- home
- Advanced Search
- Energy Research
- Closed Access
- Energy Research
- Closed Access
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Gonzalo Tampier; Claudio Troncoso; Federico Zilic;Abstract The current work presents a novel way to evaluate the interaction effects in a diffuser-augmented hydrokinetic turbine (DAHT) under the terms presented on the generalized actuator disc theory described by Jamieson (2011). Transient RANS CFD methods are employed to obtain the performance, thrust, and average flow speeds at the turbine plane in simulations performed in three comparable cases: bare turbine, bare diffuser and diffuser-augmented turbine. After validating the bare turbine case comparing numerical results against the experiments presented by Fontaine et al. (2013), the axial induction factors are obtained for the three cases based on the average speeds of the turbine plane. The analysis of the results shows the importance of considering rotor-diffuser interaction for the design of diffuser-augmented devices, and that these interaction effects are just as relevant as the bare diffuser and the bare turbine characteristics.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.oceaneng.2017.09.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.oceaneng.2017.09.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Laura Grueter; Gonzalo Tampier;Abstract In the present paper, the development of a model scale Wave Energy Converter (WEC) and an experimental WEC test rig are presented, and results of numerical simulations and experimental measurements are shown. The presented point absorber WEC is coupled to a generic power take-off (PTO) and is restricted to pure heave motion in regular waves. Experiments were carried out at the Universidad Austral de Chile (UACh) Wave Tank and results from responses and efficiencies were compared with data from the BEM (boundary element method) code WAMIT. Numerical and experimental results showed good agreement. Finally, results were extrapolated and superposed with typical wave energy spectra found in different Chilean regions, providing a first performance estimation for a wave energy converter in Chile. Results are discussed and compared with an existing technology and give an insight of the potential for wave energy technologies in Chile. Further investigation is proposed for an analysis in irregular waves and the use of a more advanced PTO (power take-off) in the future.
International Journa... arrow_drop_down International Journal of Marine EnergyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijome.2017.08.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Marine EnergyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijome.2017.08.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Gonzalo Tampier; Claudio Troncoso; Federico Zilic;Abstract The current work presents a novel way to evaluate the interaction effects in a diffuser-augmented hydrokinetic turbine (DAHT) under the terms presented on the generalized actuator disc theory described by Jamieson (2011). Transient RANS CFD methods are employed to obtain the performance, thrust, and average flow speeds at the turbine plane in simulations performed in three comparable cases: bare turbine, bare diffuser and diffuser-augmented turbine. After validating the bare turbine case comparing numerical results against the experiments presented by Fontaine et al. (2013), the axial induction factors are obtained for the three cases based on the average speeds of the turbine plane. The analysis of the results shows the importance of considering rotor-diffuser interaction for the design of diffuser-augmented devices, and that these interaction effects are just as relevant as the bare diffuser and the bare turbine characteristics.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.oceaneng.2017.09.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.oceaneng.2017.09.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Laura Grueter; Gonzalo Tampier;Abstract In the present paper, the development of a model scale Wave Energy Converter (WEC) and an experimental WEC test rig are presented, and results of numerical simulations and experimental measurements are shown. The presented point absorber WEC is coupled to a generic power take-off (PTO) and is restricted to pure heave motion in regular waves. Experiments were carried out at the Universidad Austral de Chile (UACh) Wave Tank and results from responses and efficiencies were compared with data from the BEM (boundary element method) code WAMIT. Numerical and experimental results showed good agreement. Finally, results were extrapolated and superposed with typical wave energy spectra found in different Chilean regions, providing a first performance estimation for a wave energy converter in Chile. Results are discussed and compared with an existing technology and give an insight of the potential for wave energy technologies in Chile. Further investigation is proposed for an analysis in irregular waves and the use of a more advanced PTO (power take-off) in the future.
International Journa... arrow_drop_down International Journal of Marine EnergyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijome.2017.08.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Marine EnergyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijome.2017.08.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu