- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2021 France, AustriaPublisher:Springer Science and Business Media LLC Funded by:EC | IMBALANCE-PEC| IMBALANCE-PWang, Jingmeng; Li, Wei; Ciais, Philippe; Li, Laurent; Chang, Jinfeng; Goll, Daniel; Gasser, Thomas; Huang, Xiaomeng; Devaraju, Narayanappa; Boucher, Olivier;AbstractBioenergy crop with carbon capture and storage (BECCS) is a key negative emission technology to meet carbon neutrality. However, the biophysical effects of widespread bioenergy crop cultivation on temperature remain unclear. Here, using a coupled atmosphere-land model with an explicit representation of lignocellulosic bioenergy crops, we find that after 50 years of large-scale bioenergy crop cultivation following plausible scenarios, global air temperature decreases by 0.03~0.08 °C, with strong regional contrasts and interannual variability. Over the cultivated regions, woody crops induce stronger cooling effects than herbaceous crops due to larger evapotranspiration rates and smaller aerodynamic resistance. At the continental scale, air temperature changes are not linearly proportional to the cultivation area. Sensitivity tests show that the temperature change is robust for eucalypt but more uncertain for switchgrass among different cultivation maps. Our study calls for new metrics to take the biophysical effects into account when assessing the climate mitigation capacity of BECCS.
IIASA PURE arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.science/hal-03501955Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03501955Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03501955Data sources: Bielefeld Academic Search Engine (BASE)HAL-Ecole des Ponts ParisTechArticle . 2021License: CC BYData sources: HAL-Ecole des Ponts ParisTechadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-27520-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IIASA PURE arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.science/hal-03501955Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03501955Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03501955Data sources: Bielefeld Academic Search Engine (BASE)HAL-Ecole des Ponts ParisTechArticle . 2021License: CC BYData sources: HAL-Ecole des Ponts ParisTechadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-27520-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 France, United Kingdom, United States, United States, France, Sweden, FrancePublisher:Springer Science and Business Media LLC Funded by:EC | SMILE, NSF | Collaborative Research: M...EC| SMILE ,NSF| Collaborative Research: MRA: Constraining the continental-scale terrestrial carbon cycle using NEON dataTao, Feng; Huang, Yuanyuan; Hungate, Bruce; Manzoni, Stefano; Frey, Serita; Schmidt, Michael; Reichstein, Markus; Carvalhais, Nuno; Ciais, Philippe; Jiang, Lifen; Lehmann, Johannes; Wang, Ying-Ping; Houlton, Benjamin; Ahrens, Bernhard; Mishra, Umakant; Hugelius, Gustaf; Hocking, Toby; Lu, Xingjie; Shi, Zheng; Viatkin, Kostiantyn; Vargas, Ronald; Yigini, Yusuf; Omuto, Christian; Malik, Ashish; Peralta, Guillermo; Cuevas-Corona, Rosa; Di Paolo, Luciano; Luotto, Isabel; Liao, Cuijuan; Liang, Yi-Shuang; Saynes, Vinisa; Huang, Xiaomeng; Luo, Yiqi;pmid: 37225998
pmc: PMC10307633
AbstractSoils store more carbon than other terrestrial ecosystems1,2. How soil organic carbon (SOC) forms and persists remains uncertain1,3, which makes it challenging to understand how it will respond to climatic change3,4. It has been suggested that soil microorganisms play an important role in SOC formation, preservation and loss5–7. Although microorganisms affect the accumulation and loss of soil organic matter through many pathways4,6,8–11, microbial carbon use efficiency (CUE) is an integrative metric that can capture the balance of these processes12,13. Although CUE has the potential to act as a predictor of variation in SOC storage, the role of CUE in SOC persistence remains unresolved7,14,15. Here we examine the relationship between CUE and the preservation of SOC, and interactions with climate, vegetation and edaphic properties, using a combination of global-scale datasets, a microbial-process explicit model, data assimilation, deep learning and meta-analysis. We find that CUE is at least four times as important as other evaluated factors, such as carbon input, decomposition or vertical transport, in determining SOC storage and its spatial variation across the globe. In addition, CUE shows a positive correlation with SOC content. Our findings point to microbial CUE as a major determinant of global SOC storage. Understanding the microbial processes underlying CUE and their environmental dependence may help the prediction of SOC feedback to a changing climate.
Nature arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/7gx1r34kData sources: Bielefeld Academic Search Engine (BASE)University of New Hampshire: Scholars RepositoryArticle . 2023License: CC BYFull-Text: https://scholars.unh.edu/faculty_pubs/1647Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Full-Text: https://hal.science/hal-04132307Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/21071Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Full-Text: https://hal.science/hal-04132307Data sources: Bielefeld Academic Search Engine (BASE)Publikationer från Stockholms universitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Stockholms universiteteScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedAberdeen University Research Archive (AURA)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-023-06042-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 305 citations 305 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Nature arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/7gx1r34kData sources: Bielefeld Academic Search Engine (BASE)University of New Hampshire: Scholars RepositoryArticle . 2023License: CC BYFull-Text: https://scholars.unh.edu/faculty_pubs/1647Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Full-Text: https://hal.science/hal-04132307Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/21071Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Full-Text: https://hal.science/hal-04132307Data sources: Bielefeld Academic Search Engine (BASE)Publikationer från Stockholms universitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Stockholms universiteteScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedAberdeen University Research Archive (AURA)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-023-06042-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Germany, France, GermanyPublisher:American Geophysical Union (AGU) Wei Li; Philippe Ciais; Zhe Zhao; Xiaomeng Huang; Lei Zhu; Daniel S. Goll; Daniel S. Goll; Ashley P. Ballantyne; Ashley P. Ballantyne; Jingmeng Wang;doi: 10.1029/2020ef001655
AbstractTropical forests store about 70% of the total living biomass on land and yet very little is known about changes in this vital carbon reservoir. Changes in their biomass stock, determined by changes in carbon input (i.e., net primary production [NPP]) and carbon turnover time (τ), are critical to the global carbon sink. In this study, we calculated transient τ in tropical forest biomass using satellite‐based biomass and moderate‐resolution imaging spectroradiometer (MODIS) NPP and analyzed the trends of τ and NPP from 2001 to 2012. Results show that τ and NPP generally have opposite trends across the tropics. Increasing NPP and decreasing τ (“N+T−”) mainly distribute in central Africa and the northeast region of South America, while decreasing NPP and increasing τ (“N−T+”) prevail in Southeast Asia and western Amazon forests. Most of the N+T− tropical forest areas are associated with mean annual precipitation (MAP) below 2,000 mm·y−1 and most N−T+ tropical forests with MAP above 2,000 mm·y−1. The τ and NPP trends in the N+T− region are statistically associated with radiation, precipitation and vapor pressure deficit (VPD), while the τ and NPP trends in the N−T+ region are mainly associated with temperature and VPD. Our results inherit the uncertainties from the satellite‐based datasets and largely depend on the carbon use efficiency from MODIS. We thus systematically assessed the robustness of the findings. Our study reveals regional patterns and potential drivers of biomass turnover time and NPP changes and provides valuable insights into the tropical forest carbon dynamics.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03131600Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03131600Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2020ef001655&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03131600Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03131600Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2020ef001655&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2021 France, AustriaPublisher:Springer Science and Business Media LLC Funded by:EC | IMBALANCE-PEC| IMBALANCE-PWang, Jingmeng; Li, Wei; Ciais, Philippe; Li, Laurent; Chang, Jinfeng; Goll, Daniel; Gasser, Thomas; Huang, Xiaomeng; Devaraju, Narayanappa; Boucher, Olivier;AbstractBioenergy crop with carbon capture and storage (BECCS) is a key negative emission technology to meet carbon neutrality. However, the biophysical effects of widespread bioenergy crop cultivation on temperature remain unclear. Here, using a coupled atmosphere-land model with an explicit representation of lignocellulosic bioenergy crops, we find that after 50 years of large-scale bioenergy crop cultivation following plausible scenarios, global air temperature decreases by 0.03~0.08 °C, with strong regional contrasts and interannual variability. Over the cultivated regions, woody crops induce stronger cooling effects than herbaceous crops due to larger evapotranspiration rates and smaller aerodynamic resistance. At the continental scale, air temperature changes are not linearly proportional to the cultivation area. Sensitivity tests show that the temperature change is robust for eucalypt but more uncertain for switchgrass among different cultivation maps. Our study calls for new metrics to take the biophysical effects into account when assessing the climate mitigation capacity of BECCS.
IIASA PURE arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.science/hal-03501955Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03501955Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03501955Data sources: Bielefeld Academic Search Engine (BASE)HAL-Ecole des Ponts ParisTechArticle . 2021License: CC BYData sources: HAL-Ecole des Ponts ParisTechadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-27520-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IIASA PURE arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.science/hal-03501955Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03501955Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03501955Data sources: Bielefeld Academic Search Engine (BASE)HAL-Ecole des Ponts ParisTechArticle . 2021License: CC BYData sources: HAL-Ecole des Ponts ParisTechadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-27520-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 France, United Kingdom, United States, United States, France, Sweden, FrancePublisher:Springer Science and Business Media LLC Funded by:EC | SMILE, NSF | Collaborative Research: M...EC| SMILE ,NSF| Collaborative Research: MRA: Constraining the continental-scale terrestrial carbon cycle using NEON dataTao, Feng; Huang, Yuanyuan; Hungate, Bruce; Manzoni, Stefano; Frey, Serita; Schmidt, Michael; Reichstein, Markus; Carvalhais, Nuno; Ciais, Philippe; Jiang, Lifen; Lehmann, Johannes; Wang, Ying-Ping; Houlton, Benjamin; Ahrens, Bernhard; Mishra, Umakant; Hugelius, Gustaf; Hocking, Toby; Lu, Xingjie; Shi, Zheng; Viatkin, Kostiantyn; Vargas, Ronald; Yigini, Yusuf; Omuto, Christian; Malik, Ashish; Peralta, Guillermo; Cuevas-Corona, Rosa; Di Paolo, Luciano; Luotto, Isabel; Liao, Cuijuan; Liang, Yi-Shuang; Saynes, Vinisa; Huang, Xiaomeng; Luo, Yiqi;pmid: 37225998
pmc: PMC10307633
AbstractSoils store more carbon than other terrestrial ecosystems1,2. How soil organic carbon (SOC) forms and persists remains uncertain1,3, which makes it challenging to understand how it will respond to climatic change3,4. It has been suggested that soil microorganisms play an important role in SOC formation, preservation and loss5–7. Although microorganisms affect the accumulation and loss of soil organic matter through many pathways4,6,8–11, microbial carbon use efficiency (CUE) is an integrative metric that can capture the balance of these processes12,13. Although CUE has the potential to act as a predictor of variation in SOC storage, the role of CUE in SOC persistence remains unresolved7,14,15. Here we examine the relationship between CUE and the preservation of SOC, and interactions with climate, vegetation and edaphic properties, using a combination of global-scale datasets, a microbial-process explicit model, data assimilation, deep learning and meta-analysis. We find that CUE is at least four times as important as other evaluated factors, such as carbon input, decomposition or vertical transport, in determining SOC storage and its spatial variation across the globe. In addition, CUE shows a positive correlation with SOC content. Our findings point to microbial CUE as a major determinant of global SOC storage. Understanding the microbial processes underlying CUE and their environmental dependence may help the prediction of SOC feedback to a changing climate.
Nature arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/7gx1r34kData sources: Bielefeld Academic Search Engine (BASE)University of New Hampshire: Scholars RepositoryArticle . 2023License: CC BYFull-Text: https://scholars.unh.edu/faculty_pubs/1647Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Full-Text: https://hal.science/hal-04132307Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/21071Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Full-Text: https://hal.science/hal-04132307Data sources: Bielefeld Academic Search Engine (BASE)Publikationer från Stockholms universitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Stockholms universiteteScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedAberdeen University Research Archive (AURA)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-023-06042-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 305 citations 305 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Nature arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/7gx1r34kData sources: Bielefeld Academic Search Engine (BASE)University of New Hampshire: Scholars RepositoryArticle . 2023License: CC BYFull-Text: https://scholars.unh.edu/faculty_pubs/1647Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Full-Text: https://hal.science/hal-04132307Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/21071Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Full-Text: https://hal.science/hal-04132307Data sources: Bielefeld Academic Search Engine (BASE)Publikationer från Stockholms universitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Stockholms universiteteScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedAberdeen University Research Archive (AURA)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-023-06042-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Germany, France, GermanyPublisher:American Geophysical Union (AGU) Wei Li; Philippe Ciais; Zhe Zhao; Xiaomeng Huang; Lei Zhu; Daniel S. Goll; Daniel S. Goll; Ashley P. Ballantyne; Ashley P. Ballantyne; Jingmeng Wang;doi: 10.1029/2020ef001655
AbstractTropical forests store about 70% of the total living biomass on land and yet very little is known about changes in this vital carbon reservoir. Changes in their biomass stock, determined by changes in carbon input (i.e., net primary production [NPP]) and carbon turnover time (τ), are critical to the global carbon sink. In this study, we calculated transient τ in tropical forest biomass using satellite‐based biomass and moderate‐resolution imaging spectroradiometer (MODIS) NPP and analyzed the trends of τ and NPP from 2001 to 2012. Results show that τ and NPP generally have opposite trends across the tropics. Increasing NPP and decreasing τ (“N+T−”) mainly distribute in central Africa and the northeast region of South America, while decreasing NPP and increasing τ (“N−T+”) prevail in Southeast Asia and western Amazon forests. Most of the N+T− tropical forest areas are associated with mean annual precipitation (MAP) below 2,000 mm·y−1 and most N−T+ tropical forests with MAP above 2,000 mm·y−1. The τ and NPP trends in the N+T− region are statistically associated with radiation, precipitation and vapor pressure deficit (VPD), while the τ and NPP trends in the N−T+ region are mainly associated with temperature and VPD. Our results inherit the uncertainties from the satellite‐based datasets and largely depend on the carbon use efficiency from MODIS. We thus systematically assessed the robustness of the findings. Our study reveals regional patterns and potential drivers of biomass turnover time and NPP changes and provides valuable insights into the tropical forest carbon dynamics.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03131600Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03131600Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2020ef001655&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03131600Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03131600Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2020ef001655&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu