- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Frontiers Media SA Sharyn M. Hickey; Sharyn M. Hickey; Sharyn M. Hickey; Ben Radford; Ben Radford; Ben Radford; Chris M. Roelfsema; Karen E. Joyce; Shaun K. Wilson; Shaun K. Wilson; Daniel Marrable; Kathryn Barker; Mathew Wyatt; Harriet N. Davies; Harriet N. Davies; Harriet N. Davies; Javier X. Leon; John Duncan; John Duncan; Thomas H. Holmes; Alan J. Kendrick; J. Nikolaus Callow; Kathy Murray;Increasing sea surface temperature and extreme heat events pose the greatest threat to coral reefs globally, with trends exceeding previous norms. The resultant mass bleaching events, such as those evidenced on the Great Barrier Reef in 2016, 2017, and 2020 have substantial ecological costs in addition to economic and social costs. Advancing remote (nanosatellites, rapid revisit traditional satellites) and in-field (drones) technological capabilities, cloud data processing, and analysis, coupled with existing infrastructure and in-field monitoring programs, have the potential to provide cost-effective and timely information to managers allowing them to better understand changes on reefs and apply effective remediation. Within a risk management framework for monitoring coral bleaching, we present an overview of how remote sensing can be used throughout the whole risk management cycle and highlight the role technological advancement has in earth observations of coral reefs for bleaching events.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2020Full-Text: https://doi.org/10.3389/fmars.2020.544290Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.544290&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2020Full-Text: https://doi.org/10.3389/fmars.2020.544290Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.544290&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Saudi Arabia, Saudi Arabia, AustraliaPublisher:Wiley Funded by:ARC | Discovery Early Career Re...ARC| Discovery Early Career Researcher Award - Grant ID: DE170101524Pere Masqué; Pere Masqué; Pere Masqué; Paul S. Lavery; Gary A. Kendrick; Carlos M. Duarte; Cristian Salinas; Oscar Serrano; Javier León; Ariane Arias-Ortiz; Ariane Arias-Ortiz; David P. Callaghan;AbstractSeagrass meadows store globally significant organic carbon (Corg) stocks which, if disturbed, can lead to CO2 emissions, contributing to climate change. Eutrophication and thermal stress continue to be a major cause of seagrass decline worldwide, but the associated CO2 emissions remain poorly understood. This study presents comprehensive estimates of seagrass soil Corg erosion following eutrophication‐driven seagrass loss in Cockburn Sound (23 km2 between 1960s and 1990s) and identifies the main drivers. We estimate that shallow seagrass meadows (<5 m depth) had significantly higher Corg stocks in 50 cm thick soils (4.5 ± 0.7 kg Corg/m2) than previously vegetated counterparts (0.5 ± 0.1 kg Corg/m2). In deeper areas (>5 m), however, soil Corg stocks in seagrass and bare but previously vegetated areas were not significantly different (2.6 ± 0.3 and 3.0 ± 0.6 kg Corg/m2, respectively). The soil Corg sequestration capacity prevailed in shallow and deep vegetated areas (55 ± 11 and 21 ± 7 g Corg m−2 year−1, respectively), but was lost in bare areas. We identified that seagrass canopy loss alone does not necessarily drive changes in soil Corg but, when combined with high hydrodynamic energy, significant erosion occurred. Our estimates point at ~0.20 m/s as the critical shear velocity threshold causing soil Corg erosion. We estimate, from field studies and satellite imagery, that soil Corg erosion (within the top 50 cm) following seagrass loss likely resulted in cumulative emissions of 0.06–0.14 Tg CO2‐eq over the last 40 years in Cockburn Sound. We estimated that indirect impacts (i.e. eutrophication, thermal stress and light stress) causing the loss of ~161,150 ha of seagrasses in Australia, likely resulted in the release of 11–21 Tg CO2‐eq since the 1950s, increasing cumulative CO2 emissions from land‐use change in Australia by 1.1%–2.3% per annum. The patterns described serve as a baseline to estimate potential CO2 emissions following disturbance of seagrass meadows.
King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2020License: CC BY NCFull-Text: https://ro.ecu.edu.au/ecuworkspost2013/8207Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15204&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 65 citations 65 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2020License: CC BY NCFull-Text: https://ro.ecu.edu.au/ecuworkspost2013/8207Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15204&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Australia, United KingdomPublisher:Elsevier BV Gregory P. Asner; Stuart R. Phinn; John Armston; Kim Calders; Kim Calders; Renata Ferrari; Mathias Disney; Mathias Disney; Javier León;pmid: 31699409
Forests and coral reefs are structurally complex ecosystems threatened by climate change. In situ 3D imaging measurements provide unprecedented, quantitative, and detailed structural information that allows testing of hypotheses relating form to function. This affords new insights into both individual organisms and their relationship to their surroundings and neighbours.
Trends in Ecology & ... arrow_drop_down Trends in Ecology & EvolutionArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2019.10.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 39 citations 39 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Trends in Ecology & ... arrow_drop_down Trends in Ecology & EvolutionArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2019.10.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 AustraliaPublisher:Informa UK Limited Leon, Javier X.; Hardcastle, James; James, Robyn; Albert, Simon; Kereseka, Jimmy; Woodroffe, Colin D.;Coastal communities in the Coral Triangle are increasingly threatened by climate change. Sea-level rise (SLR) will result in biophysical and socioeconomic impacts that could increase the loss of livelihoods, cultural heritage and infrastructure. Effective adaptation requires a holistic approach that incorporates scientific knowledge together with local and traditional knowledge. Community-based adaptation built on local knowledge is of great value for environmental management, particularly when scientific data are lacking. This article reports a case study that integrated traditional and scientific knowledge using participatory three-dimensional modeling (P3DM) in BoeBoe village, Solomon Islands. P3DM is a process by which members of the local community build a physical terrain model and overlay it with the location of important resources such as protected areas or harvesting sites. Additionally, SLR inundation scenarios based on surveyed elevations were incorporated into a geographic information system (GIS), allowing for a real-time integration of science with local knowledge. Despite discrepancies in scales and accuracy, information from both the P3DM and GIS were complementary. The process, itself, provided a forum for discussion between many members of the village who would normally not be involved and highlighted the importance of community engagement when building capacity for adaptation to climate change.
Coastal Management arrow_drop_down University of Wollongong, Australia: Research OnlineArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/08920753.2015.1046808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Coastal Management arrow_drop_down University of Wollongong, Australia: Research OnlineArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/08920753.2015.1046808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 AustraliaPublisher:Wiley Saunders, Megan I.; Leon, Javier; Phinn, Stuart R.; Callaghan, David P.; O'Brien, Katherine R.; Roelfsema, Chris M.; Lovelock, Catherine E.; Lyons, Mitchell B.; Mumby, Peter J.;doi: 10.1111/gcb.12218
pmid: 23564697
AbstractThe distribution and abundance of seagrass ecosystems could change significantly over the coming century due to sea level rise (SLR). Coastal managers require mechanistic understanding of the processes affecting seagrass response to SLR to maximize their conservation and associated provision of ecosystem services. In Moreton Bay, Queensland, Australia, vast seagrass meadows supporting populations of sea turtles and dugongs are juxtaposed with the multiple stressors associated with a large and rapidly expanding human population. Here, the interactive effects of predicted SLR, changes in water clarity, and land use on future distributions of seagrass in Moreton Bay were quantified. A habitat distribution model of present day seagrass in relation to benthic irradiance and wave height was developed which correctly classified habitats in 83% of cases. Spatial predictions of seagrass and presence derived from the model and bathymetric data were used to initiate a SLR inundation model. Bathymetry was iteratively modified based on SLR and sedimentary accretion in seagrass to simulate potential seagrass habitat at 10 year time steps until 2100. The area of seagrass habitat was predicted to decline by 17% by 2100 under a scenario of SLR of 1.1 m. A scenario including the removal of impervious surfaces, such as roads and houses, from newly inundated regions, demonstrated that managed retreat of the shoreline could potentially reduce the overall decline in seagrass habitat to just 5%. The predicted reduction in area of seagrass habitat could be offset by an improvement in water clarity of 30%. Greater improvements in water clarity would be necessary for larger magnitudes of SLR. Management to improve water quality will provide present and future benefits to seagrasses under climate change and should be a priority for managers seeking to compensate for the effects of global change on these valuable habitats.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12218&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 105 citations 105 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12218&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 AustraliaPublisher:Wiley Funded by:ARC | Defend or retreat? Adapt..., ARC | Treading water in a chang...ARC| Defend or retreat? Adapting to the impacts of sea level rise as a result of rapid climate change. ,ARC| Treading water in a changing climate: The vulnerability of Australia�s tropical islands to sea level rise.Carissa J. Klein; Julian O’Mara; Catherine E. Lovelock; David P. Callaghan; Vivitskaia J. D. Tulloch; Ove Hoegh-Guldberg; Peter J. Mumby; Peter J. Mumby; Tom E. Baldock; Yan Liu; Morena Mills; Hugh P. Possingham; Hugh P. Possingham; Konar Mutafoglu; Konar Mutafoglu; Javier León; Javier León; Megan I. Saunders; Tiffany H. Morrison; Justine Bell; Stuart R. Phinn;doi: 10.1111/conl.12213
AbstractAmong the biggest global challenges for policymakers is the development of land use policies robust to climate change impacts. While diverse fields can inform adaptation, integrated social‐ecological assessment of the multiple adaptation options are rare and cannot be easily applied. Here, we build on past studies by undertaking an integrated fine scale and strategic allocation of sea level rise (SLR) adaptation options that can direct policy making. We use models of probabilistic SLR inundation, urban growth, and sub‐ and intertidal ecosystem migration, to investigate the impacts of different SLR adaptation strategies, and how these can be allocated to best achieve both development and conservation goals. Coastal adaptation will involve trade‐offs among development and conservation objectives and these will vary based on the extent to which sea levels rise. There will be trade‐offs between conservation objectives regardless of the adaptation options chosen, however, retreat does provide opportunities for enabling the expansion of coastal ecosystems inland. Local governments can save billions of dollars and minimize political conflict between conservation and development goals through integrated strategic spatial planning. Our planning approach both informs policy and is transferable to other coastal regions faced with a rising sea.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2016Full-Text: http://dx.doi.org/10.1111/conl.12213Data sources: Bielefeld Academic Search Engine (BASE)USC Research Bank research dataArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/conl.12213&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2016Full-Text: http://dx.doi.org/10.1111/conl.12213Data sources: Bielefeld Academic Search Engine (BASE)USC Research Bank research dataArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/conl.12213&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:Elsevier BV Funded by:ARC | Linkage Projects - Grant ...ARC| Linkage Projects - Grant ID: LP160100941Authors: Piérick C.M. Martin; Patrick Nunn; Javier Leon; Neil Tindale;Island societies are being disproportionately affected by climate change, a situation likely to continue for some decades. Using an example of an island affected by multiple climate-linked stressors, a situation likely to become more common in the future, this paper examines the nature of these, the ways they are perceived and responded to by local residents, and how these people believe environmental changes might unfold in the future. Yadua Island has one settlement (Denimanu), where most of the 170 residents sustain themselves largely by fishing and farming. Like most Pacific Island settlements, Denimanu is coastal and has experienced progressive shoreline erosion that, a decade ago, washed away a row of houses. In 2012, a storm surge (during Tropical Cyclone Evan) demolished most of the remaining bure (traditional dwellings) in the village. The Fiji Government relocated the affected families to a new upslope location (Korovou), 80–230 m from the beach, and up to 20 m above mean sea level. In March 2017, heavy rain caused a landslide at the back of Denimanu that endangered the primary school, forcing its abandonment. Some questionnaires were given to representative members of the community in an attempt to understand and quantify the pressures that Yadua Island people are subject to, and how they plan to manage them. All respondents believed that climate change has affected their livelihoods and will continue to do so in the future. Clear majorities stated that climate change – especially higher temperatures and increased frequency/magnitudes of heavy-rain events – had negatively affected the supply of marine and terrestrial foods. Most respondents noted increased temperature and decreased precipitation. Clear majorities stated they would eventually relocate their homes further inland, and would consider planting mangroves. Most participants were contemplating the effects of climate change (especially sea-level rise) on food supply, prompting them to consider relocating lowland crop production further inland and planting crops that are more tolerant of saline groundwater and/or periodic wave over-wash. The people of Denimanu recognise how the environment has been changing but debate the ultimate cause of this and therefore how best to respond. It is likely that Yadua will become impacted more by tropical cyclones and sea-level rise (in particular) in the future. To be effective and sustainable, adaptation strategies should acknowledge residents’ worldviews and beliefs rather than try to uncritically substitute them. Keywords: Small Island Developing States, Fiji, Sea-level rise, Climate change, Environmental risk, Landslides
Climate Risk Managem... arrow_drop_down USC Research Bank research dataArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.crm.2018.04.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Climate Risk Managem... arrow_drop_down USC Research Bank research dataArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.crm.2018.04.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 Netherlands, Australia, Australia, AustraliaPublisher:Public Library of Science (PLoS) Funded by:ARC | Treading water in a chang...ARC| Treading water in a changing climate: The vulnerability of Australia�s tropical islands to sea level rise.Authors: Leon, J.X.; Heuvelink, G.B.M.; Phinn, S.R.;Coastal managers require reliable spatial data on the extent and timing of potential coastal inundation, particularly in a changing climate. Most sea level rise (SLR) vulnerability assessments are undertaken using the easily implemented bathtub approach, where areas adjacent to the sea and below a given elevation are mapped using a deterministic line dividing potentially inundated from dry areas. This method only requires elevation data usually in the form of a digital elevation model (DEM). However, inherent errors in the DEM and spatial analysis of the bathtub model propagate into the inundation mapping. The aim of this study was to assess the impacts of spatially variable and spatially correlated elevation errors in high-spatial resolution DEMs for mapping coastal inundation. Elevation errors were best modelled using regression-kriging. This geostatistical model takes the spatial correlation in elevation errors into account, which has a significant impact on analyses that include spatial interactions, such as inundation modelling. The spatial variability of elevation errors was partially explained by land cover and terrain variables. Elevation errors were simulated using sequential Gaussian simulation, a Monte Carlo probabilistic approach. 1,000 error simulations were added to the original DEM and reclassified using a hydrologically correct bathtub method. The probability of inundation to a scenario combining a 1 in 100 year storm event over a 1 m SLR was calculated by counting the proportion of times from the 1,000 simulations that a location was inundated. This probabilistic approach can be used in a risk-aversive decision making process by planning for scenarios with different probabilities of occurrence. For example, results showed that when considering a 1% probability exceedance, the inundated area was approximately 11% larger than mapped using the deterministic bathtub approach. The probabilistic approach provides visually intuitive maps that convey uncertainties inherent to spatial data and analysis.
PLoS ONE arrow_drop_down Wageningen Staff PublicationsArticle . 2014License: CC BYData sources: Wageningen Staff PublicationsUSC Research Bank research dataArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0108727&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 60 citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down Wageningen Staff PublicationsArticle . 2014License: CC BYData sources: Wageningen Staff PublicationsUSC Research Bank research dataArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0108727&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:IOP Publishing Albert, Simon; Saunders, Megan L; Roelfsema, Chris M; Leon, Javier X; Johnstone, Elizabeth; Mackenzie, Jock R; Hoegh-Guldberg, Ove; Grinham, Alistair R; Phinn, Stuart R; Duke, Norman C; Mumby, Peter J; Kovacs, Eva; Woodroffe, Colin D;Abstract A 2007 earthquake in the western Solomon Islands resulted in a localised subsidence event in which sea level (relative to the previous coastal settings) rose approximately 30–70 cm, providing insight into impacts of future rapid changes to sea level on coastal ecosystems. Here, we show that increasing sea level by 30–70 cm can have contrasting impacts on mangrove, seagrass and coral reef ecosystems. Coral reef habitats were the clear winners with a steady lateral growth from 2006–2014, yielding a 157% increase in areal coverage over seven years. Mangrove ecosystems, on the other hand, suffered the largest impact through a rapid dieback of 35% (130 ha) of mangrove forest in the study area after subsidence. These forests, however, had partially recovered seven years after the earthquake albeit with a different community structure. The shallow seagrass ecosystems demonstrated the most dynamic response to relative shifts in sea level with both losses and gains in areal extent at small scales of 10–100 m. The results of this study emphasize the importance of considering the impacts of sea-level rise within a complex landscape in which winners and losers may vary over time and space.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2017Full-Text: https://doi.org/10.1088/1748-9326/aa7e68Data sources: Bielefeld Academic Search Engine (BASE)USC Research Bank research dataArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aa7e68&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2017Full-Text: https://doi.org/10.1088/1748-9326/aa7e68Data sources: Bielefeld Academic Search Engine (BASE)USC Research Bank research dataArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aa7e68&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:Springer Science and Business Media LLC Simon Albert; Robin Bronen; Nixon Tooler; Javier Leon; Douglas Yee; Jillian Ash; David Boseto; Alistair Grinham;Whilst future air temperature thresholds have become the centrepiece of international climate negotiations, even the most ambitious target of 1.5 °C will result in significant sea-level rise and associated impacts on human populations globally. Of additional concern in Arctic regions is declining sea ice and warming permafrost which can increasingly expose coastal areas to erosion particularly through exposure to wave action due to storm activity. Regional variability over the past two decades provides insight into the coastal and human responses to anticipated future rates of sea-level rise under 1.5 °C scenarios. Exceeding 1.5 °C will generate sea-level rise scenarios beyond that currently experienced and substantially increase the proportion of the global population impacted. Despite these dire challenges, there has been limited analysis of how, where and why communities will relocate inland in response. Here, we present case studies of local responses to coastal erosion driven by sea-level rise and warming in remote indigenous communities of the Solomon Islands and Alaska, USA, respectively. In both the Solomon Islands and the USA, there is no national government agency that has the organisational and technical capacity and resources to facilitate a community-wide relocation. In the Solomon Islands, communities have been able to draw on flexible land tenure regimes to rapidly adapt to coastal erosion through relocations. These relocations have led to ad hoc fragmentation of communities into smaller hamlets. Government-supported relocation initiatives in both countries have been less successful in the short term due to limitations of land tenure, lacking relocation governance framework, financial support and complex planning processes. These experiences from the Solomon Islands and USA demonstrate the urgent need to create a relocation governance framework that protects people’s human rights.
Regional Environment... arrow_drop_down Regional Environmental ChangeArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10113-017-1256-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu102 citations 102 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Regional Environment... arrow_drop_down Regional Environmental ChangeArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10113-017-1256-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Frontiers Media SA Sharyn M. Hickey; Sharyn M. Hickey; Sharyn M. Hickey; Ben Radford; Ben Radford; Ben Radford; Chris M. Roelfsema; Karen E. Joyce; Shaun K. Wilson; Shaun K. Wilson; Daniel Marrable; Kathryn Barker; Mathew Wyatt; Harriet N. Davies; Harriet N. Davies; Harriet N. Davies; Javier X. Leon; John Duncan; John Duncan; Thomas H. Holmes; Alan J. Kendrick; J. Nikolaus Callow; Kathy Murray;Increasing sea surface temperature and extreme heat events pose the greatest threat to coral reefs globally, with trends exceeding previous norms. The resultant mass bleaching events, such as those evidenced on the Great Barrier Reef in 2016, 2017, and 2020 have substantial ecological costs in addition to economic and social costs. Advancing remote (nanosatellites, rapid revisit traditional satellites) and in-field (drones) technological capabilities, cloud data processing, and analysis, coupled with existing infrastructure and in-field monitoring programs, have the potential to provide cost-effective and timely information to managers allowing them to better understand changes on reefs and apply effective remediation. Within a risk management framework for monitoring coral bleaching, we present an overview of how remote sensing can be used throughout the whole risk management cycle and highlight the role technological advancement has in earth observations of coral reefs for bleaching events.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2020Full-Text: https://doi.org/10.3389/fmars.2020.544290Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.544290&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2020Full-Text: https://doi.org/10.3389/fmars.2020.544290Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.544290&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Saudi Arabia, Saudi Arabia, AustraliaPublisher:Wiley Funded by:ARC | Discovery Early Career Re...ARC| Discovery Early Career Researcher Award - Grant ID: DE170101524Pere Masqué; Pere Masqué; Pere Masqué; Paul S. Lavery; Gary A. Kendrick; Carlos M. Duarte; Cristian Salinas; Oscar Serrano; Javier León; Ariane Arias-Ortiz; Ariane Arias-Ortiz; David P. Callaghan;AbstractSeagrass meadows store globally significant organic carbon (Corg) stocks which, if disturbed, can lead to CO2 emissions, contributing to climate change. Eutrophication and thermal stress continue to be a major cause of seagrass decline worldwide, but the associated CO2 emissions remain poorly understood. This study presents comprehensive estimates of seagrass soil Corg erosion following eutrophication‐driven seagrass loss in Cockburn Sound (23 km2 between 1960s and 1990s) and identifies the main drivers. We estimate that shallow seagrass meadows (<5 m depth) had significantly higher Corg stocks in 50 cm thick soils (4.5 ± 0.7 kg Corg/m2) than previously vegetated counterparts (0.5 ± 0.1 kg Corg/m2). In deeper areas (>5 m), however, soil Corg stocks in seagrass and bare but previously vegetated areas were not significantly different (2.6 ± 0.3 and 3.0 ± 0.6 kg Corg/m2, respectively). The soil Corg sequestration capacity prevailed in shallow and deep vegetated areas (55 ± 11 and 21 ± 7 g Corg m−2 year−1, respectively), but was lost in bare areas. We identified that seagrass canopy loss alone does not necessarily drive changes in soil Corg but, when combined with high hydrodynamic energy, significant erosion occurred. Our estimates point at ~0.20 m/s as the critical shear velocity threshold causing soil Corg erosion. We estimate, from field studies and satellite imagery, that soil Corg erosion (within the top 50 cm) following seagrass loss likely resulted in cumulative emissions of 0.06–0.14 Tg CO2‐eq over the last 40 years in Cockburn Sound. We estimated that indirect impacts (i.e. eutrophication, thermal stress and light stress) causing the loss of ~161,150 ha of seagrasses in Australia, likely resulted in the release of 11–21 Tg CO2‐eq since the 1950s, increasing cumulative CO2 emissions from land‐use change in Australia by 1.1%–2.3% per annum. The patterns described serve as a baseline to estimate potential CO2 emissions following disturbance of seagrass meadows.
King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2020License: CC BY NCFull-Text: https://ro.ecu.edu.au/ecuworkspost2013/8207Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15204&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 65 citations 65 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2020License: CC BY NCFull-Text: https://ro.ecu.edu.au/ecuworkspost2013/8207Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15204&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Australia, United KingdomPublisher:Elsevier BV Gregory P. Asner; Stuart R. Phinn; John Armston; Kim Calders; Kim Calders; Renata Ferrari; Mathias Disney; Mathias Disney; Javier León;pmid: 31699409
Forests and coral reefs are structurally complex ecosystems threatened by climate change. In situ 3D imaging measurements provide unprecedented, quantitative, and detailed structural information that allows testing of hypotheses relating form to function. This affords new insights into both individual organisms and their relationship to their surroundings and neighbours.
Trends in Ecology & ... arrow_drop_down Trends in Ecology & EvolutionArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2019.10.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 39 citations 39 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Trends in Ecology & ... arrow_drop_down Trends in Ecology & EvolutionArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2019.10.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 AustraliaPublisher:Informa UK Limited Leon, Javier X.; Hardcastle, James; James, Robyn; Albert, Simon; Kereseka, Jimmy; Woodroffe, Colin D.;Coastal communities in the Coral Triangle are increasingly threatened by climate change. Sea-level rise (SLR) will result in biophysical and socioeconomic impacts that could increase the loss of livelihoods, cultural heritage and infrastructure. Effective adaptation requires a holistic approach that incorporates scientific knowledge together with local and traditional knowledge. Community-based adaptation built on local knowledge is of great value for environmental management, particularly when scientific data are lacking. This article reports a case study that integrated traditional and scientific knowledge using participatory three-dimensional modeling (P3DM) in BoeBoe village, Solomon Islands. P3DM is a process by which members of the local community build a physical terrain model and overlay it with the location of important resources such as protected areas or harvesting sites. Additionally, SLR inundation scenarios based on surveyed elevations were incorporated into a geographic information system (GIS), allowing for a real-time integration of science with local knowledge. Despite discrepancies in scales and accuracy, information from both the P3DM and GIS were complementary. The process, itself, provided a forum for discussion between many members of the village who would normally not be involved and highlighted the importance of community engagement when building capacity for adaptation to climate change.
Coastal Management arrow_drop_down University of Wollongong, Australia: Research OnlineArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/08920753.2015.1046808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Coastal Management arrow_drop_down University of Wollongong, Australia: Research OnlineArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/08920753.2015.1046808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 AustraliaPublisher:Wiley Saunders, Megan I.; Leon, Javier; Phinn, Stuart R.; Callaghan, David P.; O'Brien, Katherine R.; Roelfsema, Chris M.; Lovelock, Catherine E.; Lyons, Mitchell B.; Mumby, Peter J.;doi: 10.1111/gcb.12218
pmid: 23564697
AbstractThe distribution and abundance of seagrass ecosystems could change significantly over the coming century due to sea level rise (SLR). Coastal managers require mechanistic understanding of the processes affecting seagrass response to SLR to maximize their conservation and associated provision of ecosystem services. In Moreton Bay, Queensland, Australia, vast seagrass meadows supporting populations of sea turtles and dugongs are juxtaposed with the multiple stressors associated with a large and rapidly expanding human population. Here, the interactive effects of predicted SLR, changes in water clarity, and land use on future distributions of seagrass in Moreton Bay were quantified. A habitat distribution model of present day seagrass in relation to benthic irradiance and wave height was developed which correctly classified habitats in 83% of cases. Spatial predictions of seagrass and presence derived from the model and bathymetric data were used to initiate a SLR inundation model. Bathymetry was iteratively modified based on SLR and sedimentary accretion in seagrass to simulate potential seagrass habitat at 10 year time steps until 2100. The area of seagrass habitat was predicted to decline by 17% by 2100 under a scenario of SLR of 1.1 m. A scenario including the removal of impervious surfaces, such as roads and houses, from newly inundated regions, demonstrated that managed retreat of the shoreline could potentially reduce the overall decline in seagrass habitat to just 5%. The predicted reduction in area of seagrass habitat could be offset by an improvement in water clarity of 30%. Greater improvements in water clarity would be necessary for larger magnitudes of SLR. Management to improve water quality will provide present and future benefits to seagrasses under climate change and should be a priority for managers seeking to compensate for the effects of global change on these valuable habitats.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12218&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 105 citations 105 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12218&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 AustraliaPublisher:Wiley Funded by:ARC | Defend or retreat? Adapt..., ARC | Treading water in a chang...ARC| Defend or retreat? Adapting to the impacts of sea level rise as a result of rapid climate change. ,ARC| Treading water in a changing climate: The vulnerability of Australia�s tropical islands to sea level rise.Carissa J. Klein; Julian O’Mara; Catherine E. Lovelock; David P. Callaghan; Vivitskaia J. D. Tulloch; Ove Hoegh-Guldberg; Peter J. Mumby; Peter J. Mumby; Tom E. Baldock; Yan Liu; Morena Mills; Hugh P. Possingham; Hugh P. Possingham; Konar Mutafoglu; Konar Mutafoglu; Javier León; Javier León; Megan I. Saunders; Tiffany H. Morrison; Justine Bell; Stuart R. Phinn;doi: 10.1111/conl.12213
AbstractAmong the biggest global challenges for policymakers is the development of land use policies robust to climate change impacts. While diverse fields can inform adaptation, integrated social‐ecological assessment of the multiple adaptation options are rare and cannot be easily applied. Here, we build on past studies by undertaking an integrated fine scale and strategic allocation of sea level rise (SLR) adaptation options that can direct policy making. We use models of probabilistic SLR inundation, urban growth, and sub‐ and intertidal ecosystem migration, to investigate the impacts of different SLR adaptation strategies, and how these can be allocated to best achieve both development and conservation goals. Coastal adaptation will involve trade‐offs among development and conservation objectives and these will vary based on the extent to which sea levels rise. There will be trade‐offs between conservation objectives regardless of the adaptation options chosen, however, retreat does provide opportunities for enabling the expansion of coastal ecosystems inland. Local governments can save billions of dollars and minimize political conflict between conservation and development goals through integrated strategic spatial planning. Our planning approach both informs policy and is transferable to other coastal regions faced with a rising sea.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2016Full-Text: http://dx.doi.org/10.1111/conl.12213Data sources: Bielefeld Academic Search Engine (BASE)USC Research Bank research dataArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/conl.12213&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2016Full-Text: http://dx.doi.org/10.1111/conl.12213Data sources: Bielefeld Academic Search Engine (BASE)USC Research Bank research dataArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/conl.12213&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:Elsevier BV Funded by:ARC | Linkage Projects - Grant ...ARC| Linkage Projects - Grant ID: LP160100941Authors: Piérick C.M. Martin; Patrick Nunn; Javier Leon; Neil Tindale;Island societies are being disproportionately affected by climate change, a situation likely to continue for some decades. Using an example of an island affected by multiple climate-linked stressors, a situation likely to become more common in the future, this paper examines the nature of these, the ways they are perceived and responded to by local residents, and how these people believe environmental changes might unfold in the future. Yadua Island has one settlement (Denimanu), where most of the 170 residents sustain themselves largely by fishing and farming. Like most Pacific Island settlements, Denimanu is coastal and has experienced progressive shoreline erosion that, a decade ago, washed away a row of houses. In 2012, a storm surge (during Tropical Cyclone Evan) demolished most of the remaining bure (traditional dwellings) in the village. The Fiji Government relocated the affected families to a new upslope location (Korovou), 80–230 m from the beach, and up to 20 m above mean sea level. In March 2017, heavy rain caused a landslide at the back of Denimanu that endangered the primary school, forcing its abandonment. Some questionnaires were given to representative members of the community in an attempt to understand and quantify the pressures that Yadua Island people are subject to, and how they plan to manage them. All respondents believed that climate change has affected their livelihoods and will continue to do so in the future. Clear majorities stated that climate change – especially higher temperatures and increased frequency/magnitudes of heavy-rain events – had negatively affected the supply of marine and terrestrial foods. Most respondents noted increased temperature and decreased precipitation. Clear majorities stated they would eventually relocate their homes further inland, and would consider planting mangroves. Most participants were contemplating the effects of climate change (especially sea-level rise) on food supply, prompting them to consider relocating lowland crop production further inland and planting crops that are more tolerant of saline groundwater and/or periodic wave over-wash. The people of Denimanu recognise how the environment has been changing but debate the ultimate cause of this and therefore how best to respond. It is likely that Yadua will become impacted more by tropical cyclones and sea-level rise (in particular) in the future. To be effective and sustainable, adaptation strategies should acknowledge residents’ worldviews and beliefs rather than try to uncritically substitute them. Keywords: Small Island Developing States, Fiji, Sea-level rise, Climate change, Environmental risk, Landslides
Climate Risk Managem... arrow_drop_down USC Research Bank research dataArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.crm.2018.04.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Climate Risk Managem... arrow_drop_down USC Research Bank research dataArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.crm.2018.04.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 Netherlands, Australia, Australia, AustraliaPublisher:Public Library of Science (PLoS) Funded by:ARC | Treading water in a chang...ARC| Treading water in a changing climate: The vulnerability of Australia�s tropical islands to sea level rise.Authors: Leon, J.X.; Heuvelink, G.B.M.; Phinn, S.R.;Coastal managers require reliable spatial data on the extent and timing of potential coastal inundation, particularly in a changing climate. Most sea level rise (SLR) vulnerability assessments are undertaken using the easily implemented bathtub approach, where areas adjacent to the sea and below a given elevation are mapped using a deterministic line dividing potentially inundated from dry areas. This method only requires elevation data usually in the form of a digital elevation model (DEM). However, inherent errors in the DEM and spatial analysis of the bathtub model propagate into the inundation mapping. The aim of this study was to assess the impacts of spatially variable and spatially correlated elevation errors in high-spatial resolution DEMs for mapping coastal inundation. Elevation errors were best modelled using regression-kriging. This geostatistical model takes the spatial correlation in elevation errors into account, which has a significant impact on analyses that include spatial interactions, such as inundation modelling. The spatial variability of elevation errors was partially explained by land cover and terrain variables. Elevation errors were simulated using sequential Gaussian simulation, a Monte Carlo probabilistic approach. 1,000 error simulations were added to the original DEM and reclassified using a hydrologically correct bathtub method. The probability of inundation to a scenario combining a 1 in 100 year storm event over a 1 m SLR was calculated by counting the proportion of times from the 1,000 simulations that a location was inundated. This probabilistic approach can be used in a risk-aversive decision making process by planning for scenarios with different probabilities of occurrence. For example, results showed that when considering a 1% probability exceedance, the inundated area was approximately 11% larger than mapped using the deterministic bathtub approach. The probabilistic approach provides visually intuitive maps that convey uncertainties inherent to spatial data and analysis.
PLoS ONE arrow_drop_down Wageningen Staff PublicationsArticle . 2014License: CC BYData sources: Wageningen Staff PublicationsUSC Research Bank research dataArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0108727&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 60 citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down Wageningen Staff PublicationsArticle . 2014License: CC BYData sources: Wageningen Staff PublicationsUSC Research Bank research dataArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0108727&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:IOP Publishing Albert, Simon; Saunders, Megan L; Roelfsema, Chris M; Leon, Javier X; Johnstone, Elizabeth; Mackenzie, Jock R; Hoegh-Guldberg, Ove; Grinham, Alistair R; Phinn, Stuart R; Duke, Norman C; Mumby, Peter J; Kovacs, Eva; Woodroffe, Colin D;Abstract A 2007 earthquake in the western Solomon Islands resulted in a localised subsidence event in which sea level (relative to the previous coastal settings) rose approximately 30–70 cm, providing insight into impacts of future rapid changes to sea level on coastal ecosystems. Here, we show that increasing sea level by 30–70 cm can have contrasting impacts on mangrove, seagrass and coral reef ecosystems. Coral reef habitats were the clear winners with a steady lateral growth from 2006–2014, yielding a 157% increase in areal coverage over seven years. Mangrove ecosystems, on the other hand, suffered the largest impact through a rapid dieback of 35% (130 ha) of mangrove forest in the study area after subsidence. These forests, however, had partially recovered seven years after the earthquake albeit with a different community structure. The shallow seagrass ecosystems demonstrated the most dynamic response to relative shifts in sea level with both losses and gains in areal extent at small scales of 10–100 m. The results of this study emphasize the importance of considering the impacts of sea-level rise within a complex landscape in which winners and losers may vary over time and space.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2017Full-Text: https://doi.org/10.1088/1748-9326/aa7e68Data sources: Bielefeld Academic Search Engine (BASE)USC Research Bank research dataArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aa7e68&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2017Full-Text: https://doi.org/10.1088/1748-9326/aa7e68Data sources: Bielefeld Academic Search Engine (BASE)USC Research Bank research dataArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aa7e68&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:Springer Science and Business Media LLC Simon Albert; Robin Bronen; Nixon Tooler; Javier Leon; Douglas Yee; Jillian Ash; David Boseto; Alistair Grinham;Whilst future air temperature thresholds have become the centrepiece of international climate negotiations, even the most ambitious target of 1.5 °C will result in significant sea-level rise and associated impacts on human populations globally. Of additional concern in Arctic regions is declining sea ice and warming permafrost which can increasingly expose coastal areas to erosion particularly through exposure to wave action due to storm activity. Regional variability over the past two decades provides insight into the coastal and human responses to anticipated future rates of sea-level rise under 1.5 °C scenarios. Exceeding 1.5 °C will generate sea-level rise scenarios beyond that currently experienced and substantially increase the proportion of the global population impacted. Despite these dire challenges, there has been limited analysis of how, where and why communities will relocate inland in response. Here, we present case studies of local responses to coastal erosion driven by sea-level rise and warming in remote indigenous communities of the Solomon Islands and Alaska, USA, respectively. In both the Solomon Islands and the USA, there is no national government agency that has the organisational and technical capacity and resources to facilitate a community-wide relocation. In the Solomon Islands, communities have been able to draw on flexible land tenure regimes to rapidly adapt to coastal erosion through relocations. These relocations have led to ad hoc fragmentation of communities into smaller hamlets. Government-supported relocation initiatives in both countries have been less successful in the short term due to limitations of land tenure, lacking relocation governance framework, financial support and complex planning processes. These experiences from the Solomon Islands and USA demonstrate the urgent need to create a relocation governance framework that protects people’s human rights.
Regional Environment... arrow_drop_down Regional Environmental ChangeArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10113-017-1256-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu102 citations 102 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Regional Environment... arrow_drop_down Regional Environmental ChangeArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10113-017-1256-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu