- home
- Advanced Search
Filters
Year range
-chevron_right GOCountry
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 23 Feb 2021 Switzerland, United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: ..., NSF | Belmont Forum Collaborati...NSF| Collaborative Research: Combining NEON and remotely sensed habitats to determine climate impacts on community dynamics ,NSF| Belmont Forum Collaborative Research: Scenarios of Biodiversity and Ecosystem ServiceOrrin Myers; Georges Kunstler; Jalene M. LaMontagne; James A. Lutz; Istem Fer; Jordan Luongo; Renata Poulton-Kamakura; Janneke HilleRisLambers; Yassine Messaoud; Sam Pearse; Gregory S. Gilbert; Natalie L. Cleavitt; C. D. Reid; Inés Ibáñez; Michael A. Steele; Miranda D. Redmond; Susan L. Cohen; Jerry F. Franklin; Benoît Courbaud; Don C. Bragg; Ethan Ready; C. Lane Scher; Andreas P. Wion; William H. Schlesinger; Shubhi Sharma; Robert R. Parmenter; Amanda M. Schwantes; Scott M. Pearson; Thomas G. Whitham; Thomas T. Veblen; Christopher L. Kilner; Samantha Sutton; Chase L. Nuñez; Emily V. Moran; Nathan L. Stephenson; Adrian J. Das; Jennifer J. Swenson; Cathryn H. Greenberg; Roman Zlotin; James S. Clark; James S. Clark; Walter D. Koenig; Robert A. Andrus; Amy V. Whipple; Jill F. Johnstone; Eliot J. B. McIntire; Kyle C. Rodman; Timothy J. Fahey; Erin Shanahan; Jonathan Myers; Johannes M. H. Knops; Catherine A. Gehring; Diana Macias; Qinfeng Guo; Christopher M. Moore; Michael Dietze; Mélaine Aubry-Kientz; Dale G. Brockway; Michał Bogdziewicz; Kai Zhu; Yves Bergeron; Robert Daley; Margaret Swift; Kristin Legg;pmc: PMC7902660
AbstractIndirect climate effects on tree fecundity that come through variation in size and growth (climate-condition interactions) are not currently part of models used to predict future forests. Trends in species abundances predicted from meta-analyses and species distribution models will be misleading if they depend on the conditions of individuals. Here we find from a synthesis of tree species in North America that climate-condition interactions dominate responses through two pathways, i) effects of growth that depend on climate, and ii) effects of climate that depend on tree size. Because tree fecundity first increases and then declines with size, climate change that stimulates growth promotes a shift of small trees to more fecund sizes, but the opposite can be true for large sizes. Change the depresses growth also affects fecundity. We find a biogeographic divide, with these interactions reducing fecundity in the West and increasing it in the East. Continental-scale responses of these forests are thus driven largely by indirect effects, recommending management for climate change that considers multiple demographic rates.
Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20836-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20836-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United StatesPublisher:Springer Science and Business Media LLC Andrew M. Latimer; Jonathan C. B. Nesmith; Adrian J. Das; Joan Dudney; Joan Dudney; Claire E. Willing; Claire E. Willing; John J. Battles;AbstractRange shifts of infectious plant disease are expected under climate change. As plant diseases move, emergent abiotic-biotic interactions are predicted to modify their distributions, leading to unexpected changes in disease risk. Evidence of these complex range shifts due to climate change, however, remains largely speculative. Here, we combine a long-term study of the infectious tree disease, white pine blister rust, with a six-year field assessment of drought-disease interactions in the southern Sierra Nevada. We find that climate change between 1996 and 2016 moved the climate optimum of the disease into higher elevations. The nonlinear climate change-disease relationship contributed to an estimated 5.5 (4.4–6.6) percentage points (p.p.) decline in disease prevalence in arid regions and an estimated 6.8 (5.8–7.9) p.p. increase in colder regions. Though climate change likely expanded the suitable area for blister rust by 777.9 (1.0–1392.9) km2into previously inhospitable regions, the combination of host-pathogen and drought-disease interactions contributed to a substantial decrease (32.79%) in mean disease prevalence between surveys. Specifically, declining alternate host abundance suppressed infection probabilities at high elevations, even as climatic conditions became more suitable. Further, drought-disease interactions varied in strength and direction across an aridity gradient—likely decreasing infection risk at low elevations while simultaneously increasing infection risk at high elevations. These results highlight the critical role of aridity in modifying host-pathogen-drought interactions. Variation in aridity across topographic gradients can strongly mediate plant disease range shifts in response to climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-25182-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 44 citations 44 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-25182-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Tucker J. Furniss; Adrian J. Das; Phillip J. van Mantgem; Nathan L. Stephenson; James A. Lutz;doi: 10.1002/eap.2507
pmid: 34870871
AbstractIn an emerging era of megadisturbance, bolstering forest resilience to wildfire, insects, and drought has become a central objective in many western forests. Climate has received considerable attention as a driver of these disturbances, but few studies have examined the complexities of climate–vegetation–disturbance interactions. Current strategies for creating resilient forests often rely on retrospective approaches, seeking to impart resilience by restoring historical conditions to contemporary landscapes, but historical conditions are becoming increasingly unattainable amidst modern bioclimatic conditions. What becomes an appropriate benchmark for resilience when we have novel forests, rapidly changing climate, and unprecedented disturbance regimes? We combined two longitudinal datasets—each representing some of the most comprehensive spatially explicit, annual tree mortality data in existence—in a post‐hoc factorial design to examine the nonlinear relationships between fire, climate, forest spatial structure, and bark beetles. We found that while prefire drought elevated mortality risk, advantageous local neighborhoods could offset these effects. Surprisingly, mortality risk (Pm) was higher in crowded local neighborhoods that burned in wet years (Pm = 42%) compared with sparse neighborhoods that burned during drought (Pm = 30%). Risk of beetle attack was also increased by drought, but lower conspecific crowding impeded the otherwise positive interaction between fire and beetle attack. Antecedent fire increased drought‐related mortality over short timespans (<7 years) but reduced mortality over longer intervals. These results clarify interacting disturbance dynamics and provide a mechanistic underpinning for forest restoration strategies. Importantly, they demonstrate the potential for managed fire and silvicultural strategies to offset climate effects and bolster resilience to fire, beetles, and drought.
Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2507&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2507&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 23 Feb 2021 Switzerland, United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: ..., NSF | Belmont Forum Collaborati...NSF| Collaborative Research: Combining NEON and remotely sensed habitats to determine climate impacts on community dynamics ,NSF| Belmont Forum Collaborative Research: Scenarios of Biodiversity and Ecosystem ServiceOrrin Myers; Georges Kunstler; Jalene M. LaMontagne; James A. Lutz; Istem Fer; Jordan Luongo; Renata Poulton-Kamakura; Janneke HilleRisLambers; Yassine Messaoud; Sam Pearse; Gregory S. Gilbert; Natalie L. Cleavitt; C. D. Reid; Inés Ibáñez; Michael A. Steele; Miranda D. Redmond; Susan L. Cohen; Jerry F. Franklin; Benoît Courbaud; Don C. Bragg; Ethan Ready; C. Lane Scher; Andreas P. Wion; William H. Schlesinger; Shubhi Sharma; Robert R. Parmenter; Amanda M. Schwantes; Scott M. Pearson; Thomas G. Whitham; Thomas T. Veblen; Christopher L. Kilner; Samantha Sutton; Chase L. Nuñez; Emily V. Moran; Nathan L. Stephenson; Adrian J. Das; Jennifer J. Swenson; Cathryn H. Greenberg; Roman Zlotin; James S. Clark; James S. Clark; Walter D. Koenig; Robert A. Andrus; Amy V. Whipple; Jill F. Johnstone; Eliot J. B. McIntire; Kyle C. Rodman; Timothy J. Fahey; Erin Shanahan; Jonathan Myers; Johannes M. H. Knops; Catherine A. Gehring; Diana Macias; Qinfeng Guo; Christopher M. Moore; Michael Dietze; Mélaine Aubry-Kientz; Dale G. Brockway; Michał Bogdziewicz; Kai Zhu; Yves Bergeron; Robert Daley; Margaret Swift; Kristin Legg;pmc: PMC7902660
AbstractIndirect climate effects on tree fecundity that come through variation in size and growth (climate-condition interactions) are not currently part of models used to predict future forests. Trends in species abundances predicted from meta-analyses and species distribution models will be misleading if they depend on the conditions of individuals. Here we find from a synthesis of tree species in North America that climate-condition interactions dominate responses through two pathways, i) effects of growth that depend on climate, and ii) effects of climate that depend on tree size. Because tree fecundity first increases and then declines with size, climate change that stimulates growth promotes a shift of small trees to more fecund sizes, but the opposite can be true for large sizes. Change the depresses growth also affects fecundity. We find a biogeographic divide, with these interactions reducing fecundity in the West and increasing it in the East. Continental-scale responses of these forests are thus driven largely by indirect effects, recommending management for climate change that considers multiple demographic rates.
Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20836-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20836-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United StatesPublisher:Springer Science and Business Media LLC Andrew M. Latimer; Jonathan C. B. Nesmith; Adrian J. Das; Joan Dudney; Joan Dudney; Claire E. Willing; Claire E. Willing; John J. Battles;AbstractRange shifts of infectious plant disease are expected under climate change. As plant diseases move, emergent abiotic-biotic interactions are predicted to modify their distributions, leading to unexpected changes in disease risk. Evidence of these complex range shifts due to climate change, however, remains largely speculative. Here, we combine a long-term study of the infectious tree disease, white pine blister rust, with a six-year field assessment of drought-disease interactions in the southern Sierra Nevada. We find that climate change between 1996 and 2016 moved the climate optimum of the disease into higher elevations. The nonlinear climate change-disease relationship contributed to an estimated 5.5 (4.4–6.6) percentage points (p.p.) decline in disease prevalence in arid regions and an estimated 6.8 (5.8–7.9) p.p. increase in colder regions. Though climate change likely expanded the suitable area for blister rust by 777.9 (1.0–1392.9) km2into previously inhospitable regions, the combination of host-pathogen and drought-disease interactions contributed to a substantial decrease (32.79%) in mean disease prevalence between surveys. Specifically, declining alternate host abundance suppressed infection probabilities at high elevations, even as climatic conditions became more suitable. Further, drought-disease interactions varied in strength and direction across an aridity gradient—likely decreasing infection risk at low elevations while simultaneously increasing infection risk at high elevations. These results highlight the critical role of aridity in modifying host-pathogen-drought interactions. Variation in aridity across topographic gradients can strongly mediate plant disease range shifts in response to climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-25182-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 44 citations 44 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-25182-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Tucker J. Furniss; Adrian J. Das; Phillip J. van Mantgem; Nathan L. Stephenson; James A. Lutz;doi: 10.1002/eap.2507
pmid: 34870871
AbstractIn an emerging era of megadisturbance, bolstering forest resilience to wildfire, insects, and drought has become a central objective in many western forests. Climate has received considerable attention as a driver of these disturbances, but few studies have examined the complexities of climate–vegetation–disturbance interactions. Current strategies for creating resilient forests often rely on retrospective approaches, seeking to impart resilience by restoring historical conditions to contemporary landscapes, but historical conditions are becoming increasingly unattainable amidst modern bioclimatic conditions. What becomes an appropriate benchmark for resilience when we have novel forests, rapidly changing climate, and unprecedented disturbance regimes? We combined two longitudinal datasets—each representing some of the most comprehensive spatially explicit, annual tree mortality data in existence—in a post‐hoc factorial design to examine the nonlinear relationships between fire, climate, forest spatial structure, and bark beetles. We found that while prefire drought elevated mortality risk, advantageous local neighborhoods could offset these effects. Surprisingly, mortality risk (Pm) was higher in crowded local neighborhoods that burned in wet years (Pm = 42%) compared with sparse neighborhoods that burned during drought (Pm = 30%). Risk of beetle attack was also increased by drought, but lower conspecific crowding impeded the otherwise positive interaction between fire and beetle attack. Antecedent fire increased drought‐related mortality over short timespans (<7 years) but reduced mortality over longer intervals. These results clarify interacting disturbance dynamics and provide a mechanistic underpinning for forest restoration strategies. Importantly, they demonstrate the potential for managed fire and silvicultural strategies to offset climate effects and bolster resilience to fire, beetles, and drought.
Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2507&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2507&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu