Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Closed Access

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Zeps, Martins; Jansons, Aris; Matisons, Roberts; Stenvall, Niina; +1 Authors

    Abstract During the autumn, plants undergo a physiological process of cold hardening to limit damage caused by the low temperatures of winter. Under a warming climate, plants may be less cold hardened and hence more susceptible to the effects of a sudden temperature drop. During the growth season of 2010–2011, growth and cold hardening of European aspen ( Populus tremula L.) seedlings from native wild populations were examined under ambient and projected climate scenarios in greenhouses at the Haapastensyrja research station in Southern Finland. Using locally obtained seedlings, we manipulated temperature and soil moisture during the normal growth period and then subjected them to an artificial freezing treatment during September–November 2010. At the end of the experiment, we determined seedling height, survival and the extent of stem damage, and analysed their variation with mixed effect models. Among the treatments tested, temperature was the main factor affecting survival, cold hardening, and frost damage to seedlings. The higher temperature (4 °C increase) of the 2100 future climate regime was associated with a 35% decrease in seedling survival (from 66 to 31%) during the growing period. Increased irrigation had a positive, but considerably weaker effect on seedling survival (improved survival by ca. 8%). Height of seedlings after the first growth season was enhanced by increased soil moisture and temperature, but these effects were negated the following spring by increased frost damage caused by warmer growth conditions. Although cold hardiness increased as the season progressed, increase of temperature by 1 and 4 °C severely diminished it, and survival after the freezing dropped from 55% (control) to 48% and 14%, while stem damage increased from 58% (control) to 90% and 96%, respectively. These results suggest that regeneration of north European aspen might become burdened in a warmer climate. Although survival was clearly affected, several seedlings grown under the future climate regimes survived freezing and overwintered with negligible damage, suggesting an adaptive capacity of the local population. The intraspecific competition that occurred as a side effect of the experimental setup also affected cold hardening, suggesting that stand structure might be managed to improve the resilience of aspen to frost damage.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Agricultural and For...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Agricultural and Forest Meteorology
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    8
    citations8
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Agricultural and For...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Agricultural and Forest Meteorology
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Zeps, Martins; Jansons, Aris; Matisons, Roberts; Stenvall, Niina; +1 Authors

    Abstract During the autumn, plants undergo a physiological process of cold hardening to limit damage caused by the low temperatures of winter. Under a warming climate, plants may be less cold hardened and hence more susceptible to the effects of a sudden temperature drop. During the growth season of 2010–2011, growth and cold hardening of European aspen ( Populus tremula L.) seedlings from native wild populations were examined under ambient and projected climate scenarios in greenhouses at the Haapastensyrja research station in Southern Finland. Using locally obtained seedlings, we manipulated temperature and soil moisture during the normal growth period and then subjected them to an artificial freezing treatment during September–November 2010. At the end of the experiment, we determined seedling height, survival and the extent of stem damage, and analysed their variation with mixed effect models. Among the treatments tested, temperature was the main factor affecting survival, cold hardening, and frost damage to seedlings. The higher temperature (4 °C increase) of the 2100 future climate regime was associated with a 35% decrease in seedling survival (from 66 to 31%) during the growing period. Increased irrigation had a positive, but considerably weaker effect on seedling survival (improved survival by ca. 8%). Height of seedlings after the first growth season was enhanced by increased soil moisture and temperature, but these effects were negated the following spring by increased frost damage caused by warmer growth conditions. Although cold hardiness increased as the season progressed, increase of temperature by 1 and 4 °C severely diminished it, and survival after the freezing dropped from 55% (control) to 48% and 14%, while stem damage increased from 58% (control) to 90% and 96%, respectively. These results suggest that regeneration of north European aspen might become burdened in a warmer climate. Although survival was clearly affected, several seedlings grown under the future climate regimes survived freezing and overwintered with negligible damage, suggesting an adaptive capacity of the local population. The intraspecific competition that occurred as a side effect of the experimental setup also affected cold hardening, suggesting that stand structure might be managed to improve the resilience of aspen to frost damage.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Agricultural and For...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Agricultural and Forest Meteorology
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    8
    citations8
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Agricultural and For...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Agricultural and Forest Meteorology
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph