débora Regina Roberti; Sílvia Beatriz Alves Rolim;Abstract. Ecosystem evapotranspiration (ET) has been quantified around the world by different methodologies to understand the energy balance, especially to control the evolution of climate change. It is known that the vegetation of the pampa biome is natural grasslands, it has a large variety of species (flora and fauna), however is it different in the environmental aspects related to the energy balance when compared to the grassland cultivated? In this study the objective was to analyze the environmental differences of the Pampa Biome related to the energy balance in comparison with the pastures cultivated in Barrax, Spain. In the first one the minimum daily ET is 0.99 mm/day, while in the second is 1.57 mm/day. However, the highest differences between the sites occur during the summer period, in the maximum daily ET, the maximum is 16.25 mm/day in Pampa and in Barrax is 7.31 mm/day. The results of this study have indicated that the characteristics of the Pampa biome, both in terms of soil and climatic issues and land use, generate differences in the energy balance when compared to similar vegetation in other regions of the world.
The International Ar... arrow_drop_down The International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesArticleLicense: CC BYData sources: UnpayWallThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesArticle . 2020Data sources: DOAJhttps://doi.org/10.1109/lagirs...Conference object . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/isprs-archives-xlii-3-w12-2020-477-2020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert The International Ar... arrow_drop_down The International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesArticleLicense: CC BYData sources: UnpayWallThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesArticle . 2020Data sources: DOAJhttps://doi.org/10.1109/lagirs...Conference object . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/isprs-archives-xlii-3-w12-2020-477-2020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu