- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 01 Jan 2022 Switzerland, SwitzerlandPublisher:Wiley Funded by:EC | DRYSOM, SNSF | Acclimation and environme...EC| DRYSOM ,SNSF| Acclimation and environmental memory - how do trees adjust to warmer droughts on different time scales and where are the limits?Arun K. Bose; Andreas Rigling; Arthur Geßler; Frank Hagedorn; Ivano Brunner; Linda Feichtinger; Christof Bigler; Simon Egli; Sophia Etzold; Martin M. Goßner; Claudia Guidi; Mathieu Lévesque; Katrin Meusburger; Martina Peter; Matthias Saurer; Daniel Scherrer; Patrick Schleppi; Leonie Schönbeck; Michael E. Vogel; Georg von Arx; Beat Wermelinger; Thomas Wohlgemuth; Roman Zweifel; Marcus Schaub;AbstractClimate change exposes ecosystems to strong and rapid changes in their environmental boundary conditions mainly due to the altered temperature and precipitation patterns. It is still poorly understood how fast interlinked ecosystem processes respond to altered environmental conditions, if these responses occur gradually or suddenly when thresholds are exceeded, and if the patterns of the responses will reach a stable state. We conducted an irrigation experiment in the Pfynwald, Switzerland from 2003–2018. A naturally dry Scots pine (Pinus sylvestris L.) forest was irrigated with amounts that doubled natural precipitation, thus releasing the forest stand from water limitation. The aim of this study was to provide a quantitative understanding on how different traits and functions of individual trees and the whole ecosystem responded to increased water availability, and how the patterns and magnitudes of these responses developed over time. We found that the response magnitude, the temporal trajectory of responses, and the length of initial lag period prior to significant response largely varied across traits. We detected rapid and stronger responses from aboveground tree traits (e.g., tree‐ring width, needle length, and crown transparency) compared to belowground tree traits (e.g., fine‐root biomass). The altered aboveground traits during the initial years of irrigation increased the water demand and trees adjusted by increasing root biomass during the later years of irrigation, resulting in an increased survival rate of Scots pine trees in irrigated plots. The irrigation also stimulated ecosystem‐level foliar decomposition rate, fungal fruit body biomass, and regeneration abundances of broadleaved tree species. However, irrigation did not promote the regeneration of Scots pine trees, which are reported to be vulnerable to extreme droughts. Our results provide extensive evidence that tree‐ and ecosystem‐level responses were pervasive across a number of traits on long‐term temporal scales. However, after reaching a peak, the magnitude of these responses either decreased or reached a new stable state, providing important insights into how resource alterations could change the system functioning and its boundary conditions.
Ecological Monograph... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecm.1507&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ecological Monograph... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecm.1507&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Belgium, France, Germany, BelgiumPublisher:Wiley Funded by:DFG | German Centre for Integra...DFG| German Centre for Integrative Biodiversity Research - iDivJing, Xin; Baum, Christel; Castagneyrol, Bastien; Eisenhauer, Nico; Ferlian, Olga; Gebauer, Tobias; Hajek, Peter; Jactel, Hervé; Muys, Bart; Nock, Charles; Ponette, Quentin; Rose, Laura; Saurer, Matthias; Scherer‐lorenzen, Michael; Verheyen, Kris; van Meerbeek, Koenraad;Summary Recent droughts have strongly impacted forest ecosystems and are projected to increase in frequency, intensity, and duration in the future together with continued warming. While evidence suggests that tree diversity can regulate drought impacts in natural forests, few studies examine whether mixed tree plantations are more resistant to the impacts of severe droughts. Using natural variations in leaf carbon (C) and nitrogen (N) isotopic ratios, that is δ13C and δ15N, as proxies for drought response, we analyzed the effects of tree species richness on the functional responses of tree plantations to the pan‐European 2018 summer drought in seven European tree diversity experiments. We found that leaf δ13C decreased with increasing tree species richness, indicating less drought stress. This effect was not related to drought intensity, nor desiccation tolerance of the tree species. Leaf δ15N increased with drought intensity, indicating a shift toward more open N cycling as water availability diminishes. Additionally, drought intensity was observed to alter the influence of tree species richness on leaf δ15N from weakly negative under low drought intensity to weakly positive under high drought intensity. Overall, our findings suggest that dual leaf isotope analysis helps understand the interaction between drought, nutrients, and species richness.
Dépôt Institutionel ... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)New PhytologistArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.19931&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Dépôt Institutionel ... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)New PhytologistArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.19931&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Embargo end date: 01 Jan 2009 SwitzerlandPublisher:Springer Science and Business Media LLC Kress, Anne; Saurer, Matthias; Büntgen, Ulf; Treydte, Kerstin; Bugmann, Harald; Siegwolf, Rolf;pmid: 19219459
Oecologia, 160 (2) ISSN:0029-8549 ISSN:1432-1939
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-009-1290-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-009-1290-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Oxford University Press (OUP) Xi Qi; Kerstin Treydte; Matthias Saurer; Keyan Fang; Wenling An; Marco Lehmann; Kunyuan Liu; Zhengfang Wu; Hong S He; Haibo Du; Mai-He Li;Abstract The effects of rising atmospheric CO2 concentrations (Ca) with climate warming on intrinsic water-use efficiency and radial growth in boreal forests are still poorly understood. We measured tree-ring cellulose δ13C, δ18O, and tree-ring width in Larix dahurica (larch) and Betula platyphylla (white birch), and analyzed their relationships with climate variables in a boreal permafrost region of northeast China over past 68 years covering a pre-warming period (1951–1984; base period) and a warm period (1985–2018; warm period). We found that white birch but not larch significantly increased their radial growth over the warm period. The increased intrinsic water-use efficiency in both species was mainly driven by elevated Ca but not climate warming. White birch but not larch showed significantly positive correlations between tree-ring δ13C, δ18O and summer maximum temperature as well as vapor pressure deficit in the warm period, suggesting a strong stomatal response in the broad-leaved birch to temperature changes. The climate warming-induced radial growth enhancement in white birch is primarily associated with a conservative water-use strategy. In contrast, larch exhibits a profligate water-use strategy. It implies an advantage for white birch over larch in the warming permafrost regions.
Tree Physiology arrow_drop_down Tree PhysiologyArticle . 2024 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/treephys/tpae053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Tree Physiology arrow_drop_down Tree PhysiologyArticle . 2024 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/treephys/tpae053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 Netherlands, Germany, GermanyPublisher:Wiley Matthias Saurer; Andreas Rigling; Mathieu Lévesque; Mathieu Lévesque; Rolf T. W. Siegwolf; Britta Eilmann;doi: 10.1111/nph.12772
pmid: 24635031
Summary Higher atmospheric CO2 concentrations (ca) can under certain conditions increase tree growth by enhancing photosynthesis, resulting in an increase of intrinsic water‐use efficiency (iWUE) in trees. However, the magnitude of these effects and their interactions with changing climatic conditions are still poorly understood under xeric and mesic conditions. We combined radial growth analysis with intra‐ and interannual δ13C and δ18O measurements to investigate growth and physiological responses of Larix decidua, Picea abies, Pinus sylvestris, Pinus nigra and Pseudotsuga menziesii in relation to rising ca and changing climate at a xeric site in the dry inner Alps and at a mesic site in the Swiss lowlands. iWUE increased significantly over the last 50 yr by 8–29% and varied depending on species, site water availability, and seasons. Regardless of species and increased iWUE, radial growth has significantly declined under xeric conditions, whereas growth has not increased as expected under mesic conditions. Overall, drought‐induced stomatal closure has reduced transpiration at the cost of reduced carbon uptake and growth. Our results indicate that, even under mesic conditions, the temperature‐induced drought stress has overridden the potential CO2 ‘fertilization’ on tree growth, hence challenging today's predictions of improved forest productivity of temperate forests.
New Phytologist arrow_drop_down New PhytologistArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublication Server of the FH Aachen University of Applied SciencesArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.12772&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu169 citations 169 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublication Server of the FH Aachen University of Applied SciencesArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.12772&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 ItalyPublisher:Wiley Willi A. Brand; Giovanna Aronne; Veronica De Micco; Matthias Saurer; Petra Linke; Paolo Cherubini; Giovanna Battipaglia; Giovanna Battipaglia;AbstractErica arborea (L) is a widespread Mediterranean species, able to cope with water stress and colonize semiarid environments. The eco‐physiological plasticity of this species was evaluated by studying plants growing at two sites with different soil moistures on the island of Elba (Italy), through dendrochronological, wood‐anatomical analyses and stable isotopes measurements. Intra‐annual density fluctuations (IADFs) were abundant in tree rings, and were identified as the key parameter to understand site‐specific plant responses to water stress. Our findings showed that the formation of IADFs is mainly related to the high temperature, precipitation patterns and probably to soil water availability, which differs at the selected study sites. The recorded increase in the 13C‐derived intrinsic water use efficiency at the IADFs level was linked to reduced water loss rather than to increasing C assimilation. The variation in vessel size and the different absolute values of δ18O among trees growing at the two study sites underlined possible differences in stomatal control of water loss and possible differences in sources of water uptake. This approach not only helped monitor seasonal environmental differences through tree‐ring width, but also added valuable information on E. arborea responses to drought and their ecological implications for Mediterranean vegetation dynamics.
MPG.PuRe arrow_drop_down Plant Cell & EnvironmentArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.12160&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu111 citations 111 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert MPG.PuRe arrow_drop_down Plant Cell & EnvironmentArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.12160&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 ItalyPublisher:Wiley M. Francesca Cotrufo; Heather R. McCarthy; Paolo Cherubini; Carlo Calfapietra; Matthias Saurer; Richard J. Norby; Giovanna Battipaglia; Giovanna Battipaglia;doi: 10.1111/nph.12044
handle: 20.500.14243/266248 , 11591/227604
Summary Elevated CO2 increases intrinsic water use efficiency (WUEi) of forests, but the magnitude of this effect and its interaction with climate is still poorly understood. We combined tree ring analysis with isotope measurements at three Free Air CO2 Enrichment (FACE, POP‐EUROFACE, in Italy; Duke FACE in North Carolina and ORNL in Tennessee, USA) sites, to cover the entire life of the trees. We used δ13C to assess carbon isotope discrimination and changes in water‐use efficiency, while direct CO2 effects on stomatal conductance were explored using δ18O as a proxy. Across all the sites, elevated CO2 increased 13C‐derived water‐use efficiency on average by 73% for Liquidambar styraciflua, 77% for Pinus taeda and 75% for Populus sp., but through different ecophysiological mechanisms. Our findings provide a robust means of predicting water‐use efficiency responses from a variety of tree species exposed to variable environmental conditions over time, and species‐specific relationships that can help modelling elevated CO2 and climate impacts on forest productivity, carbon and water balances.
New Phytologist arrow_drop_down New PhytologistArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.12044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 221 citations 221 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 2visibility views 2 download downloads 3 Powered bymore_vert New Phytologist arrow_drop_down New PhytologistArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.12044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Embargo end date: 01 Jan 2017 SwitzerlandPublisher:Oxford University Press (OUP) Kerstin Treydte; Andreas Rigling; Marcus Schaub; Rolf T. W. Siegwolf; Rolf T. W. Siegwolf; Galina Timofeeva; Galina Timofeeva; Galina Timofeeva; Matthias Saurer; Matthias Saurer; Harald Bugmann;pmid: 28444356
Tree Physiology, 37 (8) ISSN:0829-318X ISSN:1758-4469
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/treephys/tpx041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 93 citations 93 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/treephys/tpx041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 FinlandPublisher:Wiley Funded by:RSF | Adaptation of conifers in...RSF| Adaptation of conifers in Eurasia to changing environment: eco-physiological research of tree-ringsRinne, K. T.; Saurer, M.; Kirdyanov, A. V.; Bryukhanova, M. V.; Prokushkin, A. S.; Churakova (Sidorova), O. V.; Siegwolf; R. T. W.;pmid: 25916312
AbstractLittle is known about the dynamics of concentrations and carbon isotope ratios of individual carbohydrates in leaves in response to climatic and physiological factors. Improved knowledge of the isotopic ratio in sugars will enhance our understanding of the tree ring isotope ratio and will help to decipher environmental conditions in retrospect more reliably. Carbohydrate samples from larch (Larix gmelinii) needles of two sites in the continuous permafrost zone of Siberia with differing growth conditions were analysed with the Compound‐Specific Isotope Analysis (CSIA). We compared concentrations and carbon isotope values (δ13C) of sucrose, fructose, glucose and pinitol combined with phenological data. The results for the variability of the needle carbohydrates show high dynamics with distinct seasonal characteristics between and within the studied years with a clear link to the climatic conditions, particularly vapour pressure deficit. Compound‐specific differences in δ13C values as a response to climate were detected. The δ13C of pinitol, which contributes up to 50% of total soluble carbohydrates, was almost invariant during the whole growing season. Our study provides the first in‐depth characterization of compound‐specific needle carbohydrate isotope variability, identifies involved mechanisms and shows the potential of such results for linking tree physiological responses to different climatic conditions.
Plant Cell & Environ... arrow_drop_down Plant Cell & EnvironmentArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.12554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Plant Cell & Environ... arrow_drop_down Plant Cell & EnvironmentArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.12554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Report 2020Embargo end date: 01 Jan 2022 Germany, SwitzerlandPublisher:Wiley Funded by:DFGDFGMatthias Saurer; Tobias Gebauer; Charles A. Nock; Charles A. Nock; Peter Hajek; Christian Messier; Christian Messier; Alain Paquette; Bernhard Schuldt; Arthur Gessler; Arthur Gessler; Michael Scherer-Lorenzen; Roman M. Link; Laura Rose; Jürgen Bauhus; Kyle R. Kovach;AbstractUnprecedented tree dieback across Central Europe caused by recent global change‐type drought events highlights the need for a better mechanistic understanding of drought‐induced tree mortality. Although numerous physiological risk factors have been identified, the importance of two principal mechanisms, hydraulic failure and carbon starvation, is still debated. It further remains largely unresolved how the local neighborhood composition affects individual mortality risk. We studied 9435 young trees of 12 temperate species planted in a diversity experiment in 2013 to assess how hydraulic traits, carbon dynamics, pest infestation, tree height and neighborhood competition influence individual mortality risk. Following the most extreme global change‐type drought since record in 2018, one third of these trees died. Across species, hydraulic safety margins (HSMs) were negatively and a shift towards a higher sugar fraction in the non‐structural carbohydrate (NSC) pool positively associated with mortality risk. Moreover, trees infested by bark beetles had a higher mortality risk, and taller trees a lower mortality risk. Most neighborhood interactions were beneficial, although neighborhood effects were highly species‐specific. Species that suffered more from drought, especially Larix spp. and Betula spp., tended to increase the survival probability of their neighbors and vice versa. While severe tissue dehydration marks the final stage of drought‐induced tree mortality, we show that hydraulic failure is interrelated with a series of other, mutually inclusive processes. These include shifts in NSC pools driven by osmotic adjustment and/or starch depletion as well as pest infestation and are modulated by the size and species identity of a tree and its neighbors. A more holistic view that accounts for multiple causes of drought‐induced tree mortality is required to improve predictions of trends in global forest dynamics and to identify mutually beneficial species combinations.
University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/226269Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu70 citations 70 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/226269Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 01 Jan 2022 Switzerland, SwitzerlandPublisher:Wiley Funded by:EC | DRYSOM, SNSF | Acclimation and environme...EC| DRYSOM ,SNSF| Acclimation and environmental memory - how do trees adjust to warmer droughts on different time scales and where are the limits?Arun K. Bose; Andreas Rigling; Arthur Geßler; Frank Hagedorn; Ivano Brunner; Linda Feichtinger; Christof Bigler; Simon Egli; Sophia Etzold; Martin M. Goßner; Claudia Guidi; Mathieu Lévesque; Katrin Meusburger; Martina Peter; Matthias Saurer; Daniel Scherrer; Patrick Schleppi; Leonie Schönbeck; Michael E. Vogel; Georg von Arx; Beat Wermelinger; Thomas Wohlgemuth; Roman Zweifel; Marcus Schaub;AbstractClimate change exposes ecosystems to strong and rapid changes in their environmental boundary conditions mainly due to the altered temperature and precipitation patterns. It is still poorly understood how fast interlinked ecosystem processes respond to altered environmental conditions, if these responses occur gradually or suddenly when thresholds are exceeded, and if the patterns of the responses will reach a stable state. We conducted an irrigation experiment in the Pfynwald, Switzerland from 2003–2018. A naturally dry Scots pine (Pinus sylvestris L.) forest was irrigated with amounts that doubled natural precipitation, thus releasing the forest stand from water limitation. The aim of this study was to provide a quantitative understanding on how different traits and functions of individual trees and the whole ecosystem responded to increased water availability, and how the patterns and magnitudes of these responses developed over time. We found that the response magnitude, the temporal trajectory of responses, and the length of initial lag period prior to significant response largely varied across traits. We detected rapid and stronger responses from aboveground tree traits (e.g., tree‐ring width, needle length, and crown transparency) compared to belowground tree traits (e.g., fine‐root biomass). The altered aboveground traits during the initial years of irrigation increased the water demand and trees adjusted by increasing root biomass during the later years of irrigation, resulting in an increased survival rate of Scots pine trees in irrigated plots. The irrigation also stimulated ecosystem‐level foliar decomposition rate, fungal fruit body biomass, and regeneration abundances of broadleaved tree species. However, irrigation did not promote the regeneration of Scots pine trees, which are reported to be vulnerable to extreme droughts. Our results provide extensive evidence that tree‐ and ecosystem‐level responses were pervasive across a number of traits on long‐term temporal scales. However, after reaching a peak, the magnitude of these responses either decreased or reached a new stable state, providing important insights into how resource alterations could change the system functioning and its boundary conditions.
Ecological Monograph... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecm.1507&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ecological Monograph... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecm.1507&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Belgium, France, Germany, BelgiumPublisher:Wiley Funded by:DFG | German Centre for Integra...DFG| German Centre for Integrative Biodiversity Research - iDivJing, Xin; Baum, Christel; Castagneyrol, Bastien; Eisenhauer, Nico; Ferlian, Olga; Gebauer, Tobias; Hajek, Peter; Jactel, Hervé; Muys, Bart; Nock, Charles; Ponette, Quentin; Rose, Laura; Saurer, Matthias; Scherer‐lorenzen, Michael; Verheyen, Kris; van Meerbeek, Koenraad;Summary Recent droughts have strongly impacted forest ecosystems and are projected to increase in frequency, intensity, and duration in the future together with continued warming. While evidence suggests that tree diversity can regulate drought impacts in natural forests, few studies examine whether mixed tree plantations are more resistant to the impacts of severe droughts. Using natural variations in leaf carbon (C) and nitrogen (N) isotopic ratios, that is δ13C and δ15N, as proxies for drought response, we analyzed the effects of tree species richness on the functional responses of tree plantations to the pan‐European 2018 summer drought in seven European tree diversity experiments. We found that leaf δ13C decreased with increasing tree species richness, indicating less drought stress. This effect was not related to drought intensity, nor desiccation tolerance of the tree species. Leaf δ15N increased with drought intensity, indicating a shift toward more open N cycling as water availability diminishes. Additionally, drought intensity was observed to alter the influence of tree species richness on leaf δ15N from weakly negative under low drought intensity to weakly positive under high drought intensity. Overall, our findings suggest that dual leaf isotope analysis helps understand the interaction between drought, nutrients, and species richness.
Dépôt Institutionel ... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)New PhytologistArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.19931&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Dépôt Institutionel ... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)New PhytologistArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.19931&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Embargo end date: 01 Jan 2009 SwitzerlandPublisher:Springer Science and Business Media LLC Kress, Anne; Saurer, Matthias; Büntgen, Ulf; Treydte, Kerstin; Bugmann, Harald; Siegwolf, Rolf;pmid: 19219459
Oecologia, 160 (2) ISSN:0029-8549 ISSN:1432-1939
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-009-1290-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-009-1290-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Oxford University Press (OUP) Xi Qi; Kerstin Treydte; Matthias Saurer; Keyan Fang; Wenling An; Marco Lehmann; Kunyuan Liu; Zhengfang Wu; Hong S He; Haibo Du; Mai-He Li;Abstract The effects of rising atmospheric CO2 concentrations (Ca) with climate warming on intrinsic water-use efficiency and radial growth in boreal forests are still poorly understood. We measured tree-ring cellulose δ13C, δ18O, and tree-ring width in Larix dahurica (larch) and Betula platyphylla (white birch), and analyzed their relationships with climate variables in a boreal permafrost region of northeast China over past 68 years covering a pre-warming period (1951–1984; base period) and a warm period (1985–2018; warm period). We found that white birch but not larch significantly increased their radial growth over the warm period. The increased intrinsic water-use efficiency in both species was mainly driven by elevated Ca but not climate warming. White birch but not larch showed significantly positive correlations between tree-ring δ13C, δ18O and summer maximum temperature as well as vapor pressure deficit in the warm period, suggesting a strong stomatal response in the broad-leaved birch to temperature changes. The climate warming-induced radial growth enhancement in white birch is primarily associated with a conservative water-use strategy. In contrast, larch exhibits a profligate water-use strategy. It implies an advantage for white birch over larch in the warming permafrost regions.
Tree Physiology arrow_drop_down Tree PhysiologyArticle . 2024 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/treephys/tpae053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Tree Physiology arrow_drop_down Tree PhysiologyArticle . 2024 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/treephys/tpae053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 Netherlands, Germany, GermanyPublisher:Wiley Matthias Saurer; Andreas Rigling; Mathieu Lévesque; Mathieu Lévesque; Rolf T. W. Siegwolf; Britta Eilmann;doi: 10.1111/nph.12772
pmid: 24635031
Summary Higher atmospheric CO2 concentrations (ca) can under certain conditions increase tree growth by enhancing photosynthesis, resulting in an increase of intrinsic water‐use efficiency (iWUE) in trees. However, the magnitude of these effects and their interactions with changing climatic conditions are still poorly understood under xeric and mesic conditions. We combined radial growth analysis with intra‐ and interannual δ13C and δ18O measurements to investigate growth and physiological responses of Larix decidua, Picea abies, Pinus sylvestris, Pinus nigra and Pseudotsuga menziesii in relation to rising ca and changing climate at a xeric site in the dry inner Alps and at a mesic site in the Swiss lowlands. iWUE increased significantly over the last 50 yr by 8–29% and varied depending on species, site water availability, and seasons. Regardless of species and increased iWUE, radial growth has significantly declined under xeric conditions, whereas growth has not increased as expected under mesic conditions. Overall, drought‐induced stomatal closure has reduced transpiration at the cost of reduced carbon uptake and growth. Our results indicate that, even under mesic conditions, the temperature‐induced drought stress has overridden the potential CO2 ‘fertilization’ on tree growth, hence challenging today's predictions of improved forest productivity of temperate forests.
New Phytologist arrow_drop_down New PhytologistArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublication Server of the FH Aachen University of Applied SciencesArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.12772&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu169 citations 169 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublication Server of the FH Aachen University of Applied SciencesArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.12772&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 ItalyPublisher:Wiley Willi A. Brand; Giovanna Aronne; Veronica De Micco; Matthias Saurer; Petra Linke; Paolo Cherubini; Giovanna Battipaglia; Giovanna Battipaglia;AbstractErica arborea (L) is a widespread Mediterranean species, able to cope with water stress and colonize semiarid environments. The eco‐physiological plasticity of this species was evaluated by studying plants growing at two sites with different soil moistures on the island of Elba (Italy), through dendrochronological, wood‐anatomical analyses and stable isotopes measurements. Intra‐annual density fluctuations (IADFs) were abundant in tree rings, and were identified as the key parameter to understand site‐specific plant responses to water stress. Our findings showed that the formation of IADFs is mainly related to the high temperature, precipitation patterns and probably to soil water availability, which differs at the selected study sites. The recorded increase in the 13C‐derived intrinsic water use efficiency at the IADFs level was linked to reduced water loss rather than to increasing C assimilation. The variation in vessel size and the different absolute values of δ18O among trees growing at the two study sites underlined possible differences in stomatal control of water loss and possible differences in sources of water uptake. This approach not only helped monitor seasonal environmental differences through tree‐ring width, but also added valuable information on E. arborea responses to drought and their ecological implications for Mediterranean vegetation dynamics.
MPG.PuRe arrow_drop_down Plant Cell & EnvironmentArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.12160&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu111 citations 111 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert MPG.PuRe arrow_drop_down Plant Cell & EnvironmentArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.12160&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 ItalyPublisher:Wiley M. Francesca Cotrufo; Heather R. McCarthy; Paolo Cherubini; Carlo Calfapietra; Matthias Saurer; Richard J. Norby; Giovanna Battipaglia; Giovanna Battipaglia;doi: 10.1111/nph.12044
handle: 20.500.14243/266248 , 11591/227604
Summary Elevated CO2 increases intrinsic water use efficiency (WUEi) of forests, but the magnitude of this effect and its interaction with climate is still poorly understood. We combined tree ring analysis with isotope measurements at three Free Air CO2 Enrichment (FACE, POP‐EUROFACE, in Italy; Duke FACE in North Carolina and ORNL in Tennessee, USA) sites, to cover the entire life of the trees. We used δ13C to assess carbon isotope discrimination and changes in water‐use efficiency, while direct CO2 effects on stomatal conductance were explored using δ18O as a proxy. Across all the sites, elevated CO2 increased 13C‐derived water‐use efficiency on average by 73% for Liquidambar styraciflua, 77% for Pinus taeda and 75% for Populus sp., but through different ecophysiological mechanisms. Our findings provide a robust means of predicting water‐use efficiency responses from a variety of tree species exposed to variable environmental conditions over time, and species‐specific relationships that can help modelling elevated CO2 and climate impacts on forest productivity, carbon and water balances.
New Phytologist arrow_drop_down New PhytologistArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.12044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 221 citations 221 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 2visibility views 2 download downloads 3 Powered bymore_vert New Phytologist arrow_drop_down New PhytologistArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.12044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Embargo end date: 01 Jan 2017 SwitzerlandPublisher:Oxford University Press (OUP) Kerstin Treydte; Andreas Rigling; Marcus Schaub; Rolf T. W. Siegwolf; Rolf T. W. Siegwolf; Galina Timofeeva; Galina Timofeeva; Galina Timofeeva; Matthias Saurer; Matthias Saurer; Harald Bugmann;pmid: 28444356
Tree Physiology, 37 (8) ISSN:0829-318X ISSN:1758-4469
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/treephys/tpx041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 93 citations 93 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/treephys/tpx041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 FinlandPublisher:Wiley Funded by:RSF | Adaptation of conifers in...RSF| Adaptation of conifers in Eurasia to changing environment: eco-physiological research of tree-ringsRinne, K. T.; Saurer, M.; Kirdyanov, A. V.; Bryukhanova, M. V.; Prokushkin, A. S.; Churakova (Sidorova), O. V.; Siegwolf; R. T. W.;pmid: 25916312
AbstractLittle is known about the dynamics of concentrations and carbon isotope ratios of individual carbohydrates in leaves in response to climatic and physiological factors. Improved knowledge of the isotopic ratio in sugars will enhance our understanding of the tree ring isotope ratio and will help to decipher environmental conditions in retrospect more reliably. Carbohydrate samples from larch (Larix gmelinii) needles of two sites in the continuous permafrost zone of Siberia with differing growth conditions were analysed with the Compound‐Specific Isotope Analysis (CSIA). We compared concentrations and carbon isotope values (δ13C) of sucrose, fructose, glucose and pinitol combined with phenological data. The results for the variability of the needle carbohydrates show high dynamics with distinct seasonal characteristics between and within the studied years with a clear link to the climatic conditions, particularly vapour pressure deficit. Compound‐specific differences in δ13C values as a response to climate were detected. The δ13C of pinitol, which contributes up to 50% of total soluble carbohydrates, was almost invariant during the whole growing season. Our study provides the first in‐depth characterization of compound‐specific needle carbohydrate isotope variability, identifies involved mechanisms and shows the potential of such results for linking tree physiological responses to different climatic conditions.
Plant Cell & Environ... arrow_drop_down Plant Cell & EnvironmentArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.12554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Plant Cell & Environ... arrow_drop_down Plant Cell & EnvironmentArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.12554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Report 2020Embargo end date: 01 Jan 2022 Germany, SwitzerlandPublisher:Wiley Funded by:DFGDFGMatthias Saurer; Tobias Gebauer; Charles A. Nock; Charles A. Nock; Peter Hajek; Christian Messier; Christian Messier; Alain Paquette; Bernhard Schuldt; Arthur Gessler; Arthur Gessler; Michael Scherer-Lorenzen; Roman M. Link; Laura Rose; Jürgen Bauhus; Kyle R. Kovach;AbstractUnprecedented tree dieback across Central Europe caused by recent global change‐type drought events highlights the need for a better mechanistic understanding of drought‐induced tree mortality. Although numerous physiological risk factors have been identified, the importance of two principal mechanisms, hydraulic failure and carbon starvation, is still debated. It further remains largely unresolved how the local neighborhood composition affects individual mortality risk. We studied 9435 young trees of 12 temperate species planted in a diversity experiment in 2013 to assess how hydraulic traits, carbon dynamics, pest infestation, tree height and neighborhood competition influence individual mortality risk. Following the most extreme global change‐type drought since record in 2018, one third of these trees died. Across species, hydraulic safety margins (HSMs) were negatively and a shift towards a higher sugar fraction in the non‐structural carbohydrate (NSC) pool positively associated with mortality risk. Moreover, trees infested by bark beetles had a higher mortality risk, and taller trees a lower mortality risk. Most neighborhood interactions were beneficial, although neighborhood effects were highly species‐specific. Species that suffered more from drought, especially Larix spp. and Betula spp., tended to increase the survival probability of their neighbors and vice versa. While severe tissue dehydration marks the final stage of drought‐induced tree mortality, we show that hydraulic failure is interrelated with a series of other, mutually inclusive processes. These include shifts in NSC pools driven by osmotic adjustment and/or starch depletion as well as pest infestation and are modulated by the size and species identity of a tree and its neighbors. A more holistic view that accounts for multiple causes of drought‐induced tree mortality is required to improve predictions of trends in global forest dynamics and to identify mutually beneficial species combinations.
University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/226269Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu70 citations 70 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/226269Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu