- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020 FrancePublisher:Elsevier BV Authors: Niezgoda, Amandine; Deng, Yimin; Sabatier, Florian; Ansart, Renaud;pmid: 32949843
End-of-life tires are an increasingly important environmental burden. Since retreading is only partly possible, safe and economic methods of disposal need to be developed. Pyrolysis of ELTs, and subsequent upgrading/application of the produced energy carriers, is considered a valuable treatment method. In order to design the process, numerous operation units have to be taken into account. Char, vapour and gas are formed in the reactor. The char is purified from ZnO with a leaching process. The pyrolysis vapour is separated into a condensable fraction (oil) and a non-condensable fraction (gas) thanks to a cross-flow condenser with air as indirect cooling medium. The remaining gas is compressed to 6 bar: a part of it is continuously converted in electricity for process use, while another part is stored for power generation at peak demand time. A flowsheet of the process is established and environmental and assessment of investments and production are discussed. For the pyrolytic treatment of 3 ton/hr of ELTs, the required heat for the reactor is 271 kW at 380 °C, provided by electrical heating elements. A reactor volume is determined for a residence time of about 6 h. For the cross-flow condenser, indirectly air-cooled, a heat-transfer area of about 13.2 m2 is required. The compression of the gas the pressurized pyrolytic gas storage tank depends upon the excess pyrolytic gas produced during operation. The char cooler requires a heat-transfer area of 10.2 m2, when indirectly cooled by water. Operating parameters of the leaching and subsequent recovery of Zn2+ complete the design. The product added-value and the large-scale capacity make the process economically viable, although the ROI is between 2 and 3 years.
Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2020 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Article . 2020 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)OATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Journal of Environmental ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2020.111318&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 13visibility views 13 download downloads 127 Powered bymore_vert Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2020 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Article . 2020 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)OATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Journal of Environmental ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2020.111318&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:IOP Publishing Authors: H. L. Zhang; S. Li; J. Baeyens; Y. M. Deng;Abstract Very few industrial processes only produce the target product, but other materials not desired by the manufacturer are also obtained. These unwanted products constitute the residues of the processes and their discharge contributes to the overall environmental impact. The concept of preventing pollution is gaining increased importance, and certain industries that are particularly similar in nature, could benefit from PPP (Pollution Prevention Program) cross-fertilization. Implementing PPP sets important targets and benefits. A number of codes of good practice lead to PPP, both from a management and technical viewpoints. The fast development of technology and pollution standards implies important challenges for environmental engineers, environmental research and development. Although there is no general route to success, there are however a number of pollution prevention and waste reduction schemes that apply. These alternatives and procedures are illustrated in the paper. It is clear that environment-caring companies will be more readily accepted by their human environment. It is also evident that the engineer of the 21st century faces new and complex environmental challenges. Research remains the backbone of successful development.
IOP Conference Serie... arrow_drop_down IOP Conference Series : Earth and Environmental ScienceArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/544/1/012010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert IOP Conference Serie... arrow_drop_down IOP Conference Series : Earth and Environmental ScienceArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/544/1/012010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:IOP Publishing J Baeyens; H L Zhang; Q Kang; S Li; Y M Deng;Abstract Presently, hydrogen is for ∼50% produced by steam reforming of natural gas – a process leading to significant emissions of greenhouse gas (GHG). About 30% is produced from oil/naphtha reforming and from refinery/chemical industry off-gases. The remaining capacity is covered for 18% from coal gasification, 3.9% from water electrolysis and 0.1% from other sources. In the foreseen future hydrogen economy, green hydrogen production methods will need to supply hydrogen to be used directly as fuel or to generate synthetic fuels, to produce ammonia and other fertilizers (viz. urea), to upgrade heavy oils (like oil sands), and to produce other chemicals. There are several ways to produce H2, each with limitations and potential, such as steam reforming, electrolysis, thermal and thermo-chemical water splitting, dark and photonic fermentation; gasification, and catalytic decomposition of methanol. The paper reviews the fundamentals and potential of these alternative process routes. Both thermo-chemical water splitting and fermentation are marked as having a long term but high “green” potential.
IOP Conference Serie... arrow_drop_down IOP Conference Series Earth and Environmental ScienceArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/544/1/012011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 39 citations 39 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IOP Conference Serie... arrow_drop_down IOP Conference Series Earth and Environmental ScienceArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/544/1/012011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 ArgentinaPublisher:MDPI AG Authors: Juan Pablo Capossio; María Paula Fabani; Andrés Reyes-Urrutia; Rodrigo Torres-Sciancalepore; +4 AuthorsJuan Pablo Capossio; María Paula Fabani; Andrés Reyes-Urrutia; Rodrigo Torres-Sciancalepore; Yimin Deng; Jan Baeyens; Rosa Rodriguez; Germán Mazza;doi: 10.3390/pr10020339
handle: 11336/216407
Spent grains from microbreweries are mostly formed by malting barley (or malt) and are suitable for a further valorization process. Transforming spent grains from waste to raw materials, for instance, in the production of nontraditional flour, requires a previous drying process. A natural convection solar dryer (NCSD) was evaluated as an alternative to a conventional electric convective dryer (CECD) for the dehydration process of local microbrewers’ spent grains. Two types of brewer’s spent grains (BSG; Golden ale and Red ale) were dried with both systems, and sustainability indices, specific energy consumption (eC), and CO2 emissions were calculated and used to assess the environmental advantages and disadvantages of the NCSD. Then, suitable models (empirical, neural networks, and computational fluid dynamics) were used to simulate both types of drying processes under different conditions. The drying times were 30–85 min (depending on the drying temperature, 363.15 K and 333.15 K) and 345–430 min (depending on the starting daytime hour at which the drying process began) for the CECD and the NCSD, respectively. However, eC and CO2 emissions for the CECD were 1.68–1.88 · 10−3 (kW h)/kg and 294.80–410.73 kg/(kW h) for the different drying temperatures. Using the NCSD, both indicators were null, considering this aspect as an environmental benefit.
Processes arrow_drop_down ProcessesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2227-9717/10/2/339/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr10020339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Processes arrow_drop_down ProcessesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2227-9717/10/2/339/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr10020339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 FrancePublisher:MDPI AG Authors: Deng, Yimin; Ansart, Renaud; Baeyens, Jan; Huili, Zhang;doi: 10.3390/en12203908
Sulphur dioxide (SO2) is mostly emitted from coal-fueled power plants, from waste incineration, from sulphuric acid manufacturing, from clay brick plants and from treating nonferrous metals. The emission of SO2 needs to be abated. Both wet scrubbing (absorption) and dry or semi-dry (reaction) systems are used. In the dry process, both bubbling and circulating fluidized beds (BFB, CFB) can be used as contactor. Experimental results demonstrate a SO2-removal efficiency in excess of 94% in a CFB application. A general model of the heterogeneous reaction is proposed, combining the external diffusion of SO2 across the gas film, the internal diffusion of SO2 in the porous particles and the reaction as such (irreversible, 1st order). For the reaction of SO2 with a fine particulate reactant, the reaction rate constant and the relevant contact time are the dominant parameters. Application of the model equations reveals that the circulating fluidized bed is the most appropriate technique, where the high solid to gas ratio guarantees a high conversion in a short reaction time. For the CFB operation, the required gas contact time in a CFB at given superficial gas velocities and solids circulation rates will determine the SO2 removal rate.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/20/3908/pdfData sources: Multidisciplinary Digital Publishing InstituteOpen Archive Toulouse Archive OuverteArticle . 2019 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Article . 2019 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)OATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12203908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 16visibility views 16 download downloads 13 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/20/3908/pdfData sources: Multidisciplinary Digital Publishing InstituteOpen Archive Toulouse Archive OuverteArticle . 2019 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Article . 2019 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)OATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12203908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Conference object 2020 FrancePublisher:IOP Publishing Funded by:EC | NEXT-CSPEC| NEXT-CSPBaeyens, Jan; Li, Shuo; Zhang, Huili; Dewil, Raf; Flamant, Gilles; Ansart, Renaud; Deng, Yimin;Abstract Electricity from concentrated solar power (CSP) plants, gains an increasing interest and importance. To fully match the supply-demand principle, CSP processes include a thermal energy storage and back-up fuel supply. Novel CSP concepts are needed with specific targets of increased efficiency and reliability, and of reduced CAPEX and OPEX. The use of particle suspensions offers significant advantages since applicable in all sub-sections of the complete CSP as heat carrier from the receiver, to the heat storage, and ultimately to the power block. The use of particles in the steam generation (power block) is a common fluidized bed boiler technology. This paper will present the entire particle-based concept, while also discussing the potential to use biomass-based energy carriers as back-up heat supply. Process data and expected effects on the process economy of the system will be discussed.
Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteConference object . 2020 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Conference object . 2020 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)IOP Conference Series Earth and Environmental ScienceArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefMémoires en Sciences de l'Information et de la CommunicationConference object . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/544/1/012012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 15visibility views 15 download downloads 24 Powered bymore_vert Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteConference object . 2020 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Conference object . 2020 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)IOP Conference Series Earth and Environmental ScienceArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefMémoires en Sciences de l'Information et de la CommunicationConference object . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/544/1/012012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 FrancePublisher:Elsevier BV Jan Baeyens; Huili Zhang; Jiapei Nie; Lise Appels; Raf Dewil; Renaud Ansart; Yimin Deng;Abstract Hydrogen is a common reactant in the petro-chemical industry and moreover recognized as a potential fuel within the next 20 years. The production of hydrogen from biomass and carbohydrate feedstock, though undoubtedly desirable and favored, is still at the level of laboratory or pilot scale. The present work reviews the current researched pathways. Different types of carbohydrates, and waste biomass are identified as feedstock for the fermentative bio-hydrogen production. Although all techniques suffer from drawbacks of a low H2 yield and the production of a liquid waste stream rich in VFAs that needs further treatment, the technical advances foster the commercial utilization. Bacterial strains capable of high hydrogen yield are assessed, together with advanced techniques of co-culture fermentation and metabolic engineering. Residual VFAs can be converted. The review provides an insight on how fermentation can be conducted for a wide spectrum of feedstock and how fermentation effluent can be valorized by integrating fermentation with other systems, leading to an improved industrial potential of the technique. To boost the fermentation potential, additional research should firstly target its demonstration on pilot or industrial scale to prove the process efficiency, production costs and method reliability. It should secondly focus on optimizing the micro-organism functionality, and should finally develop and demonstrate a viable valorization of the residual VFA-rich waste streams.
Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2020 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Article . 2020 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)OATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 230 citations 230 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 33visibility views 33 download downloads 56 Powered bymore_vert Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2020 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Article . 2020 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)OATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ArgentinaPublisher:Elsevier BV Yimin Deng; Yimin Deng; Erick Torres; Daniela Zalazar-García; Rosa Rodriguez; Germán Mazza; Verónica Bucalá; Verónica Bucalá; Jose Miguel Soria; Leandro A. Rodriguez-Ortiz;The frequent environment-unfriendly treatments of agro-industrial bio-wastes cause severe pollution through air pollution and through residual effluents and hazardous solid waste. These bio-wastes can contain phenolic compounds, forms of phenolic acids and flavonoids in plants. They are however the most abundant class of many phytochemicals and have been given great interest due to their health advantage and high economic value. An interesting upgrading of these bio-wastes may consist in obtaining a concentrated extract of phenolic compounds using no-toxic solvents, hence protecting the environment and human health. In this work, different alternatives of the extraction process were evaluated using an exergetic analysis. The energy and water consumptions, CO2 emissions, exergetic yield, wasted and destroyed exergy were calculated. It was found that several alternatives for recycle streams were convenient (streams with higher chemical exergy were not discharged into the environment). The energy and water consumption for the best alternative (ethanol-water ratio 1/1 including recycle stream, named E-W 1/1 Rec) were 567 MJ/h and 105 kg/h, respectively and the CO2 emission was 105 kg/h. The calculated exergy destruction indicated that the evaporation and distillation stages may be optimized towards a more sustainable operation. It is not advisable to dry the bio-waste if it will be immediately processed once generated.
CONICET Digital arrow_drop_down Journal of Environmental ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2020.111154&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CONICET Digital arrow_drop_down Journal of Environmental ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2020.111154&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Yimin Deng; Raf Dewil; Lise Appels; Shuo Li; Jan Baeyens; Jan Degrève; Guirong Wang;Abstract Hydrogen is a top chemical and potential fuel. Its sustainable production from biomass or water splitting gains importance. Whereas sole thermal water splitting requires too high temperatures, thermo-chemical water splitting cycles offer a solution at moderate temperatures. Such cycles were investigated over the past decades, mostly by small-scale experiments and mainly to prove their concept without judgment of their practical, economic, environmental and cyclic performance. To facilitate the decision making and to guide future priority research, these multiple aspects can be combined in a global screening system that applies the improved Analytic Hierarchy Process (AHP) and grey relational TOPSIS, together with the use of linear and non-linear combination weighing. The assessment is quantitative and comprehensive, emphasizing the complex relationship between energy efficiency, conversion, recyclability, economy and environmental quality. The total index combines systematics and flexibility through its multi-objective and multi-level nature. The index helps users, system manufacturers, researchers and governments to select the most appropriate future schemes. Very high temperature reactions of e.g. metal-metal oxides, metal-metal hydroxides, perovskites or doped ceria were not included. At the required temperatures, concentrated solar energy is the evident heat source, although applicable temperatures should meet the mechanical and thermal constraints of the solar receiver-reactor construction materials. The experimental set-up that will be used for subsequent pilot-scale solar testing is briefly described. As a result of the multi-attribute assessment, 4 out of 24 oxidation/reduction reactions are selected for further laboratory or preferably pilot-scale application, including the MnFe2O4, MnO/NaMnO2 and ZnO/Fe3O4/ZnFe2O4 redox reactions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.02.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.02.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Lise Appels; Yimin Deng; Yimin Deng; Meng Wang; Yunming Fang; Huili Zhang;pmid: 32801103
Bio-aviation fuels are a major research and development topic, with strong interests from the aviation sector, the public, lawmakers and potential producers. Yet the development and market penetration in the air-transportation sector is slow, despite proven environmental benefits. Bio-fuels can indeed mitigate the environmental impact of the aviation sector mostly due to their low carbon intensity and favourable chemical structure. Such bio-aviation fuels must have "drop-in" characteristics with specifications and compatibility with the combustion behaviour of kerosene. The ASTM approval procedures are an important guarantee in this respect. Additional emission reductions rely on the production pathways, while optimum flight-related strategies are an additional benefit. An analysis of both the production pathways, and the environmental and Life Cycle Assessment findings delineates important research directions to enhance the production and use of bio-aviation fuels. Towards specific environmental issues, target research topics should include various topics. A better quantification of particulate and soot emissions, condensation contrails and NOx are of primary concern. The impact of geographic parameters on the bio-aviation fuel benefits should be investigated towards using bio-aviation fuels primarily in specific climate zones. Emission prediction models should be further developed. LCA approaches should be extended. More on-flight emission patterns should be measured to provide relevant data for the above considerations; Towards bio-aviation fuel characterization, safety and reliability are major criteria of the ASTM approval. Towards production pathways, the technical viability studies of synthesis pathways should be combined with economic assessments. Towards fuel costs, the reason for the high production cost of bio-aviation fuel is at least partly due to the oxygen-rich bio-polymer nature of biomass with unsuitable carbon chain length. In order to reduce the cost of bio-aviation fuel, several research directions are encouraged and discussed in the paper.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2020.111214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 44 citations 44 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2020.111214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 FrancePublisher:Elsevier BV Authors: Niezgoda, Amandine; Deng, Yimin; Sabatier, Florian; Ansart, Renaud;pmid: 32949843
End-of-life tires are an increasingly important environmental burden. Since retreading is only partly possible, safe and economic methods of disposal need to be developed. Pyrolysis of ELTs, and subsequent upgrading/application of the produced energy carriers, is considered a valuable treatment method. In order to design the process, numerous operation units have to be taken into account. Char, vapour and gas are formed in the reactor. The char is purified from ZnO with a leaching process. The pyrolysis vapour is separated into a condensable fraction (oil) and a non-condensable fraction (gas) thanks to a cross-flow condenser with air as indirect cooling medium. The remaining gas is compressed to 6 bar: a part of it is continuously converted in electricity for process use, while another part is stored for power generation at peak demand time. A flowsheet of the process is established and environmental and assessment of investments and production are discussed. For the pyrolytic treatment of 3 ton/hr of ELTs, the required heat for the reactor is 271 kW at 380 °C, provided by electrical heating elements. A reactor volume is determined for a residence time of about 6 h. For the cross-flow condenser, indirectly air-cooled, a heat-transfer area of about 13.2 m2 is required. The compression of the gas the pressurized pyrolytic gas storage tank depends upon the excess pyrolytic gas produced during operation. The char cooler requires a heat-transfer area of 10.2 m2, when indirectly cooled by water. Operating parameters of the leaching and subsequent recovery of Zn2+ complete the design. The product added-value and the large-scale capacity make the process economically viable, although the ROI is between 2 and 3 years.
Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2020 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Article . 2020 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)OATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Journal of Environmental ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2020.111318&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 13visibility views 13 download downloads 127 Powered bymore_vert Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2020 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Article . 2020 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)OATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Journal of Environmental ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2020.111318&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:IOP Publishing Authors: H. L. Zhang; S. Li; J. Baeyens; Y. M. Deng;Abstract Very few industrial processes only produce the target product, but other materials not desired by the manufacturer are also obtained. These unwanted products constitute the residues of the processes and their discharge contributes to the overall environmental impact. The concept of preventing pollution is gaining increased importance, and certain industries that are particularly similar in nature, could benefit from PPP (Pollution Prevention Program) cross-fertilization. Implementing PPP sets important targets and benefits. A number of codes of good practice lead to PPP, both from a management and technical viewpoints. The fast development of technology and pollution standards implies important challenges for environmental engineers, environmental research and development. Although there is no general route to success, there are however a number of pollution prevention and waste reduction schemes that apply. These alternatives and procedures are illustrated in the paper. It is clear that environment-caring companies will be more readily accepted by their human environment. It is also evident that the engineer of the 21st century faces new and complex environmental challenges. Research remains the backbone of successful development.
IOP Conference Serie... arrow_drop_down IOP Conference Series : Earth and Environmental ScienceArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/544/1/012010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert IOP Conference Serie... arrow_drop_down IOP Conference Series : Earth and Environmental ScienceArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/544/1/012010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:IOP Publishing J Baeyens; H L Zhang; Q Kang; S Li; Y M Deng;Abstract Presently, hydrogen is for ∼50% produced by steam reforming of natural gas – a process leading to significant emissions of greenhouse gas (GHG). About 30% is produced from oil/naphtha reforming and from refinery/chemical industry off-gases. The remaining capacity is covered for 18% from coal gasification, 3.9% from water electrolysis and 0.1% from other sources. In the foreseen future hydrogen economy, green hydrogen production methods will need to supply hydrogen to be used directly as fuel or to generate synthetic fuels, to produce ammonia and other fertilizers (viz. urea), to upgrade heavy oils (like oil sands), and to produce other chemicals. There are several ways to produce H2, each with limitations and potential, such as steam reforming, electrolysis, thermal and thermo-chemical water splitting, dark and photonic fermentation; gasification, and catalytic decomposition of methanol. The paper reviews the fundamentals and potential of these alternative process routes. Both thermo-chemical water splitting and fermentation are marked as having a long term but high “green” potential.
IOP Conference Serie... arrow_drop_down IOP Conference Series Earth and Environmental ScienceArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/544/1/012011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 39 citations 39 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IOP Conference Serie... arrow_drop_down IOP Conference Series Earth and Environmental ScienceArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/544/1/012011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 ArgentinaPublisher:MDPI AG Authors: Juan Pablo Capossio; María Paula Fabani; Andrés Reyes-Urrutia; Rodrigo Torres-Sciancalepore; +4 AuthorsJuan Pablo Capossio; María Paula Fabani; Andrés Reyes-Urrutia; Rodrigo Torres-Sciancalepore; Yimin Deng; Jan Baeyens; Rosa Rodriguez; Germán Mazza;doi: 10.3390/pr10020339
handle: 11336/216407
Spent grains from microbreweries are mostly formed by malting barley (or malt) and are suitable for a further valorization process. Transforming spent grains from waste to raw materials, for instance, in the production of nontraditional flour, requires a previous drying process. A natural convection solar dryer (NCSD) was evaluated as an alternative to a conventional electric convective dryer (CECD) for the dehydration process of local microbrewers’ spent grains. Two types of brewer’s spent grains (BSG; Golden ale and Red ale) were dried with both systems, and sustainability indices, specific energy consumption (eC), and CO2 emissions were calculated and used to assess the environmental advantages and disadvantages of the NCSD. Then, suitable models (empirical, neural networks, and computational fluid dynamics) were used to simulate both types of drying processes under different conditions. The drying times were 30–85 min (depending on the drying temperature, 363.15 K and 333.15 K) and 345–430 min (depending on the starting daytime hour at which the drying process began) for the CECD and the NCSD, respectively. However, eC and CO2 emissions for the CECD were 1.68–1.88 · 10−3 (kW h)/kg and 294.80–410.73 kg/(kW h) for the different drying temperatures. Using the NCSD, both indicators were null, considering this aspect as an environmental benefit.
Processes arrow_drop_down ProcessesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2227-9717/10/2/339/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr10020339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Processes arrow_drop_down ProcessesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2227-9717/10/2/339/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr10020339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 FrancePublisher:MDPI AG Authors: Deng, Yimin; Ansart, Renaud; Baeyens, Jan; Huili, Zhang;doi: 10.3390/en12203908
Sulphur dioxide (SO2) is mostly emitted from coal-fueled power plants, from waste incineration, from sulphuric acid manufacturing, from clay brick plants and from treating nonferrous metals. The emission of SO2 needs to be abated. Both wet scrubbing (absorption) and dry or semi-dry (reaction) systems are used. In the dry process, both bubbling and circulating fluidized beds (BFB, CFB) can be used as contactor. Experimental results demonstrate a SO2-removal efficiency in excess of 94% in a CFB application. A general model of the heterogeneous reaction is proposed, combining the external diffusion of SO2 across the gas film, the internal diffusion of SO2 in the porous particles and the reaction as such (irreversible, 1st order). For the reaction of SO2 with a fine particulate reactant, the reaction rate constant and the relevant contact time are the dominant parameters. Application of the model equations reveals that the circulating fluidized bed is the most appropriate technique, where the high solid to gas ratio guarantees a high conversion in a short reaction time. For the CFB operation, the required gas contact time in a CFB at given superficial gas velocities and solids circulation rates will determine the SO2 removal rate.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/20/3908/pdfData sources: Multidisciplinary Digital Publishing InstituteOpen Archive Toulouse Archive OuverteArticle . 2019 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Article . 2019 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)OATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12203908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 16visibility views 16 download downloads 13 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/20/3908/pdfData sources: Multidisciplinary Digital Publishing InstituteOpen Archive Toulouse Archive OuverteArticle . 2019 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Article . 2019 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)OATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12203908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Conference object 2020 FrancePublisher:IOP Publishing Funded by:EC | NEXT-CSPEC| NEXT-CSPBaeyens, Jan; Li, Shuo; Zhang, Huili; Dewil, Raf; Flamant, Gilles; Ansart, Renaud; Deng, Yimin;Abstract Electricity from concentrated solar power (CSP) plants, gains an increasing interest and importance. To fully match the supply-demand principle, CSP processes include a thermal energy storage and back-up fuel supply. Novel CSP concepts are needed with specific targets of increased efficiency and reliability, and of reduced CAPEX and OPEX. The use of particle suspensions offers significant advantages since applicable in all sub-sections of the complete CSP as heat carrier from the receiver, to the heat storage, and ultimately to the power block. The use of particles in the steam generation (power block) is a common fluidized bed boiler technology. This paper will present the entire particle-based concept, while also discussing the potential to use biomass-based energy carriers as back-up heat supply. Process data and expected effects on the process economy of the system will be discussed.
Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteConference object . 2020 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Conference object . 2020 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)IOP Conference Series Earth and Environmental ScienceArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefMémoires en Sciences de l'Information et de la CommunicationConference object . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/544/1/012012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 15visibility views 15 download downloads 24 Powered bymore_vert Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteConference object . 2020 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Conference object . 2020 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)IOP Conference Series Earth and Environmental ScienceArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefMémoires en Sciences de l'Information et de la CommunicationConference object . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/544/1/012012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 FrancePublisher:Elsevier BV Jan Baeyens; Huili Zhang; Jiapei Nie; Lise Appels; Raf Dewil; Renaud Ansart; Yimin Deng;Abstract Hydrogen is a common reactant in the petro-chemical industry and moreover recognized as a potential fuel within the next 20 years. The production of hydrogen from biomass and carbohydrate feedstock, though undoubtedly desirable and favored, is still at the level of laboratory or pilot scale. The present work reviews the current researched pathways. Different types of carbohydrates, and waste biomass are identified as feedstock for the fermentative bio-hydrogen production. Although all techniques suffer from drawbacks of a low H2 yield and the production of a liquid waste stream rich in VFAs that needs further treatment, the technical advances foster the commercial utilization. Bacterial strains capable of high hydrogen yield are assessed, together with advanced techniques of co-culture fermentation and metabolic engineering. Residual VFAs can be converted. The review provides an insight on how fermentation can be conducted for a wide spectrum of feedstock and how fermentation effluent can be valorized by integrating fermentation with other systems, leading to an improved industrial potential of the technique. To boost the fermentation potential, additional research should firstly target its demonstration on pilot or industrial scale to prove the process efficiency, production costs and method reliability. It should secondly focus on optimizing the micro-organism functionality, and should finally develop and demonstrate a viable valorization of the residual VFA-rich waste streams.
Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2020 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Article . 2020 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)OATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 230 citations 230 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 33visibility views 33 download downloads 56 Powered bymore_vert Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2020 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Article . 2020 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)OATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ArgentinaPublisher:Elsevier BV Yimin Deng; Yimin Deng; Erick Torres; Daniela Zalazar-García; Rosa Rodriguez; Germán Mazza; Verónica Bucalá; Verónica Bucalá; Jose Miguel Soria; Leandro A. Rodriguez-Ortiz;The frequent environment-unfriendly treatments of agro-industrial bio-wastes cause severe pollution through air pollution and through residual effluents and hazardous solid waste. These bio-wastes can contain phenolic compounds, forms of phenolic acids and flavonoids in plants. They are however the most abundant class of many phytochemicals and have been given great interest due to their health advantage and high economic value. An interesting upgrading of these bio-wastes may consist in obtaining a concentrated extract of phenolic compounds using no-toxic solvents, hence protecting the environment and human health. In this work, different alternatives of the extraction process were evaluated using an exergetic analysis. The energy and water consumptions, CO2 emissions, exergetic yield, wasted and destroyed exergy were calculated. It was found that several alternatives for recycle streams were convenient (streams with higher chemical exergy were not discharged into the environment). The energy and water consumption for the best alternative (ethanol-water ratio 1/1 including recycle stream, named E-W 1/1 Rec) were 567 MJ/h and 105 kg/h, respectively and the CO2 emission was 105 kg/h. The calculated exergy destruction indicated that the evaporation and distillation stages may be optimized towards a more sustainable operation. It is not advisable to dry the bio-waste if it will be immediately processed once generated.
CONICET Digital arrow_drop_down Journal of Environmental ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2020.111154&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CONICET Digital arrow_drop_down Journal of Environmental ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2020.111154&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Yimin Deng; Raf Dewil; Lise Appels; Shuo Li; Jan Baeyens; Jan Degrève; Guirong Wang;Abstract Hydrogen is a top chemical and potential fuel. Its sustainable production from biomass or water splitting gains importance. Whereas sole thermal water splitting requires too high temperatures, thermo-chemical water splitting cycles offer a solution at moderate temperatures. Such cycles were investigated over the past decades, mostly by small-scale experiments and mainly to prove their concept without judgment of their practical, economic, environmental and cyclic performance. To facilitate the decision making and to guide future priority research, these multiple aspects can be combined in a global screening system that applies the improved Analytic Hierarchy Process (AHP) and grey relational TOPSIS, together with the use of linear and non-linear combination weighing. The assessment is quantitative and comprehensive, emphasizing the complex relationship between energy efficiency, conversion, recyclability, economy and environmental quality. The total index combines systematics and flexibility through its multi-objective and multi-level nature. The index helps users, system manufacturers, researchers and governments to select the most appropriate future schemes. Very high temperature reactions of e.g. metal-metal oxides, metal-metal hydroxides, perovskites or doped ceria were not included. At the required temperatures, concentrated solar energy is the evident heat source, although applicable temperatures should meet the mechanical and thermal constraints of the solar receiver-reactor construction materials. The experimental set-up that will be used for subsequent pilot-scale solar testing is briefly described. As a result of the multi-attribute assessment, 4 out of 24 oxidation/reduction reactions are selected for further laboratory or preferably pilot-scale application, including the MnFe2O4, MnO/NaMnO2 and ZnO/Fe3O4/ZnFe2O4 redox reactions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.02.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.02.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Lise Appels; Yimin Deng; Yimin Deng; Meng Wang; Yunming Fang; Huili Zhang;pmid: 32801103
Bio-aviation fuels are a major research and development topic, with strong interests from the aviation sector, the public, lawmakers and potential producers. Yet the development and market penetration in the air-transportation sector is slow, despite proven environmental benefits. Bio-fuels can indeed mitigate the environmental impact of the aviation sector mostly due to their low carbon intensity and favourable chemical structure. Such bio-aviation fuels must have "drop-in" characteristics with specifications and compatibility with the combustion behaviour of kerosene. The ASTM approval procedures are an important guarantee in this respect. Additional emission reductions rely on the production pathways, while optimum flight-related strategies are an additional benefit. An analysis of both the production pathways, and the environmental and Life Cycle Assessment findings delineates important research directions to enhance the production and use of bio-aviation fuels. Towards specific environmental issues, target research topics should include various topics. A better quantification of particulate and soot emissions, condensation contrails and NOx are of primary concern. The impact of geographic parameters on the bio-aviation fuel benefits should be investigated towards using bio-aviation fuels primarily in specific climate zones. Emission prediction models should be further developed. LCA approaches should be extended. More on-flight emission patterns should be measured to provide relevant data for the above considerations; Towards bio-aviation fuel characterization, safety and reliability are major criteria of the ASTM approval. Towards production pathways, the technical viability studies of synthesis pathways should be combined with economic assessments. Towards fuel costs, the reason for the high production cost of bio-aviation fuel is at least partly due to the oxygen-rich bio-polymer nature of biomass with unsuitable carbon chain length. In order to reduce the cost of bio-aviation fuel, several research directions are encouraged and discussed in the paper.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2020.111214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 44 citations 44 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2020.111214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu