- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United StatesPublisher:Proceedings of the National Academy of Sciences Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthKimberley T. Davis; Marcos D. Robles; Kerry B. Kemp; Philip E. Higuera; Teresa Chapman; Kerry L. Metlen; Jamie L. Peeler; Kyle C. Rodman; Travis Woolley; Robert N. Addington; Brian J. Buma; C. Alina Cansler; Michael J. Case; Brandon M. Collins; Jonathan D. Coop; Solomon Z. Dobrowski; Nathan S. Gill; Collin Haffey; Lucas B. Harris; Brian J. Harvey; Ryan D. Haugo; Matthew D. Hurteau; Dominik Kulakowski; Caitlin E. Littlefield; Lisa A. McCauley; Nicholas Povak; Kristen L. Shive; Edward Smith; Jens T. Stevens; Camille S. Stevens-Rumann; Alan H. Taylor; Alan J. Tepley; Derek J. N. Young; Robert A. Andrus; Mike A. Battaglia; Julia K. Berkey; Sebastian U. Busby; Amanda R. Carlson; Marin E. Chambers; Erich Kyle Dodson; Daniel C. Donato; William M. Downing; Paula J. Fornwalt; Joshua S. Halofsky; Ashley Hoffman; Andrés Holz; Jose M. Iniguez; Meg A. Krawchuk; Mark R. Kreider; Andrew J. Larson; Garrett W. Meigs; John Paul Roccaforte; Monica T. Rother; Hugh Safford; Michael Schaedel; Jason S. Sibold; Megan P. Singleton; Monica G. Turner; Alexandra K. Urza; Kyra D. Clark-Wolf; Larissa Yocom; Joseph B. Fontaine; John L. Campbell;Increasing fire severity and warmer, drier postfire conditions are making forests in the western United States (West) vulnerable to ecological transformation. Yet, the relative importance of and interactions between these drivers of forest change remain unresolved, particularly over upcoming decades. Here, we assess how the interactive impacts of changing climate and wildfire activity influenced conifer regeneration after 334 wildfires, using a dataset of postfire conifer regeneration from 10,230 field plots. Our findings highlight declining regeneration capacity across the West over the past four decades for the eight dominant conifer species studied. Postfire regeneration is sensitive to high-severity fire, which limits seed availability, and postfire climate, which influences seedling establishment. In the near-term, projected differences in recruitment probability between low- and high-severity fire scenarios were larger than projected climate change impacts for most species, suggesting that reductions in fire severity, and resultant impacts on seed availability, could partially offset expected climate-driven declines in postfire regeneration. Across 40 to 42% of the study area, we project postfire conifer regeneration to be likely following low-severity but not high-severity fire under future climate scenarios (2031 to 2050). However, increasingly warm, dry climate conditions are projected to eventually outweigh the influence of fire severity and seed availability. The percent of the study area considered unlikely to experience conifer regeneration, regardless of fire severity, increased from 5% in 1981 to 2000 to 26 to 31% by mid-century, highlighting a limited time window over which management actions that reduce fire severity may effectively support postfire conifer regeneration.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023Full-Text: https://escholarship.org/uc/item/5360m6bdData sources: Bielefeld Academic Search Engine (BASE)Portland State University: PDXScholarArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2208120120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 86 citations 86 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023Full-Text: https://escholarship.org/uc/item/5360m6bdData sources: Bielefeld Academic Search Engine (BASE)Portland State University: PDXScholarArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2208120120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United StatesPublisher:Proceedings of the National Academy of Sciences Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthKimberley T. Davis; Marcos D. Robles; Kerry B. Kemp; Philip E. Higuera; Teresa Chapman; Kerry L. Metlen; Jamie L. Peeler; Kyle C. Rodman; Travis Woolley; Robert N. Addington; Brian J. Buma; C. Alina Cansler; Michael J. Case; Brandon M. Collins; Jonathan D. Coop; Solomon Z. Dobrowski; Nathan S. Gill; Collin Haffey; Lucas B. Harris; Brian J. Harvey; Ryan D. Haugo; Matthew D. Hurteau; Dominik Kulakowski; Caitlin E. Littlefield; Lisa A. McCauley; Nicholas Povak; Kristen L. Shive; Edward Smith; Jens T. Stevens; Camille S. Stevens-Rumann; Alan H. Taylor; Alan J. Tepley; Derek J. N. Young; Robert A. Andrus; Mike A. Battaglia; Julia K. Berkey; Sebastian U. Busby; Amanda R. Carlson; Marin E. Chambers; Erich Kyle Dodson; Daniel C. Donato; William M. Downing; Paula J. Fornwalt; Joshua S. Halofsky; Ashley Hoffman; Andrés Holz; Jose M. Iniguez; Meg A. Krawchuk; Mark R. Kreider; Andrew J. Larson; Garrett W. Meigs; John Paul Roccaforte; Monica T. Rother; Hugh Safford; Michael Schaedel; Jason S. Sibold; Megan P. Singleton; Monica G. Turner; Alexandra K. Urza; Kyra D. Clark-Wolf; Larissa Yocom; Joseph B. Fontaine; John L. Campbell;Increasing fire severity and warmer, drier postfire conditions are making forests in the western United States (West) vulnerable to ecological transformation. Yet, the relative importance of and interactions between these drivers of forest change remain unresolved, particularly over upcoming decades. Here, we assess how the interactive impacts of changing climate and wildfire activity influenced conifer regeneration after 334 wildfires, using a dataset of postfire conifer regeneration from 10,230 field plots. Our findings highlight declining regeneration capacity across the West over the past four decades for the eight dominant conifer species studied. Postfire regeneration is sensitive to high-severity fire, which limits seed availability, and postfire climate, which influences seedling establishment. In the near-term, projected differences in recruitment probability between low- and high-severity fire scenarios were larger than projected climate change impacts for most species, suggesting that reductions in fire severity, and resultant impacts on seed availability, could partially offset expected climate-driven declines in postfire regeneration. Across 40 to 42% of the study area, we project postfire conifer regeneration to be likely following low-severity but not high-severity fire under future climate scenarios (2031 to 2050). However, increasingly warm, dry climate conditions are projected to eventually outweigh the influence of fire severity and seed availability. The percent of the study area considered unlikely to experience conifer regeneration, regardless of fire severity, increased from 5% in 1981 to 2000 to 26 to 31% by mid-century, highlighting a limited time window over which management actions that reduce fire severity may effectively support postfire conifer regeneration.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023Full-Text: https://escholarship.org/uc/item/5360m6bdData sources: Bielefeld Academic Search Engine (BASE)Portland State University: PDXScholarArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2208120120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 86 citations 86 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023Full-Text: https://escholarship.org/uc/item/5360m6bdData sources: Bielefeld Academic Search Engine (BASE)Portland State University: PDXScholarArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2208120120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Wiley Authors: Jonathan D. Coop;AbstractSouthwestern ponderosa pine forests are vulnerable to fire‐driven conversion in a warming and drying climate, yet little is known about what kinds of ecological communities may replace them. To characterize postfire vegetation trajectories and their environmental determinants, plant assemblages (361 sample plots including 229 vascular plant species, surveyed in 2017) were sampled within eight burns that occurred between 2000 and 2003. I used nonmetric multidimensional scaling,k‐means clustering, principal component analysis, and random forest models to assess relationships between vegetation pattern, topographic and landscape factors, and gridded climate data. I describe seven postfire community types, including regenerating forests of ponderosa pine, aspen, and mixed conifers, shrub‐dominated communities of Gambel oak and mixed species, and herb‐dominated communities of native bunchgrasses and mixtures of ruderal, native, and nonnative species. Forest recovery was generally associated with cooler, mesic sites in proximity to forested refugia; shifts toward scrub and grassland types were most common in warmer, dryer locations distant from forested refugia. Under future climate scenarios, models project decreases in postfire forest recovery and increases in nonforest vegetation. However, forest to nonforest conversion was partially offset under a scenario of reduced burn severity and increased retention of forested refugia, highlighting important management opportunities. Burning trends in the southwestern United States suggest that postfire vegetation will occupy a growing landscape fraction, compelling renewed management focus on these areas and paradigm shifts that accommodate ecological change. I illustrate how management decisions around resisting, accepting, or directing change could be informed by an understanding of processes and patterns of postfire community variation and likely future trajectories.
Ecological Applicati... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2725&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Ecological Applicati... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2725&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Wiley Authors: Jonathan D. Coop;AbstractSouthwestern ponderosa pine forests are vulnerable to fire‐driven conversion in a warming and drying climate, yet little is known about what kinds of ecological communities may replace them. To characterize postfire vegetation trajectories and their environmental determinants, plant assemblages (361 sample plots including 229 vascular plant species, surveyed in 2017) were sampled within eight burns that occurred between 2000 and 2003. I used nonmetric multidimensional scaling,k‐means clustering, principal component analysis, and random forest models to assess relationships between vegetation pattern, topographic and landscape factors, and gridded climate data. I describe seven postfire community types, including regenerating forests of ponderosa pine, aspen, and mixed conifers, shrub‐dominated communities of Gambel oak and mixed species, and herb‐dominated communities of native bunchgrasses and mixtures of ruderal, native, and nonnative species. Forest recovery was generally associated with cooler, mesic sites in proximity to forested refugia; shifts toward scrub and grassland types were most common in warmer, dryer locations distant from forested refugia. Under future climate scenarios, models project decreases in postfire forest recovery and increases in nonforest vegetation. However, forest to nonforest conversion was partially offset under a scenario of reduced burn severity and increased retention of forested refugia, highlighting important management opportunities. Burning trends in the southwestern United States suggest that postfire vegetation will occupy a growing landscape fraction, compelling renewed management focus on these areas and paradigm shifts that accommodate ecological change. I illustrate how management decisions around resisting, accepting, or directing change could be informed by an understanding of processes and patterns of postfire community variation and likely future trajectories.
Ecological Applicati... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2725&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Ecological Applicati... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2725&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Belgium, France, Australia, Italy, Australia, United Kingdom, United Kingdom, France, Finland, Spain, United StatesPublisher:Proceedings of the National Academy of Sciences Funded by:EC | PERS-RELICT-CLIMEC| PERS-RELICT-CLIMPatrick Gonzalez; Michael Michaelian; Francisco Lloret; C. John Burk; J. Julio Camarero; Albert Vilà-Cabrera; Thomas T. Veblen; Enric Batllori; Devin P. Bendixsen; Tuomas Aakala; Francesco Ripullone; Rafael M. Navarro-Cerrillo; Lucía Galiano; Abdallah Bentouati; Joseph L. Ganey; Miranda D. Redmond; William R. L. Anderegg; Michele Colangelo; Michele Colangelo; Sandra Saura-Mas; Thomas Kitzberger; Thomas Kitzberger; George Matusick; Juan Carlos Linares; M. Lisa Floyd; Jeffrey M. Kane; Ben J. Zeeman; Caroline Vincke; Anna L. Jacobsen; R. B. Pratt; Jonathan D. Coop; Gabriel Sangüesa-Barreda; Christof Bigler; Ermias Aynekulu; Andreas Rigling; Andreas Rigling; Yamila Sasal; Roderick Fensham; Maria Laura Suarez; Suzanne B. Marchetti;pmid: 33139533
pmc: PMC7703631
handle: 2078.1/237307 , 10138/324097 , 11563/145962 , 10568/110156 , 1893/31968
pmid: 33139533
pmc: PMC7703631
handle: 2078.1/237307 , 10138/324097 , 11563/145962 , 10568/110156 , 1893/31968
SignificanceForests are experiencing growing risks of drought-induced mortality in a warming world. Yet, ecosystem dynamics following drought mortality remain unknown, representing a major limitation to our understanding of the ecological consequences of climate change. We provide an emerging picture of postdrought ecological trajectories based on field indicators of forest dynamics. Replacement patterns following mortality indicate limited short-term persistence of predrought dominant tree species, highlighting the potential for major ecosystem reorganization in the coming decades. The great variability of the observed dynamics within and among species reinforces the primary influence of drought characteristics and ecosystem legacies, modulated by land use, management, and past disturbances, on ongoing drought-related species turnover and their potential implications for future forest biodiversity and ecosystem services.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2020License: CC BYFull-Text: https://escholarship.org/uc/item/83d1k74hData sources: Bielefeld Academic Search Engine (BASE)Università degli Studi della Basilicata: CINECA IRISArticle . 2020Full-Text: https://hdl.handle.net/11563/145962Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/110156Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/1893/31968Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2020License: CC BY NC NDData sources: Diposit Digital de Documents de la UABHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkieScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiahttps://dx.doi.org/10.26181/5f...Other literature type . 2020License: CC BY NC NDData sources: DataciteUniversità degli Studi della Basilicata: CINECA IRISArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2002314117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 131 citations 131 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2020License: CC BYFull-Text: https://escholarship.org/uc/item/83d1k74hData sources: Bielefeld Academic Search Engine (BASE)Università degli Studi della Basilicata: CINECA IRISArticle . 2020Full-Text: https://hdl.handle.net/11563/145962Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/110156Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/1893/31968Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2020License: CC BY NC NDData sources: Diposit Digital de Documents de la UABHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkieScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiahttps://dx.doi.org/10.26181/5f...Other literature type . 2020License: CC BY NC NDData sources: DataciteUniversità degli Studi della Basilicata: CINECA IRISArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2002314117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Belgium, France, Australia, Italy, Australia, United Kingdom, United Kingdom, France, Finland, Spain, United StatesPublisher:Proceedings of the National Academy of Sciences Funded by:EC | PERS-RELICT-CLIMEC| PERS-RELICT-CLIMPatrick Gonzalez; Michael Michaelian; Francisco Lloret; C. John Burk; J. Julio Camarero; Albert Vilà-Cabrera; Thomas T. Veblen; Enric Batllori; Devin P. Bendixsen; Tuomas Aakala; Francesco Ripullone; Rafael M. Navarro-Cerrillo; Lucía Galiano; Abdallah Bentouati; Joseph L. Ganey; Miranda D. Redmond; William R. L. Anderegg; Michele Colangelo; Michele Colangelo; Sandra Saura-Mas; Thomas Kitzberger; Thomas Kitzberger; George Matusick; Juan Carlos Linares; M. Lisa Floyd; Jeffrey M. Kane; Ben J. Zeeman; Caroline Vincke; Anna L. Jacobsen; R. B. Pratt; Jonathan D. Coop; Gabriel Sangüesa-Barreda; Christof Bigler; Ermias Aynekulu; Andreas Rigling; Andreas Rigling; Yamila Sasal; Roderick Fensham; Maria Laura Suarez; Suzanne B. Marchetti;pmid: 33139533
pmc: PMC7703631
handle: 2078.1/237307 , 10138/324097 , 11563/145962 , 10568/110156 , 1893/31968
pmid: 33139533
pmc: PMC7703631
handle: 2078.1/237307 , 10138/324097 , 11563/145962 , 10568/110156 , 1893/31968
SignificanceForests are experiencing growing risks of drought-induced mortality in a warming world. Yet, ecosystem dynamics following drought mortality remain unknown, representing a major limitation to our understanding of the ecological consequences of climate change. We provide an emerging picture of postdrought ecological trajectories based on field indicators of forest dynamics. Replacement patterns following mortality indicate limited short-term persistence of predrought dominant tree species, highlighting the potential for major ecosystem reorganization in the coming decades. The great variability of the observed dynamics within and among species reinforces the primary influence of drought characteristics and ecosystem legacies, modulated by land use, management, and past disturbances, on ongoing drought-related species turnover and their potential implications for future forest biodiversity and ecosystem services.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2020License: CC BYFull-Text: https://escholarship.org/uc/item/83d1k74hData sources: Bielefeld Academic Search Engine (BASE)Università degli Studi della Basilicata: CINECA IRISArticle . 2020Full-Text: https://hdl.handle.net/11563/145962Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/110156Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/1893/31968Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2020License: CC BY NC NDData sources: Diposit Digital de Documents de la UABHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkieScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiahttps://dx.doi.org/10.26181/5f...Other literature type . 2020License: CC BY NC NDData sources: DataciteUniversità degli Studi della Basilicata: CINECA IRISArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2002314117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 131 citations 131 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2020License: CC BYFull-Text: https://escholarship.org/uc/item/83d1k74hData sources: Bielefeld Academic Search Engine (BASE)Università degli Studi della Basilicata: CINECA IRISArticle . 2020Full-Text: https://hdl.handle.net/11563/145962Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/110156Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/1893/31968Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2020License: CC BY NC NDData sources: Diposit Digital de Documents de la UABHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkieScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiahttps://dx.doi.org/10.26181/5f...Other literature type . 2020License: CC BY NC NDData sources: DataciteUniversità degli Studi della Basilicata: CINECA IRISArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2002314117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United Kingdom, United StatesPublisher:Oxford University Press (OUP) Funded by:NSF | The Management and Operat...NSF| The Management and Operation of the National Center for Atmoshperic Research (NCAR)Jacquelyn K Shuman; Jennifer K Balch; Rebecca T Barnes; Philip E Higuera; Christopher I Roos; Dylan W Schwilk; E Natasha Stavros; Tirtha Banerjee; Megan M Bela; Jacob Bendix; Sandro Bertolino; Solomon Bililign; Kevin D Bladon; Paulo Brando; Robert E Breidenthal; Brian Buma; Donna Calhoun; Leila M V Carvalho; Megan E Cattau; Kaelin M Cawley; Sudeep Chandra; Melissa L Chipman; Jeanette Cobian-Iñiguez; Erin Conlisk; Jonathan D Coop; Alison Cullen; Kimberley T Davis; Archana Dayalu; Fernando De Sales; Megan Dolman; Lisa M Ellsworth; Scott Franklin; Christopher H Guiterman; Matthew Hamilton; Erin J Hanan; Winslow D Hansen; Stijn Hantson; Brian J Harvey; Andrés Holz; Tao Huang; Matthew D Hurteau; Nayani T Ilangakoon; Megan Jennings; Charles Jones; Anna Klimaszewski-Patterson; Leda N Kobziar; John Kominoski; Branko Kosovic; Meg A Krawchuk; Paul Laris; Jackson Leonard; S Marcela Loria-Salazar; Melissa Lucash; Hussam Mahmoud; Ellis Margolis; Toby Maxwell; Jessica L McCarty; David B McWethy; Rachel S Meyer; Jessica R Miesel; W Keith Moser; R Chelsea Nagy; Dev Niyogi; Hannah M Palmer; Adam Pellegrini; Benjamin Poulter; Kevin Robertson; Adrian V Rocha; Mojtaba Sadegh; Fernanda Santos; Facundo Scordo; Joseph O Sexton; A Surjalal Sharma; Alistair M S Smith; Amber J Soja; Christopher Still; Tyson Swetnam; Alexandra D Syphard; Morgan W Tingley; Ali Tohidi; Anna T Trugman; Merritt Turetsky; J Morgan Varner; Yuhang Wang; Thea Whitman; Stephanie Yelenik; Xuan Zhang;Abstract Fire is an integral component of ecosystems globally and a tool that humans have harnessed for millennia. Altered fire regimes are a fundamental cause and consequence of global change, impacting people and the biophysical systems on which they depend. As part of the newly emerging Anthropocene, marked by human-caused climate change and radical changes to ecosystems, fire danger is increasing, and fires are having increasingly devastating impacts on human health, infrastructure, and ecosystem services. Increasing fire danger is a vexing problem that requires deep transdisciplinary, trans-sector, and inclusive partnerships to address. Here, we outline barriers and opportunities in the next generation of fire science and provide guidance for investment in future research. We synthesize insights needed to better address the long-standing challenges of innovation across disciplines to (i) promote coordinated research efforts; (ii) embrace different ways of knowing and knowledge generation; (iii) promote exploration of fundamental science; (iv) capitalize on the “firehose” of data for societal benefit; and (v) integrate human and natural systems into models across multiple scales. Fire science is thus at a critical transitional moment. We need to shift from observation and modeled representations of varying components of climate, people, vegetation, and fire to more integrative and predictive approaches that support pathways toward mitigating and adapting to our increasingly flammable world, including the utilization of fire for human safety and benefit. Only through overcoming institutional silos and accessing knowledge across diverse communities can we effectively undertake research that improves outcomes in our more fiery future.
Portland State Unive... arrow_drop_down Portland State University: PDXScholarArticle . 2022License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/7mg7p5b3Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pnasnexus/pgac115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 56 citations 56 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Portland State Unive... arrow_drop_down Portland State University: PDXScholarArticle . 2022License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/7mg7p5b3Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pnasnexus/pgac115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United Kingdom, United StatesPublisher:Oxford University Press (OUP) Funded by:NSF | The Management and Operat...NSF| The Management and Operation of the National Center for Atmoshperic Research (NCAR)Jacquelyn K Shuman; Jennifer K Balch; Rebecca T Barnes; Philip E Higuera; Christopher I Roos; Dylan W Schwilk; E Natasha Stavros; Tirtha Banerjee; Megan M Bela; Jacob Bendix; Sandro Bertolino; Solomon Bililign; Kevin D Bladon; Paulo Brando; Robert E Breidenthal; Brian Buma; Donna Calhoun; Leila M V Carvalho; Megan E Cattau; Kaelin M Cawley; Sudeep Chandra; Melissa L Chipman; Jeanette Cobian-Iñiguez; Erin Conlisk; Jonathan D Coop; Alison Cullen; Kimberley T Davis; Archana Dayalu; Fernando De Sales; Megan Dolman; Lisa M Ellsworth; Scott Franklin; Christopher H Guiterman; Matthew Hamilton; Erin J Hanan; Winslow D Hansen; Stijn Hantson; Brian J Harvey; Andrés Holz; Tao Huang; Matthew D Hurteau; Nayani T Ilangakoon; Megan Jennings; Charles Jones; Anna Klimaszewski-Patterson; Leda N Kobziar; John Kominoski; Branko Kosovic; Meg A Krawchuk; Paul Laris; Jackson Leonard; S Marcela Loria-Salazar; Melissa Lucash; Hussam Mahmoud; Ellis Margolis; Toby Maxwell; Jessica L McCarty; David B McWethy; Rachel S Meyer; Jessica R Miesel; W Keith Moser; R Chelsea Nagy; Dev Niyogi; Hannah M Palmer; Adam Pellegrini; Benjamin Poulter; Kevin Robertson; Adrian V Rocha; Mojtaba Sadegh; Fernanda Santos; Facundo Scordo; Joseph O Sexton; A Surjalal Sharma; Alistair M S Smith; Amber J Soja; Christopher Still; Tyson Swetnam; Alexandra D Syphard; Morgan W Tingley; Ali Tohidi; Anna T Trugman; Merritt Turetsky; J Morgan Varner; Yuhang Wang; Thea Whitman; Stephanie Yelenik; Xuan Zhang;Abstract Fire is an integral component of ecosystems globally and a tool that humans have harnessed for millennia. Altered fire regimes are a fundamental cause and consequence of global change, impacting people and the biophysical systems on which they depend. As part of the newly emerging Anthropocene, marked by human-caused climate change and radical changes to ecosystems, fire danger is increasing, and fires are having increasingly devastating impacts on human health, infrastructure, and ecosystem services. Increasing fire danger is a vexing problem that requires deep transdisciplinary, trans-sector, and inclusive partnerships to address. Here, we outline barriers and opportunities in the next generation of fire science and provide guidance for investment in future research. We synthesize insights needed to better address the long-standing challenges of innovation across disciplines to (i) promote coordinated research efforts; (ii) embrace different ways of knowing and knowledge generation; (iii) promote exploration of fundamental science; (iv) capitalize on the “firehose” of data for societal benefit; and (v) integrate human and natural systems into models across multiple scales. Fire science is thus at a critical transitional moment. We need to shift from observation and modeled representations of varying components of climate, people, vegetation, and fire to more integrative and predictive approaches that support pathways toward mitigating and adapting to our increasingly flammable world, including the utilization of fire for human safety and benefit. Only through overcoming institutional silos and accessing knowledge across diverse communities can we effectively undertake research that improves outcomes in our more fiery future.
Portland State Unive... arrow_drop_down Portland State University: PDXScholarArticle . 2022License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/7mg7p5b3Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pnasnexus/pgac115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 56 citations 56 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Portland State Unive... arrow_drop_down Portland State University: PDXScholarArticle . 2022License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/7mg7p5b3Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pnasnexus/pgac115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United StatesPublisher:Proceedings of the National Academy of Sciences Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthKimberley T. Davis; Marcos D. Robles; Kerry B. Kemp; Philip E. Higuera; Teresa Chapman; Kerry L. Metlen; Jamie L. Peeler; Kyle C. Rodman; Travis Woolley; Robert N. Addington; Brian J. Buma; C. Alina Cansler; Michael J. Case; Brandon M. Collins; Jonathan D. Coop; Solomon Z. Dobrowski; Nathan S. Gill; Collin Haffey; Lucas B. Harris; Brian J. Harvey; Ryan D. Haugo; Matthew D. Hurteau; Dominik Kulakowski; Caitlin E. Littlefield; Lisa A. McCauley; Nicholas Povak; Kristen L. Shive; Edward Smith; Jens T. Stevens; Camille S. Stevens-Rumann; Alan H. Taylor; Alan J. Tepley; Derek J. N. Young; Robert A. Andrus; Mike A. Battaglia; Julia K. Berkey; Sebastian U. Busby; Amanda R. Carlson; Marin E. Chambers; Erich Kyle Dodson; Daniel C. Donato; William M. Downing; Paula J. Fornwalt; Joshua S. Halofsky; Ashley Hoffman; Andrés Holz; Jose M. Iniguez; Meg A. Krawchuk; Mark R. Kreider; Andrew J. Larson; Garrett W. Meigs; John Paul Roccaforte; Monica T. Rother; Hugh Safford; Michael Schaedel; Jason S. Sibold; Megan P. Singleton; Monica G. Turner; Alexandra K. Urza; Kyra D. Clark-Wolf; Larissa Yocom; Joseph B. Fontaine; John L. Campbell;Increasing fire severity and warmer, drier postfire conditions are making forests in the western United States (West) vulnerable to ecological transformation. Yet, the relative importance of and interactions between these drivers of forest change remain unresolved, particularly over upcoming decades. Here, we assess how the interactive impacts of changing climate and wildfire activity influenced conifer regeneration after 334 wildfires, using a dataset of postfire conifer regeneration from 10,230 field plots. Our findings highlight declining regeneration capacity across the West over the past four decades for the eight dominant conifer species studied. Postfire regeneration is sensitive to high-severity fire, which limits seed availability, and postfire climate, which influences seedling establishment. In the near-term, projected differences in recruitment probability between low- and high-severity fire scenarios were larger than projected climate change impacts for most species, suggesting that reductions in fire severity, and resultant impacts on seed availability, could partially offset expected climate-driven declines in postfire regeneration. Across 40 to 42% of the study area, we project postfire conifer regeneration to be likely following low-severity but not high-severity fire under future climate scenarios (2031 to 2050). However, increasingly warm, dry climate conditions are projected to eventually outweigh the influence of fire severity and seed availability. The percent of the study area considered unlikely to experience conifer regeneration, regardless of fire severity, increased from 5% in 1981 to 2000 to 26 to 31% by mid-century, highlighting a limited time window over which management actions that reduce fire severity may effectively support postfire conifer regeneration.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023Full-Text: https://escholarship.org/uc/item/5360m6bdData sources: Bielefeld Academic Search Engine (BASE)Portland State University: PDXScholarArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2208120120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 86 citations 86 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023Full-Text: https://escholarship.org/uc/item/5360m6bdData sources: Bielefeld Academic Search Engine (BASE)Portland State University: PDXScholarArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2208120120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United StatesPublisher:Proceedings of the National Academy of Sciences Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthKimberley T. Davis; Marcos D. Robles; Kerry B. Kemp; Philip E. Higuera; Teresa Chapman; Kerry L. Metlen; Jamie L. Peeler; Kyle C. Rodman; Travis Woolley; Robert N. Addington; Brian J. Buma; C. Alina Cansler; Michael J. Case; Brandon M. Collins; Jonathan D. Coop; Solomon Z. Dobrowski; Nathan S. Gill; Collin Haffey; Lucas B. Harris; Brian J. Harvey; Ryan D. Haugo; Matthew D. Hurteau; Dominik Kulakowski; Caitlin E. Littlefield; Lisa A. McCauley; Nicholas Povak; Kristen L. Shive; Edward Smith; Jens T. Stevens; Camille S. Stevens-Rumann; Alan H. Taylor; Alan J. Tepley; Derek J. N. Young; Robert A. Andrus; Mike A. Battaglia; Julia K. Berkey; Sebastian U. Busby; Amanda R. Carlson; Marin E. Chambers; Erich Kyle Dodson; Daniel C. Donato; William M. Downing; Paula J. Fornwalt; Joshua S. Halofsky; Ashley Hoffman; Andrés Holz; Jose M. Iniguez; Meg A. Krawchuk; Mark R. Kreider; Andrew J. Larson; Garrett W. Meigs; John Paul Roccaforte; Monica T. Rother; Hugh Safford; Michael Schaedel; Jason S. Sibold; Megan P. Singleton; Monica G. Turner; Alexandra K. Urza; Kyra D. Clark-Wolf; Larissa Yocom; Joseph B. Fontaine; John L. Campbell;Increasing fire severity and warmer, drier postfire conditions are making forests in the western United States (West) vulnerable to ecological transformation. Yet, the relative importance of and interactions between these drivers of forest change remain unresolved, particularly over upcoming decades. Here, we assess how the interactive impacts of changing climate and wildfire activity influenced conifer regeneration after 334 wildfires, using a dataset of postfire conifer regeneration from 10,230 field plots. Our findings highlight declining regeneration capacity across the West over the past four decades for the eight dominant conifer species studied. Postfire regeneration is sensitive to high-severity fire, which limits seed availability, and postfire climate, which influences seedling establishment. In the near-term, projected differences in recruitment probability between low- and high-severity fire scenarios were larger than projected climate change impacts for most species, suggesting that reductions in fire severity, and resultant impacts on seed availability, could partially offset expected climate-driven declines in postfire regeneration. Across 40 to 42% of the study area, we project postfire conifer regeneration to be likely following low-severity but not high-severity fire under future climate scenarios (2031 to 2050). However, increasingly warm, dry climate conditions are projected to eventually outweigh the influence of fire severity and seed availability. The percent of the study area considered unlikely to experience conifer regeneration, regardless of fire severity, increased from 5% in 1981 to 2000 to 26 to 31% by mid-century, highlighting a limited time window over which management actions that reduce fire severity may effectively support postfire conifer regeneration.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023Full-Text: https://escholarship.org/uc/item/5360m6bdData sources: Bielefeld Academic Search Engine (BASE)Portland State University: PDXScholarArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2208120120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 86 citations 86 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023Full-Text: https://escholarship.org/uc/item/5360m6bdData sources: Bielefeld Academic Search Engine (BASE)Portland State University: PDXScholarArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2208120120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Wiley Authors: Jonathan D. Coop;AbstractSouthwestern ponderosa pine forests are vulnerable to fire‐driven conversion in a warming and drying climate, yet little is known about what kinds of ecological communities may replace them. To characterize postfire vegetation trajectories and their environmental determinants, plant assemblages (361 sample plots including 229 vascular plant species, surveyed in 2017) were sampled within eight burns that occurred between 2000 and 2003. I used nonmetric multidimensional scaling,k‐means clustering, principal component analysis, and random forest models to assess relationships between vegetation pattern, topographic and landscape factors, and gridded climate data. I describe seven postfire community types, including regenerating forests of ponderosa pine, aspen, and mixed conifers, shrub‐dominated communities of Gambel oak and mixed species, and herb‐dominated communities of native bunchgrasses and mixtures of ruderal, native, and nonnative species. Forest recovery was generally associated with cooler, mesic sites in proximity to forested refugia; shifts toward scrub and grassland types were most common in warmer, dryer locations distant from forested refugia. Under future climate scenarios, models project decreases in postfire forest recovery and increases in nonforest vegetation. However, forest to nonforest conversion was partially offset under a scenario of reduced burn severity and increased retention of forested refugia, highlighting important management opportunities. Burning trends in the southwestern United States suggest that postfire vegetation will occupy a growing landscape fraction, compelling renewed management focus on these areas and paradigm shifts that accommodate ecological change. I illustrate how management decisions around resisting, accepting, or directing change could be informed by an understanding of processes and patterns of postfire community variation and likely future trajectories.
Ecological Applicati... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2725&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Ecological Applicati... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2725&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Wiley Authors: Jonathan D. Coop;AbstractSouthwestern ponderosa pine forests are vulnerable to fire‐driven conversion in a warming and drying climate, yet little is known about what kinds of ecological communities may replace them. To characterize postfire vegetation trajectories and their environmental determinants, plant assemblages (361 sample plots including 229 vascular plant species, surveyed in 2017) were sampled within eight burns that occurred between 2000 and 2003. I used nonmetric multidimensional scaling,k‐means clustering, principal component analysis, and random forest models to assess relationships between vegetation pattern, topographic and landscape factors, and gridded climate data. I describe seven postfire community types, including regenerating forests of ponderosa pine, aspen, and mixed conifers, shrub‐dominated communities of Gambel oak and mixed species, and herb‐dominated communities of native bunchgrasses and mixtures of ruderal, native, and nonnative species. Forest recovery was generally associated with cooler, mesic sites in proximity to forested refugia; shifts toward scrub and grassland types were most common in warmer, dryer locations distant from forested refugia. Under future climate scenarios, models project decreases in postfire forest recovery and increases in nonforest vegetation. However, forest to nonforest conversion was partially offset under a scenario of reduced burn severity and increased retention of forested refugia, highlighting important management opportunities. Burning trends in the southwestern United States suggest that postfire vegetation will occupy a growing landscape fraction, compelling renewed management focus on these areas and paradigm shifts that accommodate ecological change. I illustrate how management decisions around resisting, accepting, or directing change could be informed by an understanding of processes and patterns of postfire community variation and likely future trajectories.
Ecological Applicati... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2725&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Ecological Applicati... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2725&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Belgium, France, Australia, Italy, Australia, United Kingdom, United Kingdom, France, Finland, Spain, United StatesPublisher:Proceedings of the National Academy of Sciences Funded by:EC | PERS-RELICT-CLIMEC| PERS-RELICT-CLIMPatrick Gonzalez; Michael Michaelian; Francisco Lloret; C. John Burk; J. Julio Camarero; Albert Vilà-Cabrera; Thomas T. Veblen; Enric Batllori; Devin P. Bendixsen; Tuomas Aakala; Francesco Ripullone; Rafael M. Navarro-Cerrillo; Lucía Galiano; Abdallah Bentouati; Joseph L. Ganey; Miranda D. Redmond; William R. L. Anderegg; Michele Colangelo; Michele Colangelo; Sandra Saura-Mas; Thomas Kitzberger; Thomas Kitzberger; George Matusick; Juan Carlos Linares; M. Lisa Floyd; Jeffrey M. Kane; Ben J. Zeeman; Caroline Vincke; Anna L. Jacobsen; R. B. Pratt; Jonathan D. Coop; Gabriel Sangüesa-Barreda; Christof Bigler; Ermias Aynekulu; Andreas Rigling; Andreas Rigling; Yamila Sasal; Roderick Fensham; Maria Laura Suarez; Suzanne B. Marchetti;pmid: 33139533
pmc: PMC7703631
handle: 2078.1/237307 , 10138/324097 , 11563/145962 , 10568/110156 , 1893/31968
pmid: 33139533
pmc: PMC7703631
handle: 2078.1/237307 , 10138/324097 , 11563/145962 , 10568/110156 , 1893/31968
SignificanceForests are experiencing growing risks of drought-induced mortality in a warming world. Yet, ecosystem dynamics following drought mortality remain unknown, representing a major limitation to our understanding of the ecological consequences of climate change. We provide an emerging picture of postdrought ecological trajectories based on field indicators of forest dynamics. Replacement patterns following mortality indicate limited short-term persistence of predrought dominant tree species, highlighting the potential for major ecosystem reorganization in the coming decades. The great variability of the observed dynamics within and among species reinforces the primary influence of drought characteristics and ecosystem legacies, modulated by land use, management, and past disturbances, on ongoing drought-related species turnover and their potential implications for future forest biodiversity and ecosystem services.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2020License: CC BYFull-Text: https://escholarship.org/uc/item/83d1k74hData sources: Bielefeld Academic Search Engine (BASE)Università degli Studi della Basilicata: CINECA IRISArticle . 2020Full-Text: https://hdl.handle.net/11563/145962Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/110156Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/1893/31968Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2020License: CC BY NC NDData sources: Diposit Digital de Documents de la UABHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkieScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiahttps://dx.doi.org/10.26181/5f...Other literature type . 2020License: CC BY NC NDData sources: DataciteUniversità degli Studi della Basilicata: CINECA IRISArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2002314117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 131 citations 131 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2020License: CC BYFull-Text: https://escholarship.org/uc/item/83d1k74hData sources: Bielefeld Academic Search Engine (BASE)Università degli Studi della Basilicata: CINECA IRISArticle . 2020Full-Text: https://hdl.handle.net/11563/145962Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/110156Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/1893/31968Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2020License: CC BY NC NDData sources: Diposit Digital de Documents de la UABHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkieScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiahttps://dx.doi.org/10.26181/5f...Other literature type . 2020License: CC BY NC NDData sources: DataciteUniversità degli Studi della Basilicata: CINECA IRISArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2002314117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Belgium, France, Australia, Italy, Australia, United Kingdom, United Kingdom, France, Finland, Spain, United StatesPublisher:Proceedings of the National Academy of Sciences Funded by:EC | PERS-RELICT-CLIMEC| PERS-RELICT-CLIMPatrick Gonzalez; Michael Michaelian; Francisco Lloret; C. John Burk; J. Julio Camarero; Albert Vilà-Cabrera; Thomas T. Veblen; Enric Batllori; Devin P. Bendixsen; Tuomas Aakala; Francesco Ripullone; Rafael M. Navarro-Cerrillo; Lucía Galiano; Abdallah Bentouati; Joseph L. Ganey; Miranda D. Redmond; William R. L. Anderegg; Michele Colangelo; Michele Colangelo; Sandra Saura-Mas; Thomas Kitzberger; Thomas Kitzberger; George Matusick; Juan Carlos Linares; M. Lisa Floyd; Jeffrey M. Kane; Ben J. Zeeman; Caroline Vincke; Anna L. Jacobsen; R. B. Pratt; Jonathan D. Coop; Gabriel Sangüesa-Barreda; Christof Bigler; Ermias Aynekulu; Andreas Rigling; Andreas Rigling; Yamila Sasal; Roderick Fensham; Maria Laura Suarez; Suzanne B. Marchetti;pmid: 33139533
pmc: PMC7703631
handle: 2078.1/237307 , 10138/324097 , 11563/145962 , 10568/110156 , 1893/31968
pmid: 33139533
pmc: PMC7703631
handle: 2078.1/237307 , 10138/324097 , 11563/145962 , 10568/110156 , 1893/31968
SignificanceForests are experiencing growing risks of drought-induced mortality in a warming world. Yet, ecosystem dynamics following drought mortality remain unknown, representing a major limitation to our understanding of the ecological consequences of climate change. We provide an emerging picture of postdrought ecological trajectories based on field indicators of forest dynamics. Replacement patterns following mortality indicate limited short-term persistence of predrought dominant tree species, highlighting the potential for major ecosystem reorganization in the coming decades. The great variability of the observed dynamics within and among species reinforces the primary influence of drought characteristics and ecosystem legacies, modulated by land use, management, and past disturbances, on ongoing drought-related species turnover and their potential implications for future forest biodiversity and ecosystem services.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2020License: CC BYFull-Text: https://escholarship.org/uc/item/83d1k74hData sources: Bielefeld Academic Search Engine (BASE)Università degli Studi della Basilicata: CINECA IRISArticle . 2020Full-Text: https://hdl.handle.net/11563/145962Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/110156Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/1893/31968Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2020License: CC BY NC NDData sources: Diposit Digital de Documents de la UABHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkieScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiahttps://dx.doi.org/10.26181/5f...Other literature type . 2020License: CC BY NC NDData sources: DataciteUniversità degli Studi della Basilicata: CINECA IRISArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2002314117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 131 citations 131 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2020License: CC BYFull-Text: https://escholarship.org/uc/item/83d1k74hData sources: Bielefeld Academic Search Engine (BASE)Università degli Studi della Basilicata: CINECA IRISArticle . 2020Full-Text: https://hdl.handle.net/11563/145962Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/110156Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/1893/31968Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2020License: CC BY NC NDData sources: Diposit Digital de Documents de la UABHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkieScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiahttps://dx.doi.org/10.26181/5f...Other literature type . 2020License: CC BY NC NDData sources: DataciteUniversità degli Studi della Basilicata: CINECA IRISArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2002314117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United Kingdom, United StatesPublisher:Oxford University Press (OUP) Funded by:NSF | The Management and Operat...NSF| The Management and Operation of the National Center for Atmoshperic Research (NCAR)Jacquelyn K Shuman; Jennifer K Balch; Rebecca T Barnes; Philip E Higuera; Christopher I Roos; Dylan W Schwilk; E Natasha Stavros; Tirtha Banerjee; Megan M Bela; Jacob Bendix; Sandro Bertolino; Solomon Bililign; Kevin D Bladon; Paulo Brando; Robert E Breidenthal; Brian Buma; Donna Calhoun; Leila M V Carvalho; Megan E Cattau; Kaelin M Cawley; Sudeep Chandra; Melissa L Chipman; Jeanette Cobian-Iñiguez; Erin Conlisk; Jonathan D Coop; Alison Cullen; Kimberley T Davis; Archana Dayalu; Fernando De Sales; Megan Dolman; Lisa M Ellsworth; Scott Franklin; Christopher H Guiterman; Matthew Hamilton; Erin J Hanan; Winslow D Hansen; Stijn Hantson; Brian J Harvey; Andrés Holz; Tao Huang; Matthew D Hurteau; Nayani T Ilangakoon; Megan Jennings; Charles Jones; Anna Klimaszewski-Patterson; Leda N Kobziar; John Kominoski; Branko Kosovic; Meg A Krawchuk; Paul Laris; Jackson Leonard; S Marcela Loria-Salazar; Melissa Lucash; Hussam Mahmoud; Ellis Margolis; Toby Maxwell; Jessica L McCarty; David B McWethy; Rachel S Meyer; Jessica R Miesel; W Keith Moser; R Chelsea Nagy; Dev Niyogi; Hannah M Palmer; Adam Pellegrini; Benjamin Poulter; Kevin Robertson; Adrian V Rocha; Mojtaba Sadegh; Fernanda Santos; Facundo Scordo; Joseph O Sexton; A Surjalal Sharma; Alistair M S Smith; Amber J Soja; Christopher Still; Tyson Swetnam; Alexandra D Syphard; Morgan W Tingley; Ali Tohidi; Anna T Trugman; Merritt Turetsky; J Morgan Varner; Yuhang Wang; Thea Whitman; Stephanie Yelenik; Xuan Zhang;Abstract Fire is an integral component of ecosystems globally and a tool that humans have harnessed for millennia. Altered fire regimes are a fundamental cause and consequence of global change, impacting people and the biophysical systems on which they depend. As part of the newly emerging Anthropocene, marked by human-caused climate change and radical changes to ecosystems, fire danger is increasing, and fires are having increasingly devastating impacts on human health, infrastructure, and ecosystem services. Increasing fire danger is a vexing problem that requires deep transdisciplinary, trans-sector, and inclusive partnerships to address. Here, we outline barriers and opportunities in the next generation of fire science and provide guidance for investment in future research. We synthesize insights needed to better address the long-standing challenges of innovation across disciplines to (i) promote coordinated research efforts; (ii) embrace different ways of knowing and knowledge generation; (iii) promote exploration of fundamental science; (iv) capitalize on the “firehose” of data for societal benefit; and (v) integrate human and natural systems into models across multiple scales. Fire science is thus at a critical transitional moment. We need to shift from observation and modeled representations of varying components of climate, people, vegetation, and fire to more integrative and predictive approaches that support pathways toward mitigating and adapting to our increasingly flammable world, including the utilization of fire for human safety and benefit. Only through overcoming institutional silos and accessing knowledge across diverse communities can we effectively undertake research that improves outcomes in our more fiery future.
Portland State Unive... arrow_drop_down Portland State University: PDXScholarArticle . 2022License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/7mg7p5b3Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pnasnexus/pgac115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 56 citations 56 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Portland State Unive... arrow_drop_down Portland State University: PDXScholarArticle . 2022License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/7mg7p5b3Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pnasnexus/pgac115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United Kingdom, United StatesPublisher:Oxford University Press (OUP) Funded by:NSF | The Management and Operat...NSF| The Management and Operation of the National Center for Atmoshperic Research (NCAR)Jacquelyn K Shuman; Jennifer K Balch; Rebecca T Barnes; Philip E Higuera; Christopher I Roos; Dylan W Schwilk; E Natasha Stavros; Tirtha Banerjee; Megan M Bela; Jacob Bendix; Sandro Bertolino; Solomon Bililign; Kevin D Bladon; Paulo Brando; Robert E Breidenthal; Brian Buma; Donna Calhoun; Leila M V Carvalho; Megan E Cattau; Kaelin M Cawley; Sudeep Chandra; Melissa L Chipman; Jeanette Cobian-Iñiguez; Erin Conlisk; Jonathan D Coop; Alison Cullen; Kimberley T Davis; Archana Dayalu; Fernando De Sales; Megan Dolman; Lisa M Ellsworth; Scott Franklin; Christopher H Guiterman; Matthew Hamilton; Erin J Hanan; Winslow D Hansen; Stijn Hantson; Brian J Harvey; Andrés Holz; Tao Huang; Matthew D Hurteau; Nayani T Ilangakoon; Megan Jennings; Charles Jones; Anna Klimaszewski-Patterson; Leda N Kobziar; John Kominoski; Branko Kosovic; Meg A Krawchuk; Paul Laris; Jackson Leonard; S Marcela Loria-Salazar; Melissa Lucash; Hussam Mahmoud; Ellis Margolis; Toby Maxwell; Jessica L McCarty; David B McWethy; Rachel S Meyer; Jessica R Miesel; W Keith Moser; R Chelsea Nagy; Dev Niyogi; Hannah M Palmer; Adam Pellegrini; Benjamin Poulter; Kevin Robertson; Adrian V Rocha; Mojtaba Sadegh; Fernanda Santos; Facundo Scordo; Joseph O Sexton; A Surjalal Sharma; Alistair M S Smith; Amber J Soja; Christopher Still; Tyson Swetnam; Alexandra D Syphard; Morgan W Tingley; Ali Tohidi; Anna T Trugman; Merritt Turetsky; J Morgan Varner; Yuhang Wang; Thea Whitman; Stephanie Yelenik; Xuan Zhang;Abstract Fire is an integral component of ecosystems globally and a tool that humans have harnessed for millennia. Altered fire regimes are a fundamental cause and consequence of global change, impacting people and the biophysical systems on which they depend. As part of the newly emerging Anthropocene, marked by human-caused climate change and radical changes to ecosystems, fire danger is increasing, and fires are having increasingly devastating impacts on human health, infrastructure, and ecosystem services. Increasing fire danger is a vexing problem that requires deep transdisciplinary, trans-sector, and inclusive partnerships to address. Here, we outline barriers and opportunities in the next generation of fire science and provide guidance for investment in future research. We synthesize insights needed to better address the long-standing challenges of innovation across disciplines to (i) promote coordinated research efforts; (ii) embrace different ways of knowing and knowledge generation; (iii) promote exploration of fundamental science; (iv) capitalize on the “firehose” of data for societal benefit; and (v) integrate human and natural systems into models across multiple scales. Fire science is thus at a critical transitional moment. We need to shift from observation and modeled representations of varying components of climate, people, vegetation, and fire to more integrative and predictive approaches that support pathways toward mitigating and adapting to our increasingly flammable world, including the utilization of fire for human safety and benefit. Only through overcoming institutional silos and accessing knowledge across diverse communities can we effectively undertake research that improves outcomes in our more fiery future.
Portland State Unive... arrow_drop_down Portland State University: PDXScholarArticle . 2022License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/7mg7p5b3Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pnasnexus/pgac115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 56 citations 56 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Portland State Unive... arrow_drop_down Portland State University: PDXScholarArticle . 2022License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/7mg7p5b3Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pnasnexus/pgac115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu