- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024 Denmark, SwedenPublisher:Elsevier BV Ali, Aamer; Shirazi, Mohammad Mahdi; Nthunya, Lebea; Castro-Muñoz, Roberto; Ismail, Norafiqah; Tavajohi Hassan Kiadeh, Naser; Zaragoza, Guillermo; Quist-Jensen, Cejna;There have been tremendous advances in membrane distillation (MD) since the concept was introduced in 1961: new membrane designs and process configurations have emerged, and its commercial viability has been evaluated in several pilot-scale studies. However, its high energy consumption has hindered its commercialization. One of the most promising ways to overcome this obstacle is to develop more energy-efficient membrane modules. The MD research community has therefore developed diverse new module configurations for hollow fiber and flat sheet membranes that increase the thermal energy efficiency of MD by minimizing thermal polarization, increasing mass transfer across the membrane, and improving heat recovery from the condensed vapor. This review summarizes the progress made in the design of hollow fiber and flat sheet membrane modules for MD applications. It begins with a brief introduction to MD and its configurations before describing developments in module fabrication and highlighting key areas where further research is needed.
Desalination arrow_drop_down Publikationer från Umeå universitetArticle . 2024 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2024 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.desal.2024.117584&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 34 citations 34 popularity Average influence Average impulse Top 1% Powered by BIP!
more_vert Desalination arrow_drop_down Publikationer från Umeå universitetArticle . 2024 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2024 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.desal.2024.117584&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Sweden, SpainPublisher:Elsevier BV Norafiqah Ismail; Jun Pan; Mahmoud Rahmati; Qian Wang; Denis Bouyer; Mohamed Khayet; Zhaoliang Cui; Naser Tavajohi;handle: 20.500.14352/71781
Deep eutectic solvents (DES) have recently emerged as a new class of inexpensive biodegradable solvents and additives with diverse applications. In this study, a new family of non-ionic deep eutectic solvents (NIDES) is proposed for the first time for membrane preparation. Three types of NIDES, N-methylacetamide-acetamide (DES-1), N-methyl acetamide-N-methyl urea (DES-2), and N-methyl acetamide-N,N & PRIME;-dimethyl urea (DES-3) were synthesized and used to dissolve polyvinylidene fluoride (PVDF) polymer. The effects of the additive polyvinylpyrrolidone (PVP) and the type of NIDES on the PVDF membrane characteristics, water permeability and bovine serum albumin (BSA) separation were studied. The membranes prepared with DES-1 and 2 wt% PVP exhibited a good water permeate flux (96.82 L/m(2).h) and a high BSA separation factor (96.32%). High performance PVDF membranes can thus be efficiently prepared using biodegradable inexpensive NIDES.
Journal of Membrane ... arrow_drop_down Journal of Membrane ScienceArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationer från Umeå universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedEPrints IMDEA Water InstituteArticle . 2022 . Peer-reviewedData sources: EPrints IMDEA Water Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.memsci.2021.120238&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Membrane ... arrow_drop_down Journal of Membrane ScienceArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationer från Umeå universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedEPrints IMDEA Water InstituteArticle . 2022 . Peer-reviewedData sources: EPrints IMDEA Water Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.memsci.2021.120238&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SwedenPublisher:Wiley Hao Du; Yuqiong Kang; Chenglei Li; Yun Zhao; Yao Tian; Jian Lu; Zhaoyang Chen; Ning Gao; Zhike Li; John Wozny; Tao Li; Li Wang; Naser Tavajohi; Feiyu Kang; Baohua Li;doi: 10.1002/cnl2.73
AbstractThe lithium hexafluorophosphate (LiPF6) in spent lithium‐ion batteries (LIBs) is a potentially valuable resource and a significant environmental pollutant. Unfortunately, most of the LiPF6 in a spent LIB is difficult to extract because the electrolyte is strongly adsorbed by the cathode, anode, and separator. Storing extracted electrolyte is also challenging because it contains LiPF6, which promotes the decomposition of the solvent. Here we show that electrolytes in spent LIBs can be collected by a less polar solvent dimethyl carbonate (DMC) wash, and LiPF6 can be concentrated by simple aqueous extraction by lowering ethylene carbonate (EC) content in the recycled electrolyte. Due to the similar dielectric constant of EC and water, reducing the content of EC in LIB electrolytes, or even eliminating it, facilitates the separation of water and electrolyte, thus enabling the lithium salts in the electrolyte to be separated from the organic solvent. The lithium salt extracting efficiency achieved in this way can be as high as 99.8%, and fluorine and phosphorus of LiPF6 can be fixed in the form of stable metal fluoride and phosphate by hydrothermal method. The same strategy can be used in industrial waste electrolyte recycling by diluting the waste with DMC and extracting the resulting solution with water. This work thus reveals a new route for waste electrolyte treatment and will also support the development of advanced EC‐free electrolytes for high‐performance, safe, and easily recyclable LIBs.
Carbon Neutralizatio... arrow_drop_down Publikationer från Umeå universitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cnl2.73&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Carbon Neutralizatio... arrow_drop_down Publikationer från Umeå universitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cnl2.73&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SwedenPublisher:Elsevier BV Authors: Mohamed Essalhi; Ahmet Halil Avci; Frank Lipnizki; Naser Tavajohi;This paper presents assessment of natural and anthropogenic sources of blue energy within Swedish territory to identify suitable spots for implementing new projects. The natural energy potential of salinity gradients was found to be higher in southwest Sweden, and a national energy resource potential of 2610.6 MW from seawater/river water mixing will be reduced to a technical potential ranging from 1044.3 MW to 1825.4 MW considering technical and environmental constraints. It has been found that the theoretical extractable energy potential in Sweden is equivalent to 13% of the total electricity consumption and 6.2% of the total final energy consumption by energy commodities. Anthropogenic water sources were also highlighted as promising low and high-concentration solutions for SGE extraction. Gotland was identified as an attractive location for generating salinity gradient power. The total salinity gradient power obtainable by mixing municipal wastewater with seawater in Sweden was estimated to be 11.8 MW. The most promising site for this process was determined to be Gryaab AB Ryaverket in Gothenburg, which accounted for 45.8% of the total national potential from anthropogenic sources.
Renewable Energy arrow_drop_down Publikationer från Umeå universitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.118984&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Renewable Energy arrow_drop_down Publikationer från Umeå universitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.118984&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SwedenPublisher:Wiley Jian Lu; Yun Zhao; Yuqiong Kang; Chenglei Li; Yawen Liu; Liguang Wang; Hao Du; Meicen Fan; Yunan Zhou; John Wozny; Tao Li; Naser Tavajohi; Feiyu Kang; Baohua Li;doi: 10.1002/cey2.282
AbstractIt is challenging to efficiently and economically recycle many lithium‐ion batteries (LIBs) because of the low valuation of commodity metals and materials, such as LiFePO4. There are millions of tons of spent LIBs where the barrier to recycling is economical, and to make recycling more feasible, it is required that the value of the processed recycled material exceeds the value of raw commodity materials. The presented research illustrates improved profitability and economics for recycling spent LIBs by utilizing the surplus energy in lithiated graphite to drive the preparation of organolithiums to add value to the recycled lithium materials. This study methodology demonstrates that the surplus energy of lithiated graphite obtained from spent LIBs can be utilized to prepare high‐value organolithiums, thereby significantly improving the economic profitability of LIB recycling. Organolithiums (R–O–Li and R–Li) were prepared using alkyl alcohol (R–OH) and alkyl bromide (R–Br) as substrates, where R includes varying hindered alkyl hydrocarbons. The organolithiums extracted from per kilogram of recycled LIBs can increase the economic value between $29.5 and $226.5 kg−1 cell. The value of the organolithiums is at least 5.4 times the total theoretical value of spent materials, improving the profitability of recycling LIBs over traditional pyrometallurgical ($0.86 kg−1 cell), hydrometallurgical ($1.00 kg−1 cell), and physical direct recycling methods ($5.40 kg−1 cell).
Carbon Energy arrow_drop_down Publikationer från Umeå universitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Carbon Energy arrow_drop_down Publikationer från Umeå universitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SwedenPublisher:Elsevier BV Pooja Yadav; Norafiqah Ismail; Mohamed Essalhi; Mats Tysklind; Dimitris Athanassiadis; Naser Tavajohi;Abstract Polymeric membranes are important in advanced separation technologies because of their high efficiency and low environmental impact. However, procedures for membrane production are far from sustainable and environmentally friendly. This work presents a life cycle assessment of the environmental impact of fabricating 1000 m2 of hollow fiber polymeric membranes. Membrane materials considered include the most popular fossil- and bio-based polymers in current use, i.e., polysulfones, polyvinylidene fluoride, and cellulose acetate. Solvents considered for use in polymer dope solution included polar aprotic solvents (N-Methyl-2-pyrrolidone, N, N-dimethylacetamide, and dimethylformamide) that are widely used in industry and an alternative green solvent (ethylene carbonate). The impacts of membrane production on global warming, marine ecotoxicity, human carcinogenic and non-carcinogenic toxicity, land use potential, and fossil resource scarcity were analyzed. Additionally, the impact on the sustainability and environmental cost of membrane production resulting from replacing fossil-based polymers with bio-based polymers or substituting toxic solvents with a green alternative was investigated. Hot spots in the membrane production process were identified, and measures to reduce the environmental impact of membrane production were proposed.
SLU publication data... arrow_drop_down Publikationer från Umeå universitetArticle . 2021 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.memsci.2020.118987&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 122 citations 122 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert SLU publication data... arrow_drop_down Publikationer från Umeå universitetArticle . 2021 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.memsci.2020.118987&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SwedenPublisher:Elsevier BV Xing Li; Yun Zhao; Yanxi Li; Baohua Li; Yuqing Chen; Yuqing Chen; Naser Tavajohi; Zheng Liang; Li Wang; Yuqiong Kang; Jilei Liu; Xiangming He;Abstract Efficient and reliable energy storage systems are crucial for our modern society. Lithium-ion batteries (LIBs) with excellent performance are widely used in portable electronics and electric vehicles (EVs), but frequent fires and explosions limit their further and more widespread applications. This review summarizes aspects of LIB safety and discusses the related issues, strategies, and testing standards. Specifically, it begins with a brief introduction to LIB working principles and cell structures, and then provides an overview of the notorious thermal runaway, with an emphasis on the effects of mechanical, electrical, and thermal abuse. The following sections examine strategies for improving cell safety, including approaches through cell chemistry, cooling, and balancing, afterwards describing current safety standards and corresponding tests. The review concludes with insights into potential future developments and the prospects for safer LIBs.
Journal of Energy Ch... arrow_drop_down Journal of Energy ChemistryArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefPublikationer från Umeå universitetArticle . 2021 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jechem.2020.10.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1K citations 1,326 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert Journal of Energy Ch... arrow_drop_down Journal of Energy ChemistryArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefPublikationer från Umeå universitetArticle . 2021 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jechem.2020.10.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024 Denmark, SwedenPublisher:Elsevier BV Ali, Aamer; Shirazi, Mohammad Mahdi; Nthunya, Lebea; Castro-Muñoz, Roberto; Ismail, Norafiqah; Tavajohi Hassan Kiadeh, Naser; Zaragoza, Guillermo; Quist-Jensen, Cejna;There have been tremendous advances in membrane distillation (MD) since the concept was introduced in 1961: new membrane designs and process configurations have emerged, and its commercial viability has been evaluated in several pilot-scale studies. However, its high energy consumption has hindered its commercialization. One of the most promising ways to overcome this obstacle is to develop more energy-efficient membrane modules. The MD research community has therefore developed diverse new module configurations for hollow fiber and flat sheet membranes that increase the thermal energy efficiency of MD by minimizing thermal polarization, increasing mass transfer across the membrane, and improving heat recovery from the condensed vapor. This review summarizes the progress made in the design of hollow fiber and flat sheet membrane modules for MD applications. It begins with a brief introduction to MD and its configurations before describing developments in module fabrication and highlighting key areas where further research is needed.
Desalination arrow_drop_down Publikationer från Umeå universitetArticle . 2024 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2024 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.desal.2024.117584&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 34 citations 34 popularity Average influence Average impulse Top 1% Powered by BIP!
more_vert Desalination arrow_drop_down Publikationer från Umeå universitetArticle . 2024 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2024 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.desal.2024.117584&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Sweden, SpainPublisher:Elsevier BV Norafiqah Ismail; Jun Pan; Mahmoud Rahmati; Qian Wang; Denis Bouyer; Mohamed Khayet; Zhaoliang Cui; Naser Tavajohi;handle: 20.500.14352/71781
Deep eutectic solvents (DES) have recently emerged as a new class of inexpensive biodegradable solvents and additives with diverse applications. In this study, a new family of non-ionic deep eutectic solvents (NIDES) is proposed for the first time for membrane preparation. Three types of NIDES, N-methylacetamide-acetamide (DES-1), N-methyl acetamide-N-methyl urea (DES-2), and N-methyl acetamide-N,N & PRIME;-dimethyl urea (DES-3) were synthesized and used to dissolve polyvinylidene fluoride (PVDF) polymer. The effects of the additive polyvinylpyrrolidone (PVP) and the type of NIDES on the PVDF membrane characteristics, water permeability and bovine serum albumin (BSA) separation were studied. The membranes prepared with DES-1 and 2 wt% PVP exhibited a good water permeate flux (96.82 L/m(2).h) and a high BSA separation factor (96.32%). High performance PVDF membranes can thus be efficiently prepared using biodegradable inexpensive NIDES.
Journal of Membrane ... arrow_drop_down Journal of Membrane ScienceArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationer från Umeå universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedEPrints IMDEA Water InstituteArticle . 2022 . Peer-reviewedData sources: EPrints IMDEA Water Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.memsci.2021.120238&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Membrane ... arrow_drop_down Journal of Membrane ScienceArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationer från Umeå universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedEPrints IMDEA Water InstituteArticle . 2022 . Peer-reviewedData sources: EPrints IMDEA Water Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.memsci.2021.120238&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SwedenPublisher:Wiley Hao Du; Yuqiong Kang; Chenglei Li; Yun Zhao; Yao Tian; Jian Lu; Zhaoyang Chen; Ning Gao; Zhike Li; John Wozny; Tao Li; Li Wang; Naser Tavajohi; Feiyu Kang; Baohua Li;doi: 10.1002/cnl2.73
AbstractThe lithium hexafluorophosphate (LiPF6) in spent lithium‐ion batteries (LIBs) is a potentially valuable resource and a significant environmental pollutant. Unfortunately, most of the LiPF6 in a spent LIB is difficult to extract because the electrolyte is strongly adsorbed by the cathode, anode, and separator. Storing extracted electrolyte is also challenging because it contains LiPF6, which promotes the decomposition of the solvent. Here we show that electrolytes in spent LIBs can be collected by a less polar solvent dimethyl carbonate (DMC) wash, and LiPF6 can be concentrated by simple aqueous extraction by lowering ethylene carbonate (EC) content in the recycled electrolyte. Due to the similar dielectric constant of EC and water, reducing the content of EC in LIB electrolytes, or even eliminating it, facilitates the separation of water and electrolyte, thus enabling the lithium salts in the electrolyte to be separated from the organic solvent. The lithium salt extracting efficiency achieved in this way can be as high as 99.8%, and fluorine and phosphorus of LiPF6 can be fixed in the form of stable metal fluoride and phosphate by hydrothermal method. The same strategy can be used in industrial waste electrolyte recycling by diluting the waste with DMC and extracting the resulting solution with water. This work thus reveals a new route for waste electrolyte treatment and will also support the development of advanced EC‐free electrolytes for high‐performance, safe, and easily recyclable LIBs.
Carbon Neutralizatio... arrow_drop_down Publikationer från Umeå universitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cnl2.73&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Carbon Neutralizatio... arrow_drop_down Publikationer från Umeå universitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cnl2.73&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SwedenPublisher:Elsevier BV Authors: Mohamed Essalhi; Ahmet Halil Avci; Frank Lipnizki; Naser Tavajohi;This paper presents assessment of natural and anthropogenic sources of blue energy within Swedish territory to identify suitable spots for implementing new projects. The natural energy potential of salinity gradients was found to be higher in southwest Sweden, and a national energy resource potential of 2610.6 MW from seawater/river water mixing will be reduced to a technical potential ranging from 1044.3 MW to 1825.4 MW considering technical and environmental constraints. It has been found that the theoretical extractable energy potential in Sweden is equivalent to 13% of the total electricity consumption and 6.2% of the total final energy consumption by energy commodities. Anthropogenic water sources were also highlighted as promising low and high-concentration solutions for SGE extraction. Gotland was identified as an attractive location for generating salinity gradient power. The total salinity gradient power obtainable by mixing municipal wastewater with seawater in Sweden was estimated to be 11.8 MW. The most promising site for this process was determined to be Gryaab AB Ryaverket in Gothenburg, which accounted for 45.8% of the total national potential from anthropogenic sources.
Renewable Energy arrow_drop_down Publikationer från Umeå universitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.118984&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Renewable Energy arrow_drop_down Publikationer från Umeå universitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.118984&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SwedenPublisher:Wiley Jian Lu; Yun Zhao; Yuqiong Kang; Chenglei Li; Yawen Liu; Liguang Wang; Hao Du; Meicen Fan; Yunan Zhou; John Wozny; Tao Li; Naser Tavajohi; Feiyu Kang; Baohua Li;doi: 10.1002/cey2.282
AbstractIt is challenging to efficiently and economically recycle many lithium‐ion batteries (LIBs) because of the low valuation of commodity metals and materials, such as LiFePO4. There are millions of tons of spent LIBs where the barrier to recycling is economical, and to make recycling more feasible, it is required that the value of the processed recycled material exceeds the value of raw commodity materials. The presented research illustrates improved profitability and economics for recycling spent LIBs by utilizing the surplus energy in lithiated graphite to drive the preparation of organolithiums to add value to the recycled lithium materials. This study methodology demonstrates that the surplus energy of lithiated graphite obtained from spent LIBs can be utilized to prepare high‐value organolithiums, thereby significantly improving the economic profitability of LIB recycling. Organolithiums (R–O–Li and R–Li) were prepared using alkyl alcohol (R–OH) and alkyl bromide (R–Br) as substrates, where R includes varying hindered alkyl hydrocarbons. The organolithiums extracted from per kilogram of recycled LIBs can increase the economic value between $29.5 and $226.5 kg−1 cell. The value of the organolithiums is at least 5.4 times the total theoretical value of spent materials, improving the profitability of recycling LIBs over traditional pyrometallurgical ($0.86 kg−1 cell), hydrometallurgical ($1.00 kg−1 cell), and physical direct recycling methods ($5.40 kg−1 cell).
Carbon Energy arrow_drop_down Publikationer från Umeå universitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Carbon Energy arrow_drop_down Publikationer från Umeå universitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SwedenPublisher:Elsevier BV Pooja Yadav; Norafiqah Ismail; Mohamed Essalhi; Mats Tysklind; Dimitris Athanassiadis; Naser Tavajohi;Abstract Polymeric membranes are important in advanced separation technologies because of their high efficiency and low environmental impact. However, procedures for membrane production are far from sustainable and environmentally friendly. This work presents a life cycle assessment of the environmental impact of fabricating 1000 m2 of hollow fiber polymeric membranes. Membrane materials considered include the most popular fossil- and bio-based polymers in current use, i.e., polysulfones, polyvinylidene fluoride, and cellulose acetate. Solvents considered for use in polymer dope solution included polar aprotic solvents (N-Methyl-2-pyrrolidone, N, N-dimethylacetamide, and dimethylformamide) that are widely used in industry and an alternative green solvent (ethylene carbonate). The impacts of membrane production on global warming, marine ecotoxicity, human carcinogenic and non-carcinogenic toxicity, land use potential, and fossil resource scarcity were analyzed. Additionally, the impact on the sustainability and environmental cost of membrane production resulting from replacing fossil-based polymers with bio-based polymers or substituting toxic solvents with a green alternative was investigated. Hot spots in the membrane production process were identified, and measures to reduce the environmental impact of membrane production were proposed.
SLU publication data... arrow_drop_down Publikationer från Umeå universitetArticle . 2021 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.memsci.2020.118987&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 122 citations 122 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert SLU publication data... arrow_drop_down Publikationer från Umeå universitetArticle . 2021 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.memsci.2020.118987&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SwedenPublisher:Elsevier BV Xing Li; Yun Zhao; Yanxi Li; Baohua Li; Yuqing Chen; Yuqing Chen; Naser Tavajohi; Zheng Liang; Li Wang; Yuqiong Kang; Jilei Liu; Xiangming He;Abstract Efficient and reliable energy storage systems are crucial for our modern society. Lithium-ion batteries (LIBs) with excellent performance are widely used in portable electronics and electric vehicles (EVs), but frequent fires and explosions limit their further and more widespread applications. This review summarizes aspects of LIB safety and discusses the related issues, strategies, and testing standards. Specifically, it begins with a brief introduction to LIB working principles and cell structures, and then provides an overview of the notorious thermal runaway, with an emphasis on the effects of mechanical, electrical, and thermal abuse. The following sections examine strategies for improving cell safety, including approaches through cell chemistry, cooling, and balancing, afterwards describing current safety standards and corresponding tests. The review concludes with insights into potential future developments and the prospects for safer LIBs.
Journal of Energy Ch... arrow_drop_down Journal of Energy ChemistryArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefPublikationer från Umeå universitetArticle . 2021 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jechem.2020.10.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1K citations 1,326 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert Journal of Energy Ch... arrow_drop_down Journal of Energy ChemistryArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefPublikationer från Umeå universitetArticle . 2021 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jechem.2020.10.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu