- home
- Advanced Search
Filters
Year range
-chevron_right GOField of Science
SDG [Beta]
Country
Source
Organization
- Energy Research
- Energy Research
Research data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: von Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; +58 Authorsvon Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; Kirchengast, Gottfried; Adusumilli, Susheel; Straneo, Fiammetta; Allan, Richard; Barker, Paul M.; Beltrami, Hugo; Boyer, Tim; Cheng, Lijing; Church, John; Desbruyeres, Damien; Dolman, Han; Domingues, Catia M.; García-García, Almudena; Gilson, John; Gorfer, Maximilian; Haimberger, Leopold; Hendricks, Stefan; Hosoda, Shigeki; Johnson, Gregory C.; Killick, Rachel; King, Brian A.; Kolodziejczyk, Nicolas; Korosov, Anton; Krinner, Gerhard; Kuusela, Mikael; Langer, Moritz; Lavergne, Thomas; Lawrence, Isobel; Li, Yuehua; Lyman, John; Marzeion, Ben; Mayer, Michael; MacDougall, Andrew; McDougall, Trevor; Monselesan, Didier Paolo; Nitzbon, Jean; Otosaka, Inès; Peng, Jian; Purkey, Sarah; Roemmich, Dean; Sato, Kanako; Sato, Katsunari; Savita, Abhishek; Schweiger, Axel; Shepherd, Andrew; Seneviratne, Sonia I.; Slater, Donald A.; Slater, Thomas; Simons, Leon; Steiner, Andrea K.; Szekely, Tanguy; Suga, Toshio; Thiery, Wim; Timmermanns, Mary-Louise; Vanderkelen, Inne; Wijffels, Susan E.; Wu, Tonghua; Zemp, Michael;Project: GCOS Earth Heat Inventory - A study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory (EHI), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period from 1960 to present. Summary: The file “GCOS_EHI_1960-2020_Earth_Heat_Inventory_Ocean_Heat_Content_data.nc” contains a consistent long-term Earth system heat inventory over the period 1960-2020. Human-induced atmospheric composition changes cause a radiative imbalance at the top-of-atmosphere which is driving global warming. Understanding the heat gain of the Earth system from this accumulated heat – and particularly how much and where the heat is distributed in the Earth system - is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This dataset is based on a study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory published in von Schuckmann et al. (2020), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960-2020. The dataset also contains estimates for global ocean heat content over 1960-2020 for different depth layers, i.e., 0-300m, 0-700m, 700-2000m, 0-2000m, 2000-bottom, which are described in von Schuckmann et al. (2022). This version includes an update of heat storage of global ocean heat content, where one additional product (Li et al., 2022) had been included to the initial estimate. The Earth heat inventory had been updated accordingly, considering also the update for continental heat content (Cuesta-Valero et al., 2023).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Wiley Funded by:[no funder available]Nico Eisenhauer; Karin Frank; Alexandra Weigelt; Bartosz Bartkowski; Rémy Beugnon; Katja Liebal; Miguel D. Mahecha; Martin F. Quaas; Djamil Al‐Halbouni; Ana Bastos; Friedrich J. Bohn; Mariana Madruga de Brito; Joachim Denzler; Hannes Feilhauer; Rico Fischer; Immo Fritsche; Claudia Guimarães‐Steinicke; Martin Hänsel; Daniel B. M. Haun; Hartmut Herrmann; Andreas Huth; Heike Kalesse‐Los; Michael Koetter; Nina Kolleck; Melanie Krause; Marlene Kretschmer; Pedro J. Leitão; Torsten Masson; Karin Mora; Birgit Müller; Jian Peng; Mira L. Pöhlker; Leonie Ratzke; Markus Reichstein; Solveig Richter; Nadja Rüger; Beatriz Sánchez‐Parra; Maha Shadaydeh; Sebastian Sippel; Ina Tegen; Daniela Thrän; Josefine Umlauft; Manfred Wendisch; Kevin Wolf; Christian Wirth; Hannes Zacher; Sönke Zaehle; Johannes Quaas;AbstractSoil is central to the complex interplay among biodiversity, climate, and society. This paper examines the interconnectedness of soil biodiversity, climate change, and societal impacts, emphasizing the urgent need for integrated solutions. Human‐induced biodiversity loss and climate change intensify environmental degradation, threatening human well‐being. Soils, rich in biodiversity and vital for ecosystem function regulation, are highly vulnerable to these pressures, affecting nutrient cycling, soil fertility, and resilience. Soil also crucially regulates climate, influencing energy, water cycles, and carbon storage. Yet, climate change poses significant challenges to soil health and carbon dynamics, amplifying global warming. Integrated approaches are essential, including sustainable land management, policy interventions, technological innovations, and societal engagement. Practices like agroforestry and organic farming improve soil health and mitigate climate impacts. Effective policies and governance are crucial for promoting sustainable practices and soil conservation. Recent technologies aid in monitoring soil biodiversity and implementing sustainable land management. Societal engagement, through education and collective action, is vital for environmental stewardship. By prioritizing interdisciplinary research and addressing key frontiers, scientists can advance understanding of the soil biodiversity–climate change–society nexus, informing strategies for environmental sustainability and social equity.
Journal of Sustainab... arrow_drop_down Journal of Sustainable Agriculture and EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/sae2.12108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Sustainab... arrow_drop_down Journal of Sustainable Agriculture and EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/sae2.12108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Authors: Qianqian Zhou; Jiongheng Su; Guoyong Leng; Jian Peng;doi: 10.3390/su11133754
This study investigates the trends in economic damages caused by three types of inland floods (flash flood, flood, and heavy rain) in the United States and the variations in related hazard and vulnerability indicators between 1996 and 2016. We explore the underlying mechanisms based on a survey-based dataset maintained by the National Oceanic and Atmospheric Administration (NOAA) National Weather Service. An annual average of 6518 flood occurrences was reported, which caused economic damages of 3351 million USD per year. Flash flood and flood contributed to 53% and 32% of total occurrences and was associated with a larger share of damaging events (SDE). Results show that the higher impacts by flood and flash flood on property and crop are partly attributed to the greater intensity of rainfall. In addition, flood has the highest unit cost of damages. Notably, despite an upward tendency in economic damages by flash floods, no evident change trend is observed for inland floods as a whole. Further analysis shows changes in economic damages by heavy rain and flash flood are mainly governed by the increased annual frequency and hazard intensity, but the change of trend in their vulnerability indicators (i.e., SDE and Damage Per Event (DPE)) is not obvious. Regarding floods, it was not possible to attribute the variations in economic losses to hazard and vulnerability, as no significant tendency is found except for an increasing SDE. Despite limitations of length of records, data collection, and methodology, the difference in economic impacts and the related hazard and vulnerability revealed in this study can help better target future adaptation and mitigation measures.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11133754&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11133754&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Copernicus GmbH Zhiwei Yang; Jian Peng; Yanxu Liu; Song Jiang; Xueyan Cheng; Xuebang Liu; Jie Dong; Tiantian Hua; Xiaoyu Yu;Abstract. Climate change has precipitated recurrent extreme events and emerged as an imposing global challenge, exerting profound and far-reaching impacts on both the environment and human existence. The Universal Thermal Climate Index (UTCI), serving as an important approach to human comfort assessment, plays a pivotal role in gauging how the human adapts to meteorological conditions and copes with thermal and cold stress. However, the existing UTCI datasets still grapple with limitations in terms of data availability, hindering their effective application across diverse domains. We have produced the GloUTCI-M, a monthly UTCI dataset boasting global coverage, an extensive time series spanning from March 2000 to October 2022, and a high spatial resolution of 1 km. This dataset is the product of a comprehensive approach leveraging multiple data sources and advanced machine learning models. Our findings underscore the superior predictive capabilities of CatBoost in forecasting UTCI (MAE = 0.747 °C, RMSE = 0.943 °C, R2 = 0.994) when compared to machine learning models such as XGBoost and LightGBM. Utilizing GloUTCI-M, the geographical boundaries of cold stress and thermal stress areas on a global scale were effectively delineated. Over the span of 2001 to 2021, the mean annual global UTCI registers at 17.24 °C, with a pronounced upward trend. Countries like Russia and Brazil emerge as key contributors to the mean annual global UTCI increase, while countries like China and India exert a more inhibitory influence on this trend. Furthermore, in contrast to existing UTCI datasets, GloUTCI-M excels at portraying UTCI distribution at finer spatial resolutions, augmenting data accuracy. This dataset enhances our capacity to evaluate thermal stress experienced by the human, offering substantial prospects across a wide array of applications. The GloUTCI-M is publicly available at https://doi.org/10.5281/zenodo.8310513 (Yang et al., 2023).
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/essd-2...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2023-379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/essd-2...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2023-379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Guoyong Leng; Jian Peng; Shengzhi Huang;pmid: 31195289
Despite the fact that it is the total crop production that shapes future food supply rather than one of its single component, previous studies have mainly focused on the changes in crop yield. It is possible that recent gains in crop production are mainly due to improvement of yield rather than growth of harvest area. However, it remains unclear about the geographical patterns of their relative contributions at fine scales and the possible mechanisms. Analysis of US maize production shows that maize production has increased significantly at a rate of 2.1%/year during 1980-2010. Although yield is the dominant factor contributing to production growth for the country as a whole, the importance of harvest area has become more evident with time. In 56% of US's maize growing counties, harvest area has also contributed more than yield to production changes. High spatial correlation between the change rates of harvest area and production is observed (R = 0.96), while a weak relation (R = 0.21) is found between the spatial patterns of yield and production. This suggests that harvest area has exerted the dominant role in modulating the spatial distribution pattern of maize production changes. Further analysis suggests that yield and harvest area respond differently to climate variability, which has great implications for adaptation strategies. Comparing 11 state-of-the-art crop model simulations against census data reveals large bias in the simulated spatial patterns of maize production. Nevertheless, such bias can be reduced substantially by incorporating the observed dynamics of harvest area, pointing to a potential pathway for future model improvement. This study highlights the importance of accounting for harvest area dynamics in assessing agricultural production empirically or with crop models.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.06.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.06.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Wei Fang; Qiang Huang; Gordon Huang; Bo Ming; Quan Quan; Pei Li; Yi Guo; Xudong Zheng; Gang Feng; Jian Peng;pmid: 37207461
Terrestrial ecosystems, occupying 28.26% of Earth's surface, are extensively at risk from droughts, which is likely to propagate into human communities owing to loss of vital services. Ecosystem risk also tends to fluctuate within anthropogenically-forced nonstationary environments, raising considerable concerns about effectiveness of mitigation strategies. This study aims to assess dynamic ecosystem risk induced by droughts and identify risk hotspots. Bivariate nonstationary drought frequency was initially derived as a hazard component of risk. By coupling vegetation coverage and biomass quantity, a two-dimensional exposure indicator was developed. Trivariate likelihood of vegetation decline was calculated under arbitrary droughts to intuitively determine ecosystem vulnerability. Ultimately, time-variant drought frequency, exposure and vulnerability were multiplied to derive dynamic ecosystem risk, followed by hotspot and attribution analyses. Risk assessment implemented in the drought-prevalent Pearl River basin (PRB) of China during 1982-2017 showed that meteorological droughts in eastern and western margins, although less frequent, were prolonged and aggravated in contrast to prevalence of less persistent and severe droughts in the middle. In 86.12% of the PRB, ecosystem exposure maintains high levels (0.62). Relatively high vulnerability (>0.5) occurs in water-demanding agroecosystems, exhibiting a northwest-southeast-directed extension. A 0.1-degree risk atlas unveils that high and medium risks occupy 18.96% and 37.99% of the PRB, while risks are magnified in the north. The most pressing hotspots with high risk continuing to escalate reside in the East River and Hongliu River basins. Our results provide knowledge of composition, spatio-temporal variability and driving mechanism of drought-induced ecosystem risk, which will assist in risk-based mitigation prioritization.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2023.118176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2023.118176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:American Geophysical Union (AGU) Funded by:, EC | XAIDA[no funder available] ,EC| XAIDAMiguel D. Mahecha; Ana Bastos; Friedrich J. Bohn; Nico Eisenhauer; Hannes Feilhauer; Thomas Hickler; Heike Kalesse‐Los; Mirco Migliavacca; Friederike E. L. Otto; Jian Peng; Sebastian Sippel; Ina Tegen; Alexandra Weigelt; Manfred Wendisch; Christian Wirth; Djamil Al‐Halbouni; Hartwig Deneke; Daniel Doktor; Susanne Dunker; Grégory Duveiller; André Ehrlich; Andreas Foth; Almudena García‐García; Carlos A. Guerra; Claudia Guimarães‐Steinicke; Henrik Hartmann; Silvia Henning; Hartmut Herrmann; Pin-hsin Hu; Chaonan Ji; Teja Kattenborn; Nina Kolleck; Marlene Kretschmer; Ingolf Kühn; Marie Luise Luttkus; Maximilian Maahn; Milena Mönks; Karin Mora; Mira L. Pöhlker; Markus Reichstein; Nadja Rüger; Beatriz Sánchez‐Parra; Michael Schäfer; Frank Stratmann; Matthias Tesche; Birgit Wehner; Sebastian Wieneke; Alexander J. Winkler; Sophie Wolf; Sönke Zaehle; Jakob Zscheischler; Johannes Quaas;AbstractClimate extremes are on the rise. Impacts of extreme climate and weather events on ecosystem services and ultimately human well‐being can be partially attenuated by the organismic, structural, and functional diversity of the affected land surface. However, the ongoing transformation of terrestrial ecosystems through intensified exploitation and management may put this buffering capacity at risk. Here, we summarize the evidence that reductions in biodiversity can destabilize the functioning of ecosystems facing climate extremes. We then explore if impaired ecosystem functioning could, in turn, exacerbate climate extremes. We argue that only a comprehensive approach, incorporating both ecological and hydrometeorological perspectives, enables us to understand and predict the entire feedback system between altered biodiversity and climate extremes. This ambition, however, requires a reformulation of current research priorities to emphasize the bidirectional effects that link ecology and atmospheric processes.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023ef003963&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023ef003963&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Cuesta-Valero, Francisco José; Beltrami, Hugo; García-García, Almudena; Krinner, Gerhard; +10 AuthorsCuesta-Valero, Francisco José; Beltrami, Hugo; García-García, Almudena; Krinner, Gerhard; Langer, Moritz; MacDougall, Andrew; Nitzbon, Jean; Peng, Jian; von Schuckmann, Karina; Seneviratne, Sonia I.; Smith, Noah; Thiery, Wim; Vanderkelen, Inne; Wu, Tonghua;Project: GCOS Earth Heat Inventory - A study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory (EHI), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period from 1960 to present. Summary: The file “GCOS_EHI_1960-2020_Continental_Heat_Content_data.nc” presents an updated estimate of the global continental heat storage for the period 1960-2020. For the first time, the continental heat storage is assessed as composed by: ground heat storage due to changes in subsurface temperatures, inland water heat storage due to the warming of inland water bodies, and permafrost heat storage due to thawing of ground ice in the Arctic. Furthermore, we argue that all three components of the continental heat storage should be monitored independently of their relative magnitude, as heat gain in the three components alters several important climate phenomena affecting society and ecosystems. This file contains the total continental heat storage relative to 1960. The ground heat storage has been estimated by inverting 1079 subsurface temperature profiles form the Xibalbá database (https://figshare.com/articles/dataset/Xibalb_Underground_Temperature_Database/13516487) and a bootstrap technique to aggregate the Singular Value Decomposition (SVD) inversions of each profile (Cuesta-Valero et al., 2022a). The data are used in Cuesta-Valero et al. (2022b) and von Schuckmann et al. (2022).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_cohc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_cohc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Cuesta-Valero, Francisco José; Beltrami, Hugo; García-García, Almudena; Krinner, Gerhard; +9 AuthorsCuesta-Valero, Francisco José; Beltrami, Hugo; García-García, Almudena; Krinner, Gerhard; Langer, Moritz; MacDougall, Andrew; Nitzbon, Jean; Peng, Jian; von Schuckmann, Karina; Seneviratne, Sonia I.; Thiery, Wim; Vanderkelen, Inne; Wu, Tonghua;Project: GCOS Earth Heat Inventory - A study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory (EHI), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period from 1960 to present. Summary: The file “GCOS_EHI_1960-2020_Continental_Heat_Content_data.nc” presents an updated estimate of the global continental heat storage for the period 1960-2020. For the first time, the continental heat storage is assessed as composed by: ground heat storage due to changes in subsurface temperatures, inland water heat storage due to the warming of inland water bodies, and permafrost heat storage due to thawing of ground ice in the Arctic. Furthermore, we argue that all three components of the continental heat storage should be monitored independently of their relative magnitude, as heat gain in the three components alters several important climate phenomena affecting society and ecosystems. This file contains the total continental heat storage relative to 1960. The ground heat storage has been estimated by inverting 1079 subsurface temperature profiles form the Xibalbá database (https://figshare.com/articles/dataset/Xibalb_Underground_Temperature_Database/13516487) and a bootstrap technique to aggregate the Singular Value Decomposition (SVD) inversions of each profile (Cuesta-Valero et al., 2022a). The data are used in Cuesta-Valero et al. (2022b) and von Schuckmann et al. (2022). This version includes an update of continental heat content uncertainty, where the standard deviation has been corrected from the precedent version to consider properly the value from permafrost heat storage uncertainty.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_cohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_cohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: von Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; +59 Authorsvon Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; Kirchengast, Gottfried; Adusumilli, Susheel; Straneo, Fiammetta; Allan, Richard; Barker, Paul M.; Beltrami, Hugo; Boyer, Tim; Cheng, Lijing; Church, John; Desbruyeres, Damien; Dolman, Han; Domingues, Catia M.; García-García, Almudena; Gilson, John; Gorfer, Maximilian; Haimberger, Leopold; Hendricks, Stefan; Hosoda, Shigeki; Johnson, Gregory C.; Killick, Rachel; King, Brian A.; Kolodziejczyk, Nicolas; Korosov, Anton; Krinner, Gerhard; Kuusela, Mikael; Langer, Moritz; Lavergne, Thomas; Lawrence, Isobel; Li, Yuehua; Lyman, John; Marzeion, Ben; Mayer, Michael; MacDougall, Andrew; McDougall, Trevor; Monselesan, Didier Paolo; Nitzbon, Jean; Otosaka, Inès; Peng, Jian; Purkey, Sarah; Roemmich, Dean; Sato, Kanako; Sato, Katsunari; Savita, Abhishek; Schweiger, Axel; Shepherd, Andrew; Seneviratne, Sonia I.; Slater, Donald A.; Slater, Thomas; Simons, Leon; Smith, Noah; Steiner, Andrea K.; Szekely, Tanguy; Suga, Toshio; Thiery, Wim; Timmermanns, Mary-Louise; Vanderkelen, Inne; Wijffels, Susan E.; Wu, Tonghua; Zemp, Michael;Project: GCOS Earth Heat Inventory - A study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory (EHI), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period from 1960 to present. Summary: The file “GCOS_EHI_1960-2020_Earth_Heat_Inventory_Ocean_Heat_Content_data.nc” contains a consistent long-term Earth system heat inventory over the period 1960-2020. Human-induced atmospheric composition changes cause a radiative imbalance at the top-of-atmosphere which is driving global warming. Understanding the heat gain of the Earth system from this accumulated heat – and particularly how much and where the heat is distributed in the Earth system - is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This dataset is based on a study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory published in von Schuckmann et al. (2020), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960-2020. The dataset also contains estimates for global ocean heat content over 1960-2020 for different depth layers, i.e., 0-300m, 0-700m, 700-2000m, 0-2000m, 2000-bottom, which are described in von Schuckmann et al. (2022).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: von Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; +58 Authorsvon Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; Kirchengast, Gottfried; Adusumilli, Susheel; Straneo, Fiammetta; Allan, Richard; Barker, Paul M.; Beltrami, Hugo; Boyer, Tim; Cheng, Lijing; Church, John; Desbruyeres, Damien; Dolman, Han; Domingues, Catia M.; García-García, Almudena; Gilson, John; Gorfer, Maximilian; Haimberger, Leopold; Hendricks, Stefan; Hosoda, Shigeki; Johnson, Gregory C.; Killick, Rachel; King, Brian A.; Kolodziejczyk, Nicolas; Korosov, Anton; Krinner, Gerhard; Kuusela, Mikael; Langer, Moritz; Lavergne, Thomas; Lawrence, Isobel; Li, Yuehua; Lyman, John; Marzeion, Ben; Mayer, Michael; MacDougall, Andrew; McDougall, Trevor; Monselesan, Didier Paolo; Nitzbon, Jean; Otosaka, Inès; Peng, Jian; Purkey, Sarah; Roemmich, Dean; Sato, Kanako; Sato, Katsunari; Savita, Abhishek; Schweiger, Axel; Shepherd, Andrew; Seneviratne, Sonia I.; Slater, Donald A.; Slater, Thomas; Simons, Leon; Steiner, Andrea K.; Szekely, Tanguy; Suga, Toshio; Thiery, Wim; Timmermanns, Mary-Louise; Vanderkelen, Inne; Wijffels, Susan E.; Wu, Tonghua; Zemp, Michael;Project: GCOS Earth Heat Inventory - A study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory (EHI), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period from 1960 to present. Summary: The file “GCOS_EHI_1960-2020_Earth_Heat_Inventory_Ocean_Heat_Content_data.nc” contains a consistent long-term Earth system heat inventory over the period 1960-2020. Human-induced atmospheric composition changes cause a radiative imbalance at the top-of-atmosphere which is driving global warming. Understanding the heat gain of the Earth system from this accumulated heat – and particularly how much and where the heat is distributed in the Earth system - is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This dataset is based on a study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory published in von Schuckmann et al. (2020), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960-2020. The dataset also contains estimates for global ocean heat content over 1960-2020 for different depth layers, i.e., 0-300m, 0-700m, 700-2000m, 0-2000m, 2000-bottom, which are described in von Schuckmann et al. (2022). This version includes an update of heat storage of global ocean heat content, where one additional product (Li et al., 2022) had been included to the initial estimate. The Earth heat inventory had been updated accordingly, considering also the update for continental heat content (Cuesta-Valero et al., 2023).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Wiley Funded by:[no funder available]Nico Eisenhauer; Karin Frank; Alexandra Weigelt; Bartosz Bartkowski; Rémy Beugnon; Katja Liebal; Miguel D. Mahecha; Martin F. Quaas; Djamil Al‐Halbouni; Ana Bastos; Friedrich J. Bohn; Mariana Madruga de Brito; Joachim Denzler; Hannes Feilhauer; Rico Fischer; Immo Fritsche; Claudia Guimarães‐Steinicke; Martin Hänsel; Daniel B. M. Haun; Hartmut Herrmann; Andreas Huth; Heike Kalesse‐Los; Michael Koetter; Nina Kolleck; Melanie Krause; Marlene Kretschmer; Pedro J. Leitão; Torsten Masson; Karin Mora; Birgit Müller; Jian Peng; Mira L. Pöhlker; Leonie Ratzke; Markus Reichstein; Solveig Richter; Nadja Rüger; Beatriz Sánchez‐Parra; Maha Shadaydeh; Sebastian Sippel; Ina Tegen; Daniela Thrän; Josefine Umlauft; Manfred Wendisch; Kevin Wolf; Christian Wirth; Hannes Zacher; Sönke Zaehle; Johannes Quaas;AbstractSoil is central to the complex interplay among biodiversity, climate, and society. This paper examines the interconnectedness of soil biodiversity, climate change, and societal impacts, emphasizing the urgent need for integrated solutions. Human‐induced biodiversity loss and climate change intensify environmental degradation, threatening human well‐being. Soils, rich in biodiversity and vital for ecosystem function regulation, are highly vulnerable to these pressures, affecting nutrient cycling, soil fertility, and resilience. Soil also crucially regulates climate, influencing energy, water cycles, and carbon storage. Yet, climate change poses significant challenges to soil health and carbon dynamics, amplifying global warming. Integrated approaches are essential, including sustainable land management, policy interventions, technological innovations, and societal engagement. Practices like agroforestry and organic farming improve soil health and mitigate climate impacts. Effective policies and governance are crucial for promoting sustainable practices and soil conservation. Recent technologies aid in monitoring soil biodiversity and implementing sustainable land management. Societal engagement, through education and collective action, is vital for environmental stewardship. By prioritizing interdisciplinary research and addressing key frontiers, scientists can advance understanding of the soil biodiversity–climate change–society nexus, informing strategies for environmental sustainability and social equity.
Journal of Sustainab... arrow_drop_down Journal of Sustainable Agriculture and EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/sae2.12108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Sustainab... arrow_drop_down Journal of Sustainable Agriculture and EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/sae2.12108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Authors: Qianqian Zhou; Jiongheng Su; Guoyong Leng; Jian Peng;doi: 10.3390/su11133754
This study investigates the trends in economic damages caused by three types of inland floods (flash flood, flood, and heavy rain) in the United States and the variations in related hazard and vulnerability indicators between 1996 and 2016. We explore the underlying mechanisms based on a survey-based dataset maintained by the National Oceanic and Atmospheric Administration (NOAA) National Weather Service. An annual average of 6518 flood occurrences was reported, which caused economic damages of 3351 million USD per year. Flash flood and flood contributed to 53% and 32% of total occurrences and was associated with a larger share of damaging events (SDE). Results show that the higher impacts by flood and flash flood on property and crop are partly attributed to the greater intensity of rainfall. In addition, flood has the highest unit cost of damages. Notably, despite an upward tendency in economic damages by flash floods, no evident change trend is observed for inland floods as a whole. Further analysis shows changes in economic damages by heavy rain and flash flood are mainly governed by the increased annual frequency and hazard intensity, but the change of trend in their vulnerability indicators (i.e., SDE and Damage Per Event (DPE)) is not obvious. Regarding floods, it was not possible to attribute the variations in economic losses to hazard and vulnerability, as no significant tendency is found except for an increasing SDE. Despite limitations of length of records, data collection, and methodology, the difference in economic impacts and the related hazard and vulnerability revealed in this study can help better target future adaptation and mitigation measures.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11133754&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11133754&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Copernicus GmbH Zhiwei Yang; Jian Peng; Yanxu Liu; Song Jiang; Xueyan Cheng; Xuebang Liu; Jie Dong; Tiantian Hua; Xiaoyu Yu;Abstract. Climate change has precipitated recurrent extreme events and emerged as an imposing global challenge, exerting profound and far-reaching impacts on both the environment and human existence. The Universal Thermal Climate Index (UTCI), serving as an important approach to human comfort assessment, plays a pivotal role in gauging how the human adapts to meteorological conditions and copes with thermal and cold stress. However, the existing UTCI datasets still grapple with limitations in terms of data availability, hindering their effective application across diverse domains. We have produced the GloUTCI-M, a monthly UTCI dataset boasting global coverage, an extensive time series spanning from March 2000 to October 2022, and a high spatial resolution of 1 km. This dataset is the product of a comprehensive approach leveraging multiple data sources and advanced machine learning models. Our findings underscore the superior predictive capabilities of CatBoost in forecasting UTCI (MAE = 0.747 °C, RMSE = 0.943 °C, R2 = 0.994) when compared to machine learning models such as XGBoost and LightGBM. Utilizing GloUTCI-M, the geographical boundaries of cold stress and thermal stress areas on a global scale were effectively delineated. Over the span of 2001 to 2021, the mean annual global UTCI registers at 17.24 °C, with a pronounced upward trend. Countries like Russia and Brazil emerge as key contributors to the mean annual global UTCI increase, while countries like China and India exert a more inhibitory influence on this trend. Furthermore, in contrast to existing UTCI datasets, GloUTCI-M excels at portraying UTCI distribution at finer spatial resolutions, augmenting data accuracy. This dataset enhances our capacity to evaluate thermal stress experienced by the human, offering substantial prospects across a wide array of applications. The GloUTCI-M is publicly available at https://doi.org/10.5281/zenodo.8310513 (Yang et al., 2023).
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/essd-2...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2023-379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/essd-2...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2023-379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Guoyong Leng; Jian Peng; Shengzhi Huang;pmid: 31195289
Despite the fact that it is the total crop production that shapes future food supply rather than one of its single component, previous studies have mainly focused on the changes in crop yield. It is possible that recent gains in crop production are mainly due to improvement of yield rather than growth of harvest area. However, it remains unclear about the geographical patterns of their relative contributions at fine scales and the possible mechanisms. Analysis of US maize production shows that maize production has increased significantly at a rate of 2.1%/year during 1980-2010. Although yield is the dominant factor contributing to production growth for the country as a whole, the importance of harvest area has become more evident with time. In 56% of US's maize growing counties, harvest area has also contributed more than yield to production changes. High spatial correlation between the change rates of harvest area and production is observed (R = 0.96), while a weak relation (R = 0.21) is found between the spatial patterns of yield and production. This suggests that harvest area has exerted the dominant role in modulating the spatial distribution pattern of maize production changes. Further analysis suggests that yield and harvest area respond differently to climate variability, which has great implications for adaptation strategies. Comparing 11 state-of-the-art crop model simulations against census data reveals large bias in the simulated spatial patterns of maize production. Nevertheless, such bias can be reduced substantially by incorporating the observed dynamics of harvest area, pointing to a potential pathway for future model improvement. This study highlights the importance of accounting for harvest area dynamics in assessing agricultural production empirically or with crop models.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.06.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.06.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Wei Fang; Qiang Huang; Gordon Huang; Bo Ming; Quan Quan; Pei Li; Yi Guo; Xudong Zheng; Gang Feng; Jian Peng;pmid: 37207461
Terrestrial ecosystems, occupying 28.26% of Earth's surface, are extensively at risk from droughts, which is likely to propagate into human communities owing to loss of vital services. Ecosystem risk also tends to fluctuate within anthropogenically-forced nonstationary environments, raising considerable concerns about effectiveness of mitigation strategies. This study aims to assess dynamic ecosystem risk induced by droughts and identify risk hotspots. Bivariate nonstationary drought frequency was initially derived as a hazard component of risk. By coupling vegetation coverage and biomass quantity, a two-dimensional exposure indicator was developed. Trivariate likelihood of vegetation decline was calculated under arbitrary droughts to intuitively determine ecosystem vulnerability. Ultimately, time-variant drought frequency, exposure and vulnerability were multiplied to derive dynamic ecosystem risk, followed by hotspot and attribution analyses. Risk assessment implemented in the drought-prevalent Pearl River basin (PRB) of China during 1982-2017 showed that meteorological droughts in eastern and western margins, although less frequent, were prolonged and aggravated in contrast to prevalence of less persistent and severe droughts in the middle. In 86.12% of the PRB, ecosystem exposure maintains high levels (0.62). Relatively high vulnerability (>0.5) occurs in water-demanding agroecosystems, exhibiting a northwest-southeast-directed extension. A 0.1-degree risk atlas unveils that high and medium risks occupy 18.96% and 37.99% of the PRB, while risks are magnified in the north. The most pressing hotspots with high risk continuing to escalate reside in the East River and Hongliu River basins. Our results provide knowledge of composition, spatio-temporal variability and driving mechanism of drought-induced ecosystem risk, which will assist in risk-based mitigation prioritization.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2023.118176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2023.118176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:American Geophysical Union (AGU) Funded by:, EC | XAIDA[no funder available] ,EC| XAIDAMiguel D. Mahecha; Ana Bastos; Friedrich J. Bohn; Nico Eisenhauer; Hannes Feilhauer; Thomas Hickler; Heike Kalesse‐Los; Mirco Migliavacca; Friederike E. L. Otto; Jian Peng; Sebastian Sippel; Ina Tegen; Alexandra Weigelt; Manfred Wendisch; Christian Wirth; Djamil Al‐Halbouni; Hartwig Deneke; Daniel Doktor; Susanne Dunker; Grégory Duveiller; André Ehrlich; Andreas Foth; Almudena García‐García; Carlos A. Guerra; Claudia Guimarães‐Steinicke; Henrik Hartmann; Silvia Henning; Hartmut Herrmann; Pin-hsin Hu; Chaonan Ji; Teja Kattenborn; Nina Kolleck; Marlene Kretschmer; Ingolf Kühn; Marie Luise Luttkus; Maximilian Maahn; Milena Mönks; Karin Mora; Mira L. Pöhlker; Markus Reichstein; Nadja Rüger; Beatriz Sánchez‐Parra; Michael Schäfer; Frank Stratmann; Matthias Tesche; Birgit Wehner; Sebastian Wieneke; Alexander J. Winkler; Sophie Wolf; Sönke Zaehle; Jakob Zscheischler; Johannes Quaas;AbstractClimate extremes are on the rise. Impacts of extreme climate and weather events on ecosystem services and ultimately human well‐being can be partially attenuated by the organismic, structural, and functional diversity of the affected land surface. However, the ongoing transformation of terrestrial ecosystems through intensified exploitation and management may put this buffering capacity at risk. Here, we summarize the evidence that reductions in biodiversity can destabilize the functioning of ecosystems facing climate extremes. We then explore if impaired ecosystem functioning could, in turn, exacerbate climate extremes. We argue that only a comprehensive approach, incorporating both ecological and hydrometeorological perspectives, enables us to understand and predict the entire feedback system between altered biodiversity and climate extremes. This ambition, however, requires a reformulation of current research priorities to emphasize the bidirectional effects that link ecology and atmospheric processes.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023ef003963&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023ef003963&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Cuesta-Valero, Francisco José; Beltrami, Hugo; García-García, Almudena; Krinner, Gerhard; +10 AuthorsCuesta-Valero, Francisco José; Beltrami, Hugo; García-García, Almudena; Krinner, Gerhard; Langer, Moritz; MacDougall, Andrew; Nitzbon, Jean; Peng, Jian; von Schuckmann, Karina; Seneviratne, Sonia I.; Smith, Noah; Thiery, Wim; Vanderkelen, Inne; Wu, Tonghua;Project: GCOS Earth Heat Inventory - A study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory (EHI), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period from 1960 to present. Summary: The file “GCOS_EHI_1960-2020_Continental_Heat_Content_data.nc” presents an updated estimate of the global continental heat storage for the period 1960-2020. For the first time, the continental heat storage is assessed as composed by: ground heat storage due to changes in subsurface temperatures, inland water heat storage due to the warming of inland water bodies, and permafrost heat storage due to thawing of ground ice in the Arctic. Furthermore, we argue that all three components of the continental heat storage should be monitored independently of their relative magnitude, as heat gain in the three components alters several important climate phenomena affecting society and ecosystems. This file contains the total continental heat storage relative to 1960. The ground heat storage has been estimated by inverting 1079 subsurface temperature profiles form the Xibalbá database (https://figshare.com/articles/dataset/Xibalb_Underground_Temperature_Database/13516487) and a bootstrap technique to aggregate the Singular Value Decomposition (SVD) inversions of each profile (Cuesta-Valero et al., 2022a). The data are used in Cuesta-Valero et al. (2022b) and von Schuckmann et al. (2022).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_cohc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_cohc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Cuesta-Valero, Francisco José; Beltrami, Hugo; García-García, Almudena; Krinner, Gerhard; +9 AuthorsCuesta-Valero, Francisco José; Beltrami, Hugo; García-García, Almudena; Krinner, Gerhard; Langer, Moritz; MacDougall, Andrew; Nitzbon, Jean; Peng, Jian; von Schuckmann, Karina; Seneviratne, Sonia I.; Thiery, Wim; Vanderkelen, Inne; Wu, Tonghua;Project: GCOS Earth Heat Inventory - A study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory (EHI), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period from 1960 to present. Summary: The file “GCOS_EHI_1960-2020_Continental_Heat_Content_data.nc” presents an updated estimate of the global continental heat storage for the period 1960-2020. For the first time, the continental heat storage is assessed as composed by: ground heat storage due to changes in subsurface temperatures, inland water heat storage due to the warming of inland water bodies, and permafrost heat storage due to thawing of ground ice in the Arctic. Furthermore, we argue that all three components of the continental heat storage should be monitored independently of their relative magnitude, as heat gain in the three components alters several important climate phenomena affecting society and ecosystems. This file contains the total continental heat storage relative to 1960. The ground heat storage has been estimated by inverting 1079 subsurface temperature profiles form the Xibalbá database (https://figshare.com/articles/dataset/Xibalb_Underground_Temperature_Database/13516487) and a bootstrap technique to aggregate the Singular Value Decomposition (SVD) inversions of each profile (Cuesta-Valero et al., 2022a). The data are used in Cuesta-Valero et al. (2022b) and von Schuckmann et al. (2022). This version includes an update of continental heat content uncertainty, where the standard deviation has been corrected from the precedent version to consider properly the value from permafrost heat storage uncertainty.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_cohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_cohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: von Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; +59 Authorsvon Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; Kirchengast, Gottfried; Adusumilli, Susheel; Straneo, Fiammetta; Allan, Richard; Barker, Paul M.; Beltrami, Hugo; Boyer, Tim; Cheng, Lijing; Church, John; Desbruyeres, Damien; Dolman, Han; Domingues, Catia M.; García-García, Almudena; Gilson, John; Gorfer, Maximilian; Haimberger, Leopold; Hendricks, Stefan; Hosoda, Shigeki; Johnson, Gregory C.; Killick, Rachel; King, Brian A.; Kolodziejczyk, Nicolas; Korosov, Anton; Krinner, Gerhard; Kuusela, Mikael; Langer, Moritz; Lavergne, Thomas; Lawrence, Isobel; Li, Yuehua; Lyman, John; Marzeion, Ben; Mayer, Michael; MacDougall, Andrew; McDougall, Trevor; Monselesan, Didier Paolo; Nitzbon, Jean; Otosaka, Inès; Peng, Jian; Purkey, Sarah; Roemmich, Dean; Sato, Kanako; Sato, Katsunari; Savita, Abhishek; Schweiger, Axel; Shepherd, Andrew; Seneviratne, Sonia I.; Slater, Donald A.; Slater, Thomas; Simons, Leon; Smith, Noah; Steiner, Andrea K.; Szekely, Tanguy; Suga, Toshio; Thiery, Wim; Timmermanns, Mary-Louise; Vanderkelen, Inne; Wijffels, Susan E.; Wu, Tonghua; Zemp, Michael;Project: GCOS Earth Heat Inventory - A study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory (EHI), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period from 1960 to present. Summary: The file “GCOS_EHI_1960-2020_Earth_Heat_Inventory_Ocean_Heat_Content_data.nc” contains a consistent long-term Earth system heat inventory over the period 1960-2020. Human-induced atmospheric composition changes cause a radiative imbalance at the top-of-atmosphere which is driving global warming. Understanding the heat gain of the Earth system from this accumulated heat – and particularly how much and where the heat is distributed in the Earth system - is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This dataset is based on a study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory published in von Schuckmann et al. (2020), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960-2020. The dataset also contains estimates for global ocean heat content over 1960-2020 for different depth layers, i.e., 0-300m, 0-700m, 700-2000m, 0-2000m, 2000-bottom, which are described in von Schuckmann et al. (2022).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu