- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018 Australia, Australia, United KingdomPublisher:Wiley Funded by:ARC | Discovery Early Career Re..., ARC | Discovery Early Career Re..., EC | SIRCIWARC| Discovery Early Career Researcher Award - Grant ID: DE130101705 ,ARC| Discovery Early Career Researcher Award - Grant ID: DE130100688 ,EC| SIRCIWAuthors: Laura E. Richardson; Nicholas A. J. Graham; Morgan S. Pratchett; Jacob G. Eurich; +1 AuthorsLaura E. Richardson; Nicholas A. J. Graham; Morgan S. Pratchett; Jacob G. Eurich; Andrew S. Hoey;doi: 10.1111/gcb.14119
pmid: 29633512
AbstractGlobal climate change is altering community composition across many ecosystems due to nonrandom species turnover, typically characterized by the loss of specialist species and increasing similarity of biological communities across spatial scales. As anthropogenic disturbances continue to alter species composition globally, there is a growing need to identify how species responses influence the establishment of distinct assemblages, such that management actions may be appropriately assigned. Here, we use trait‐based analyses to compare temporal changes in five complementary indices of reef fish assemblage structure among six taxonomically distinct coral reef habitats exposed to a system‐wide thermal stress event. Our results revealed increased taxonomic and functional similarity of previously distinct reef fish assemblages following mass coral bleaching, with changes characterized by subtle, but significant, shifts toward predominance of small‐bodied, algal‐farming habitat generalists. Furthermore, while the taxonomic or functional richness of fish assemblages did not change across all habitats, an increase in functional originality indicated an overall loss of functional redundancy. We also found that prebleaching coral composition better predicted changes in fish assemblage structure than the magnitude of coral loss. These results emphasize how measures of alpha diversity can mask important changes in the structure and functioning of ecosystems as assemblages reorganize. Our findings also highlight the role of coral species composition in structuring communities and influencing the diversity of responses of reef fishes to disturbance. As new coral species configurations emerge, their desirability will hinge upon the composition of associated species and their capacity to maintain key ecological processes in spite of ongoing disturbances.
Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 153 citations 153 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013 AustraliaPublisher:Public Library of Science (PLoS) Authors: Trapon, Melanie L.; Pratchett, Morgan S.; Hoey, Andrew S.;For species with complex life histories such as scleractinian corals, processes occurring early in life can greatly influence the number of individuals entering the adult population. A plethora of studies have examined settlement patterns of coral larvae, mostly on artificial substrata, and the composition of adult corals across multiple spatial and temporal scales. However, relatively few studies have examined the spatial distribution of small (≤50 mm diameter) sexually immature corals on natural reef substrata. We, therefore, quantified the variation in the abundance, composition and size of juvenile corals (≤50 mm diameter) among 27 sites, nine reefs, and three latitudes spanning over 1000 km on Australia's Great Barrier Reef. Overall, 2801 juveniles were recorded with a mean density of 6.9 (±0.3 SE) ind.m(-2), with Acropora, Pocillopora, and Porites accounting for 84.1% of all juvenile corals surveyed. Size-class structure, orientation on the substrate and taxonomic composition of juvenile corals varied significantly among latitudinal sectors. The abundance of juvenile corals varied both within (6-13 ind.m(-2)) and among reefs (2.8-11.1 ind.m(-2)) but was fairly similar among latitudes (6.1-8.2 ind.m(-2)), despite marked latitudinal variation in larval supply and settlement rates previously found at this scale. Furthermore, the density of juvenile corals was negatively correlated with the biomass of scraping and excavating parrotfishes across all sites, revealing a potentially important role of parrotfishes in determining distribution patterns of juvenile corals on the Great Barrier Reef. While numerous studies have advocated the importance of parrotfishes for clearing space on the substrate to facilitate coral settlement, our results suggest that at high biomass they may have a detrimental effect on juvenile coral assemblages. There is, however, a clear need to directly quantify rates of mortality and growth of juvenile corals to understand the relative importance of these mechanisms in shaping juvenile, and consequently adult, coral assemblages.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0057788&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0057788&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Denmark, AustraliaPublisher:Wiley Tiffany J Nay; Rohan J Longbottom; Connor R Gervais; Jacob L Johansen; John F Steffensen; Jodie L Rummer; Andrew S Hoey;doi: 10.1111/jfb.14616
pmid: 33206373
ABSTRACTHighly variable thermal environments, such as coral reef flats, are challenging for marine ectotherms and are thought to invoke the use of behavioural strategies to avoid extreme temperatures and seek out thermal environments close to their preferred temperatures. Common to coral reef flats, the epaulette shark (Hemiscyllium ocellatum) possesses physiological adaptations to hypoxic and hypercapnic conditions, such as those experienced on reef flats, but little is known regarding the thermal strategies used by these sharks. We investigated whether H. ocellatum uses behavioural thermoregulation (i.e., movement to occupy thermally favourable microhabitats) or tolerates the broad range of temperatures experienced on the reef flat. Using an automated shuttlebox system, we determined the preferred temperature of H. ocellatum under controlled laboratory conditions and then compared this preferred temperature to 6 months of in situ environmental and body temperatures of individual H. ocellatum across the Heron Island reef flat. The preferred temperature of H. ocellatum under controlled conditions was 20.7 ± 1.5°C, but the body temperatures of individual H. ocellatum on the Heron Island reef flat mirrored environmental temperatures regardless of season or month. Despite substantial temporal variation in temperature on the Heron Island reef flat (15–34°C during 2017), there was a lack of spatial variation in temperature across the reef flat between sites or microhabitats. This limited spatial variation in temperature creates a low‐quality thermal habitat limiting the ability of H. ocellatum to behaviourally thermoregulate. Behavioural thermoregulation is assumed in many shark species, but it appears that H. ocellatum may utilize other physiological strategies to cope with extreme temperature fluctuations on coral reef flats. While H. ocellatum appears to be able to tolerate acute exposure to temperatures well outside of their preferred temperature, it is unclear how this, and other, species will cope as temperatures continue to rise and approach their critical thermal limits. Understanding how species will respond to continued warming and the strategies they may use will be key to predicting future populations and assemblages.
Journal of Fish Biol... arrow_drop_down Journal of Fish BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jfb.14616&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Fish Biol... arrow_drop_down Journal of Fish BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jfb.14616&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 AustraliaPublisher:The Royal Society Authors: Adel Heenan; Andrew S. Hoey; Gareth J. Williams; Ivor D. Williams;Humans are an increasingly dominant driver of Earth's biological communities, but differentiating human impacts from natural drivers of ecosystem state is crucial. Herbivorous fish play a key role in maintaining coral dominance on coral reefs, and are widely affected by human activities, principally fishing. We assess the relative importance of human and biophysical (habitat and oceanographic) drivers on the biomass of five herbivorous functional groups among 33 islands in the central and western Pacific Ocean. Human impacts were clear for some, but not all, herbivore groups. Biomass of browsers, large excavators, and of all herbivores combined declined rapidly with increasing human population density, whereas grazers, scrapers, and detritivores displayed no relationship. Sea-surface temperature had significant but opposing effects on the biomass of detritivores (positive) and browsers (negative). Similarly, the biomass of scrapers, grazers, and detritivores correlated with habitat structural complexity; however, relationships were group specific. Finally, the biomass of browsers and large excavators was related to island geomorphology, both peaking on low-lying islands and atolls. The substantial variability in herbivore populations explained by natural biophysical drivers highlights the need for locally appropriate management targets on coral reefs.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2016Full-Text: http://dx.doi.org/10.1098/rspb.2016.1716Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallProceedings of the Royal Society B Biological SciencesArticle . 2016 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2017Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2016.1716&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 67 citations 67 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2016Full-Text: http://dx.doi.org/10.1098/rspb.2016.1716Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallProceedings of the Royal Society B Biological SciencesArticle . 2016 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2017Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2016.1716&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 France, Australia, France, Australia, Australia, Australia, France, Australia, United KingdomPublisher:Proceedings of the National Academy of Sciences Funded by:ARC | Future Fellowships - Gran..., FCT | LA 1, ARC | ARC Centres of Excellence...ARC| Future Fellowships - Grant ID: FT160100047 ,FCT| LA 1 ,ARC| ARC Centres of Excellences - Grant ID: CE140100020Sebastian C. A. Ferse; David Mouillot; David Mouillot; David A. Feary; Charlotte Gough; U. Rashid Sumaila; Andrew S. Hoey; Eran Brokovich; Rick D. Stuart-Smith; Tim R. McClanahan; Pascale Chabanet; Stuart A. Sandin; Andrew J. Brooks; Alison Green; Graham J. Edgar; Eva Maire; Eva Maire; Cindy Huchery; Ivor D. Williams; Alan M. Friedlander; Joshua E. Cinner; Marah J. Hardt; Michele L. Barnes; Shinta Pardede; Georgina G. Gurney; Stephanie D’agata; Stephanie D’agata; Stephanie D’agata; John N. Kittinger; John N. Kittinger; David J. Booth; M. Aaron MacNeil; M. Aaron MacNeil; Mark Tupper; Juan J. Cruz-Motta; Michel Kulbicki; Camilo Mora; Maria Beger; Maria Beger; Shaun K. Wilson; Laurent Wantiez; Christina C. Hicks; Christina C. Hicks; Laurent Vigliola; Nicholas A. J. Graham; Nicholas A. J. Graham;Significance Marine reserves that prohibit fishing are a critical tool for sustaining coral reef ecosystems, yet it remains unclear how human impacts in surrounding areas affect the capacity of marine reserves to deliver key conservation benefits. Our global study found that only marine reserves in areas of low human impact consistently sustained top predators. Fish biomass inside marine reserves declined along a gradient of human impacts in surrounding areas; however, reserves located where human impacts are moderate had the greatest difference in fish biomass compared with openly fished areas. Reserves in low human-impact areas are required for sustaining ecological functions like high-order predation, but reserves in high-impact areas can provide substantial conservation gains in fish biomass.
Hyper Article en Lig... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2018Full-Text: https://doi.org/10.1073/pnas.1708001115Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2018License: CC BY NC NDData sources: Fachrepositorium LebenswissenschaftenArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of IfremerThe University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1708001115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 215 citations 215 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2018Full-Text: https://doi.org/10.1073/pnas.1708001115Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2018License: CC BY NC NDData sources: Fachrepositorium LebenswissenschaftenArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of IfremerThe University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1708001115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 United States, Australia, Australia, Denmark, SingaporePublisher:Springer Science and Business Media LLC Andrew G. Bauman; Andrew S. Hoey; Glenn Dunshea; David A. Feary; Jeffrey Low; Peter A. Todd;AbstractThe removal of macroalgal biomass is critical to the health of coral reef ecosystems. Previous studies on relatively intact reefs with diverse and abundant fish communities have quantified rapid removal of macroalgae by herbivorous fishes, yet how these findings relate to degraded reef systems where fish diversity and abundance are markedly lower and algal biomass substantially higher, is unclear. We surveyed roving herbivorous fish communities and quantified their capacity to remove the dominant macroalga Sargassum ilicifolium on seven reefs in Singapore; a heavily degraded urbanized reef system. The diversity and abundance of herbivorous fishes was extremely low, with eight species and a mean abundance ~1.1 individuals 60 m−2 recorded across reefs. Consumption of S. ilicifolium varied with distance from Singapore’s main port with consumption being 3- to 17-fold higher on reefs furthest from the port (Pulau Satumu: 4.18 g h−1; Kusu Island: 2.38 g h−1) than reefs closer to the port (0.35–0.78 g h−1). Video observations revealed a single species, Siganus virgatus, was almost solely responsible for removing S. ilicifolium biomass, accounting for 83% of the mass-standardized bites. Despite low herbivore diversity and intense urbanization, macroalgal removal by fishes on some Singaporean reefs was directly comparable to rates reported for other inshore Indo-Pacific reefs.
Nova Southeastern Un... arrow_drop_down Nova Southeastern University: NSU WorksArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2017Full-Text: https://doi.org/10.1038/s41598-017-08873-3Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2017Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-017-08873-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Nova Southeastern Un... arrow_drop_down Nova Southeastern University: NSU WorksArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2017Full-Text: https://doi.org/10.1038/s41598-017-08873-3Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2017Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-017-08873-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Australia, United Kingdom, AustraliaPublisher:Wiley Authors: Shaun K. Wilson; Tessa N. Hempson; Nicholas A. J. Graham; Nicholas A. J. Graham; +4 AuthorsShaun K. Wilson; Tessa N. Hempson; Nicholas A. J. Graham; Nicholas A. J. Graham; Andrew S. Hoey; M. Aaron MacNeil; M. Aaron MacNeil; M. Aaron MacNeil;doi: 10.1002/eap.1639
pmid: 29035010
AbstractRegime shifts between alternative stable ecosystem states are becoming commonplace due to the combined effects of local stressors and global climate change. Alternative states are characterized as substantially different in form and function from pre‐disturbance states, disrupting the delivery of ecosystem services and functions. On coral reefs, regime shifts are typically characterized by a change in the benthic composition from coral to macroalgal dominance. Such fundamental shifts in the benthos are anticipated to impact associated fish communities that are reliant on the reef for food and shelter, yet there is limited understanding of how regime shifts propagate through the fish community over time, relative to initial or recovery conditions. This study addresses this knowledge gap using long‐term data of coral reef regime shifts and recovery on Seychelles reefs following the 1998 mass bleaching event. It shows how trophic structure of the reef fish community becomes increasingly dissimilar between alternative reef ecosystem states (regime‐shifted vs. recovering) with time since disturbance. Regime‐shifted reefs developed a concave trophic structure, with increased biomass in base trophic levels as herbivorous species benefitted from increased algal resources. Mid trophic level species, including specialists such as corallivores, declined with loss of coral habitat, while biomass was retained in upper trophic levels by large‐bodied, generalist invertivores. Recovering reefs also experienced an initial decline in mid trophic level biomass, but moved toward a bottom‐heavy pyramid shape, with a wide range of feeding groups (e.g., planktivores, corallivores, omnivores) represented at mid trophic levels. Given the importance of coral reef fishes in maintaining the ecological function of coral reef ecosystems and their associated fisheries, understanding the effects of regime shifts on these communities is essential to inform decisions that enhance ecological resilience and economic sustainability.
Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Ecological ApplicationsArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallEcological ApplicationsArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.1639&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Ecological ApplicationsArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallEcological ApplicationsArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.1639&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 Saudi Arabia, France, United Kingdom, Saudi Arabia, United States, United Kingdom, Spain, Australia, France, United Kingdom, United Kingdom, United KingdomPublisher:Springer Science and Business Media LLC Funded by:FCT | LA 1, NSERCFCT| LA 1 ,NSERCJeffrey Low; Alan M. Friedlander; Nur Fadli; Tsai Min Sin; T. Edward Roberts; Marie-Josée Fortin; Douglas Fenner; Michelle A. C. Lee; Nicholas A. J. Graham; Ku’ulei S. Rodgers; Stuart Campbell; Chun Hong James Tan; Nyawira A. Muthiga; Jennifer E. Smith; Yashika Nand; Michael L. Berumen; Simon D. Donner; Bruce Cauvin; Vianney Denis; Tim R. McClanahan; Mehdi Adjeroud; Shinta Pardede; Marji Puotinen; Mohsen Kayal; Mohsen Kayal; Stacy D. Jupiter; Peter Houk; Estradivari; Lionel Bigot; Joshua E. Cinner; Eric K. Brown; James R. Guest; Joseph Maina; Andrew G. Bauman; Brigitte Sommer; Brigitte Sommer; Sara E. Cannon; Vardhan Patankar; Vardhan Patankar; Joachim Claudet; David Mouillot; David Mouillot; Zoe T. Richards; Zoe T. Richards; Efin Muttaqin; Steven Johnson; Che Din Mohd Safuan; Makamas Sutthacheep; William J. Skirving; Georgina G. Gurney; Thamasak Yeemin; Eva Maire; Emily S. Darling; Emily S. Darling; Emily S. Darling; Andrew S. Hoey; Osamu Nedlic; Chao-Yang Kuo; Chao-Yang Kuo; David A. Feary; Ambroise Brenier; Jessica Bouwmeester; Jessica Bouwmeester; Christina C. Hicks; Tom C. L. Bridge; Tom C. L. Bridge; Chaolun Allen Chen; Gareth J. Williams; Gareth J. Williams; Kirsty L. Nash; Kirsty L. Nash; Camilo Mora; Gabby N. Ahmadia; Claire Goiran; George Shedrawi; Enric Sala; Rohan Arthur; Fraser A. Januchowski-Hartley; Fraser A. Januchowski-Hartley; Maria Beger; Maria Beger; Erik C. Franklin; Martin Krkošek; James P. Gilmour; Shaun K. Wilson; John M. Pandolfi; Lucie Penin; Lauriane Ribas-Deulofeu; Lauriane Ribas-Deulofeu; Joleah B. Lamb; Patrick F. Smallhorn-West; Jean-Paul A. Hobbs; Peter D. Steinberg; John F. Bruno; Helen E. Fox;pmid: 31406279
handle: 10261/189693 , 10754/656667 , 20.500.11937/76136
Without drastic efforts to reduce carbon emissions and mitigate globalized stressors, tropical coral reefs are in jeopardy. Strategic conservation and management requires identification of the environmental and socioeconomic factors driving the persistence of scleractinian coral assemblages—the foundation species of coral reef ecosystems. Here, we compiled coral abundance data from 2,584 Indo-Pacific reefs to evaluate the influence of 21 climate, social and environmental drivers on the ecology of reef coral assemblages. Higher abundances of framework-building corals were typically associated with: weaker thermal disturbances and longer intervals for potential recovery; slower human population growth; reduced access by human settlements and markets; and less nearby agriculture. We therefore propose a framework of three management strategies (protect, recover or transform) by considering: (1) if reefs were above or below a proposed threshold of >10% cover of the coral taxa important for structural complexity and carbonate production; and (2) reef exposure to severe thermal stress during the 2014–2017 global coral bleaching event. Our findings can guide urgent management efforts for coral reefs, by identifying key threats across multiple scales and strategic policy priorities that might sustain a network of functioning reefs in the Indo-Pacific to avoid ecosystem collapse.
Lancaster EPrints arrow_drop_down Lancaster EPrintsArticle . 2019 . Peer-reviewedFull-Text: https://eprints.lancs.ac.uk/id/eprint/136402/1/Darling_et_al_NEE_final_submission_12June2019.pdfData sources: Lancaster EPrintsRecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAArchiMer - Institutional Archive of IfremerOther literature type . 2019Data sources: ArchiMer - Institutional Archive of IfremerNature Ecology & EvolutionArticle . 2019 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Nova Southeastern University: NSU WorksArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-019-0953-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 186 citations 186 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 42visibility views 42 Powered bymore_vert Lancaster EPrints arrow_drop_down Lancaster EPrintsArticle . 2019 . Peer-reviewedFull-Text: https://eprints.lancs.ac.uk/id/eprint/136402/1/Darling_et_al_NEE_final_submission_12June2019.pdfData sources: Lancaster EPrintsRecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAArchiMer - Institutional Archive of IfremerOther literature type . 2019Data sources: ArchiMer - Institutional Archive of IfremerNature Ecology & EvolutionArticle . 2019 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Nova Southeastern University: NSU WorksArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-019-0953-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 Australia, Saudi Arabia, Saudi ArabiaPublisher:Springer Science and Business Media LLC Alonso González-Cabello; Carine D. Lefèvre; David R. Bellwood; Andrew H. Baird; Martial Depczynski; Martial Depczynski; Jennifer K. Tanner; Andrew S. Hoey; Andrew S. Hoey;The dynamic nature of coral reefs offers a rare opportunity to examine the response of ecosystems to disruption due to climate change. In 1998, the Great Barrier Reef experienced widespread coral bleaching and mortality. As a result, cryptobenthic fish assemblages underwent a dramatic phase-shift. Thirteen years, and up to 96 fish generations later, the cryptobenthic fish assemblage has not returned to its pre-bleach configuration. This is despite coral abundances returning to, or exceeding, pre-bleach values. The post-bleach fish assemblage exhibits no evidence of recovery. If these short-lived fish species are a model for their longer-lived counterparts, they suggest that (1) the full effects of the 1998 bleaching event on long-lived fish populations have yet to be seen, (2) it may take decades, or more, before recovery or regeneration of these long-lived species will begin, and (3) fish assemblages may not recover to their previous composition despite the return of corals.
Oecologia arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-012-2306-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Oecologia arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-012-2306-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Australia, Australia, United StatesPublisher:Elsevier BV Rita Bento; Andrew S. Hoey; Andrew G. Bauman; David A. Feary; John A. Burt;pmid: 26478453
Determining how coral ecosystems are structured within extreme environments may provide insights into how coral reefs are impacted by future climate change. Benthic community structure was examined within the Persian Gulf, and adjacent Musandam and northern Oman regions across a 3-year period (2008-2011) in which all regions were exposed to major disturbances. Although there was evidence of temporal switching in coral composition within regions, communities predominantly reflected local environmental conditions and the disturbance history of each region. Gulf reefs showed little change in coral composition, being dominated by stress-tolerant Faviidae and Poritidae across the 3 years. In comparison, Musandam and Oman coral communities were comprised of stress-sensitive Acroporidae and Pocilloporidae; Oman communities showed substantial declines in such taxa and increased cover of stress-tolerant communities. Our results suggest that coral communities may persist within an increasingly disturbed future environment, albeit in a much more structurally simple configuration.
Marine Pollution Bul... arrow_drop_down Marine Pollution BulletinArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Nova Southeastern University: NSU WorksArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpolbul.2015.10.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Marine Pollution Bul... arrow_drop_down Marine Pollution BulletinArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Nova Southeastern University: NSU WorksArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpolbul.2015.10.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 Australia, Australia, United KingdomPublisher:Wiley Funded by:ARC | Discovery Early Career Re..., ARC | Discovery Early Career Re..., EC | SIRCIWARC| Discovery Early Career Researcher Award - Grant ID: DE130101705 ,ARC| Discovery Early Career Researcher Award - Grant ID: DE130100688 ,EC| SIRCIWAuthors: Laura E. Richardson; Nicholas A. J. Graham; Morgan S. Pratchett; Jacob G. Eurich; +1 AuthorsLaura E. Richardson; Nicholas A. J. Graham; Morgan S. Pratchett; Jacob G. Eurich; Andrew S. Hoey;doi: 10.1111/gcb.14119
pmid: 29633512
AbstractGlobal climate change is altering community composition across many ecosystems due to nonrandom species turnover, typically characterized by the loss of specialist species and increasing similarity of biological communities across spatial scales. As anthropogenic disturbances continue to alter species composition globally, there is a growing need to identify how species responses influence the establishment of distinct assemblages, such that management actions may be appropriately assigned. Here, we use trait‐based analyses to compare temporal changes in five complementary indices of reef fish assemblage structure among six taxonomically distinct coral reef habitats exposed to a system‐wide thermal stress event. Our results revealed increased taxonomic and functional similarity of previously distinct reef fish assemblages following mass coral bleaching, with changes characterized by subtle, but significant, shifts toward predominance of small‐bodied, algal‐farming habitat generalists. Furthermore, while the taxonomic or functional richness of fish assemblages did not change across all habitats, an increase in functional originality indicated an overall loss of functional redundancy. We also found that prebleaching coral composition better predicted changes in fish assemblage structure than the magnitude of coral loss. These results emphasize how measures of alpha diversity can mask important changes in the structure and functioning of ecosystems as assemblages reorganize. Our findings also highlight the role of coral species composition in structuring communities and influencing the diversity of responses of reef fishes to disturbance. As new coral species configurations emerge, their desirability will hinge upon the composition of associated species and their capacity to maintain key ecological processes in spite of ongoing disturbances.
Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 153 citations 153 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013 AustraliaPublisher:Public Library of Science (PLoS) Authors: Trapon, Melanie L.; Pratchett, Morgan S.; Hoey, Andrew S.;For species with complex life histories such as scleractinian corals, processes occurring early in life can greatly influence the number of individuals entering the adult population. A plethora of studies have examined settlement patterns of coral larvae, mostly on artificial substrata, and the composition of adult corals across multiple spatial and temporal scales. However, relatively few studies have examined the spatial distribution of small (≤50 mm diameter) sexually immature corals on natural reef substrata. We, therefore, quantified the variation in the abundance, composition and size of juvenile corals (≤50 mm diameter) among 27 sites, nine reefs, and three latitudes spanning over 1000 km on Australia's Great Barrier Reef. Overall, 2801 juveniles were recorded with a mean density of 6.9 (±0.3 SE) ind.m(-2), with Acropora, Pocillopora, and Porites accounting for 84.1% of all juvenile corals surveyed. Size-class structure, orientation on the substrate and taxonomic composition of juvenile corals varied significantly among latitudinal sectors. The abundance of juvenile corals varied both within (6-13 ind.m(-2)) and among reefs (2.8-11.1 ind.m(-2)) but was fairly similar among latitudes (6.1-8.2 ind.m(-2)), despite marked latitudinal variation in larval supply and settlement rates previously found at this scale. Furthermore, the density of juvenile corals was negatively correlated with the biomass of scraping and excavating parrotfishes across all sites, revealing a potentially important role of parrotfishes in determining distribution patterns of juvenile corals on the Great Barrier Reef. While numerous studies have advocated the importance of parrotfishes for clearing space on the substrate to facilitate coral settlement, our results suggest that at high biomass they may have a detrimental effect on juvenile coral assemblages. There is, however, a clear need to directly quantify rates of mortality and growth of juvenile corals to understand the relative importance of these mechanisms in shaping juvenile, and consequently adult, coral assemblages.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0057788&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0057788&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Denmark, AustraliaPublisher:Wiley Tiffany J Nay; Rohan J Longbottom; Connor R Gervais; Jacob L Johansen; John F Steffensen; Jodie L Rummer; Andrew S Hoey;doi: 10.1111/jfb.14616
pmid: 33206373
ABSTRACTHighly variable thermal environments, such as coral reef flats, are challenging for marine ectotherms and are thought to invoke the use of behavioural strategies to avoid extreme temperatures and seek out thermal environments close to their preferred temperatures. Common to coral reef flats, the epaulette shark (Hemiscyllium ocellatum) possesses physiological adaptations to hypoxic and hypercapnic conditions, such as those experienced on reef flats, but little is known regarding the thermal strategies used by these sharks. We investigated whether H. ocellatum uses behavioural thermoregulation (i.e., movement to occupy thermally favourable microhabitats) or tolerates the broad range of temperatures experienced on the reef flat. Using an automated shuttlebox system, we determined the preferred temperature of H. ocellatum under controlled laboratory conditions and then compared this preferred temperature to 6 months of in situ environmental and body temperatures of individual H. ocellatum across the Heron Island reef flat. The preferred temperature of H. ocellatum under controlled conditions was 20.7 ± 1.5°C, but the body temperatures of individual H. ocellatum on the Heron Island reef flat mirrored environmental temperatures regardless of season or month. Despite substantial temporal variation in temperature on the Heron Island reef flat (15–34°C during 2017), there was a lack of spatial variation in temperature across the reef flat between sites or microhabitats. This limited spatial variation in temperature creates a low‐quality thermal habitat limiting the ability of H. ocellatum to behaviourally thermoregulate. Behavioural thermoregulation is assumed in many shark species, but it appears that H. ocellatum may utilize other physiological strategies to cope with extreme temperature fluctuations on coral reef flats. While H. ocellatum appears to be able to tolerate acute exposure to temperatures well outside of their preferred temperature, it is unclear how this, and other, species will cope as temperatures continue to rise and approach their critical thermal limits. Understanding how species will respond to continued warming and the strategies they may use will be key to predicting future populations and assemblages.
Journal of Fish Biol... arrow_drop_down Journal of Fish BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jfb.14616&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Fish Biol... arrow_drop_down Journal of Fish BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jfb.14616&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 AustraliaPublisher:The Royal Society Authors: Adel Heenan; Andrew S. Hoey; Gareth J. Williams; Ivor D. Williams;Humans are an increasingly dominant driver of Earth's biological communities, but differentiating human impacts from natural drivers of ecosystem state is crucial. Herbivorous fish play a key role in maintaining coral dominance on coral reefs, and are widely affected by human activities, principally fishing. We assess the relative importance of human and biophysical (habitat and oceanographic) drivers on the biomass of five herbivorous functional groups among 33 islands in the central and western Pacific Ocean. Human impacts were clear for some, but not all, herbivore groups. Biomass of browsers, large excavators, and of all herbivores combined declined rapidly with increasing human population density, whereas grazers, scrapers, and detritivores displayed no relationship. Sea-surface temperature had significant but opposing effects on the biomass of detritivores (positive) and browsers (negative). Similarly, the biomass of scrapers, grazers, and detritivores correlated with habitat structural complexity; however, relationships were group specific. Finally, the biomass of browsers and large excavators was related to island geomorphology, both peaking on low-lying islands and atolls. The substantial variability in herbivore populations explained by natural biophysical drivers highlights the need for locally appropriate management targets on coral reefs.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2016Full-Text: http://dx.doi.org/10.1098/rspb.2016.1716Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallProceedings of the Royal Society B Biological SciencesArticle . 2016 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2017Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2016.1716&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 67 citations 67 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2016Full-Text: http://dx.doi.org/10.1098/rspb.2016.1716Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallProceedings of the Royal Society B Biological SciencesArticle . 2016 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2017Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2016.1716&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 France, Australia, France, Australia, Australia, Australia, France, Australia, United KingdomPublisher:Proceedings of the National Academy of Sciences Funded by:ARC | Future Fellowships - Gran..., FCT | LA 1, ARC | ARC Centres of Excellence...ARC| Future Fellowships - Grant ID: FT160100047 ,FCT| LA 1 ,ARC| ARC Centres of Excellences - Grant ID: CE140100020Sebastian C. A. Ferse; David Mouillot; David Mouillot; David A. Feary; Charlotte Gough; U. Rashid Sumaila; Andrew S. Hoey; Eran Brokovich; Rick D. Stuart-Smith; Tim R. McClanahan; Pascale Chabanet; Stuart A. Sandin; Andrew J. Brooks; Alison Green; Graham J. Edgar; Eva Maire; Eva Maire; Cindy Huchery; Ivor D. Williams; Alan M. Friedlander; Joshua E. Cinner; Marah J. Hardt; Michele L. Barnes; Shinta Pardede; Georgina G. Gurney; Stephanie D’agata; Stephanie D’agata; Stephanie D’agata; John N. Kittinger; John N. Kittinger; David J. Booth; M. Aaron MacNeil; M. Aaron MacNeil; Mark Tupper; Juan J. Cruz-Motta; Michel Kulbicki; Camilo Mora; Maria Beger; Maria Beger; Shaun K. Wilson; Laurent Wantiez; Christina C. Hicks; Christina C. Hicks; Laurent Vigliola; Nicholas A. J. Graham; Nicholas A. J. Graham;Significance Marine reserves that prohibit fishing are a critical tool for sustaining coral reef ecosystems, yet it remains unclear how human impacts in surrounding areas affect the capacity of marine reserves to deliver key conservation benefits. Our global study found that only marine reserves in areas of low human impact consistently sustained top predators. Fish biomass inside marine reserves declined along a gradient of human impacts in surrounding areas; however, reserves located where human impacts are moderate had the greatest difference in fish biomass compared with openly fished areas. Reserves in low human-impact areas are required for sustaining ecological functions like high-order predation, but reserves in high-impact areas can provide substantial conservation gains in fish biomass.
Hyper Article en Lig... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2018Full-Text: https://doi.org/10.1073/pnas.1708001115Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2018License: CC BY NC NDData sources: Fachrepositorium LebenswissenschaftenArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of IfremerThe University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1708001115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 215 citations 215 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2018Full-Text: https://doi.org/10.1073/pnas.1708001115Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2018License: CC BY NC NDData sources: Fachrepositorium LebenswissenschaftenArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of IfremerThe University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1708001115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 United States, Australia, Australia, Denmark, SingaporePublisher:Springer Science and Business Media LLC Andrew G. Bauman; Andrew S. Hoey; Glenn Dunshea; David A. Feary; Jeffrey Low; Peter A. Todd;AbstractThe removal of macroalgal biomass is critical to the health of coral reef ecosystems. Previous studies on relatively intact reefs with diverse and abundant fish communities have quantified rapid removal of macroalgae by herbivorous fishes, yet how these findings relate to degraded reef systems where fish diversity and abundance are markedly lower and algal biomass substantially higher, is unclear. We surveyed roving herbivorous fish communities and quantified their capacity to remove the dominant macroalga Sargassum ilicifolium on seven reefs in Singapore; a heavily degraded urbanized reef system. The diversity and abundance of herbivorous fishes was extremely low, with eight species and a mean abundance ~1.1 individuals 60 m−2 recorded across reefs. Consumption of S. ilicifolium varied with distance from Singapore’s main port with consumption being 3- to 17-fold higher on reefs furthest from the port (Pulau Satumu: 4.18 g h−1; Kusu Island: 2.38 g h−1) than reefs closer to the port (0.35–0.78 g h−1). Video observations revealed a single species, Siganus virgatus, was almost solely responsible for removing S. ilicifolium biomass, accounting for 83% of the mass-standardized bites. Despite low herbivore diversity and intense urbanization, macroalgal removal by fishes on some Singaporean reefs was directly comparable to rates reported for other inshore Indo-Pacific reefs.
Nova Southeastern Un... arrow_drop_down Nova Southeastern University: NSU WorksArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2017Full-Text: https://doi.org/10.1038/s41598-017-08873-3Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2017Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-017-08873-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Nova Southeastern Un... arrow_drop_down Nova Southeastern University: NSU WorksArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2017Full-Text: https://doi.org/10.1038/s41598-017-08873-3Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2017Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-017-08873-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Australia, United Kingdom, AustraliaPublisher:Wiley Authors: Shaun K. Wilson; Tessa N. Hempson; Nicholas A. J. Graham; Nicholas A. J. Graham; +4 AuthorsShaun K. Wilson; Tessa N. Hempson; Nicholas A. J. Graham; Nicholas A. J. Graham; Andrew S. Hoey; M. Aaron MacNeil; M. Aaron MacNeil; M. Aaron MacNeil;doi: 10.1002/eap.1639
pmid: 29035010
AbstractRegime shifts between alternative stable ecosystem states are becoming commonplace due to the combined effects of local stressors and global climate change. Alternative states are characterized as substantially different in form and function from pre‐disturbance states, disrupting the delivery of ecosystem services and functions. On coral reefs, regime shifts are typically characterized by a change in the benthic composition from coral to macroalgal dominance. Such fundamental shifts in the benthos are anticipated to impact associated fish communities that are reliant on the reef for food and shelter, yet there is limited understanding of how regime shifts propagate through the fish community over time, relative to initial or recovery conditions. This study addresses this knowledge gap using long‐term data of coral reef regime shifts and recovery on Seychelles reefs following the 1998 mass bleaching event. It shows how trophic structure of the reef fish community becomes increasingly dissimilar between alternative reef ecosystem states (regime‐shifted vs. recovering) with time since disturbance. Regime‐shifted reefs developed a concave trophic structure, with increased biomass in base trophic levels as herbivorous species benefitted from increased algal resources. Mid trophic level species, including specialists such as corallivores, declined with loss of coral habitat, while biomass was retained in upper trophic levels by large‐bodied, generalist invertivores. Recovering reefs also experienced an initial decline in mid trophic level biomass, but moved toward a bottom‐heavy pyramid shape, with a wide range of feeding groups (e.g., planktivores, corallivores, omnivores) represented at mid trophic levels. Given the importance of coral reef fishes in maintaining the ecological function of coral reef ecosystems and their associated fisheries, understanding the effects of regime shifts on these communities is essential to inform decisions that enhance ecological resilience and economic sustainability.
Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Ecological ApplicationsArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallEcological ApplicationsArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.1639&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Ecological ApplicationsArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallEcological ApplicationsArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.1639&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 Saudi Arabia, France, United Kingdom, Saudi Arabia, United States, United Kingdom, Spain, Australia, France, United Kingdom, United Kingdom, United KingdomPublisher:Springer Science and Business Media LLC Funded by:FCT | LA 1, NSERCFCT| LA 1 ,NSERCJeffrey Low; Alan M. Friedlander; Nur Fadli; Tsai Min Sin; T. Edward Roberts; Marie-Josée Fortin; Douglas Fenner; Michelle A. C. Lee; Nicholas A. J. Graham; Ku’ulei S. Rodgers; Stuart Campbell; Chun Hong James Tan; Nyawira A. Muthiga; Jennifer E. Smith; Yashika Nand; Michael L. Berumen; Simon D. Donner; Bruce Cauvin; Vianney Denis; Tim R. McClanahan; Mehdi Adjeroud; Shinta Pardede; Marji Puotinen; Mohsen Kayal; Mohsen Kayal; Stacy D. Jupiter; Peter Houk; Estradivari; Lionel Bigot; Joshua E. Cinner; Eric K. Brown; James R. Guest; Joseph Maina; Andrew G. Bauman; Brigitte Sommer; Brigitte Sommer; Sara E. Cannon; Vardhan Patankar; Vardhan Patankar; Joachim Claudet; David Mouillot; David Mouillot; Zoe T. Richards; Zoe T. Richards; Efin Muttaqin; Steven Johnson; Che Din Mohd Safuan; Makamas Sutthacheep; William J. Skirving; Georgina G. Gurney; Thamasak Yeemin; Eva Maire; Emily S. Darling; Emily S. Darling; Emily S. Darling; Andrew S. Hoey; Osamu Nedlic; Chao-Yang Kuo; Chao-Yang Kuo; David A. Feary; Ambroise Brenier; Jessica Bouwmeester; Jessica Bouwmeester; Christina C. Hicks; Tom C. L. Bridge; Tom C. L. Bridge; Chaolun Allen Chen; Gareth J. Williams; Gareth J. Williams; Kirsty L. Nash; Kirsty L. Nash; Camilo Mora; Gabby N. Ahmadia; Claire Goiran; George Shedrawi; Enric Sala; Rohan Arthur; Fraser A. Januchowski-Hartley; Fraser A. Januchowski-Hartley; Maria Beger; Maria Beger; Erik C. Franklin; Martin Krkošek; James P. Gilmour; Shaun K. Wilson; John M. Pandolfi; Lucie Penin; Lauriane Ribas-Deulofeu; Lauriane Ribas-Deulofeu; Joleah B. Lamb; Patrick F. Smallhorn-West; Jean-Paul A. Hobbs; Peter D. Steinberg; John F. Bruno; Helen E. Fox;pmid: 31406279
handle: 10261/189693 , 10754/656667 , 20.500.11937/76136
Without drastic efforts to reduce carbon emissions and mitigate globalized stressors, tropical coral reefs are in jeopardy. Strategic conservation and management requires identification of the environmental and socioeconomic factors driving the persistence of scleractinian coral assemblages—the foundation species of coral reef ecosystems. Here, we compiled coral abundance data from 2,584 Indo-Pacific reefs to evaluate the influence of 21 climate, social and environmental drivers on the ecology of reef coral assemblages. Higher abundances of framework-building corals were typically associated with: weaker thermal disturbances and longer intervals for potential recovery; slower human population growth; reduced access by human settlements and markets; and less nearby agriculture. We therefore propose a framework of three management strategies (protect, recover or transform) by considering: (1) if reefs were above or below a proposed threshold of >10% cover of the coral taxa important for structural complexity and carbonate production; and (2) reef exposure to severe thermal stress during the 2014–2017 global coral bleaching event. Our findings can guide urgent management efforts for coral reefs, by identifying key threats across multiple scales and strategic policy priorities that might sustain a network of functioning reefs in the Indo-Pacific to avoid ecosystem collapse.
Lancaster EPrints arrow_drop_down Lancaster EPrintsArticle . 2019 . Peer-reviewedFull-Text: https://eprints.lancs.ac.uk/id/eprint/136402/1/Darling_et_al_NEE_final_submission_12June2019.pdfData sources: Lancaster EPrintsRecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAArchiMer - Institutional Archive of IfremerOther literature type . 2019Data sources: ArchiMer - Institutional Archive of IfremerNature Ecology & EvolutionArticle . 2019 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Nova Southeastern University: NSU WorksArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-019-0953-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 186 citations 186 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 42visibility views 42 Powered bymore_vert Lancaster EPrints arrow_drop_down Lancaster EPrintsArticle . 2019 . Peer-reviewedFull-Text: https://eprints.lancs.ac.uk/id/eprint/136402/1/Darling_et_al_NEE_final_submission_12June2019.pdfData sources: Lancaster EPrintsRecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAArchiMer - Institutional Archive of IfremerOther literature type . 2019Data sources: ArchiMer - Institutional Archive of IfremerNature Ecology & EvolutionArticle . 2019 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Nova Southeastern University: NSU WorksArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-019-0953-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 Australia, Saudi Arabia, Saudi ArabiaPublisher:Springer Science and Business Media LLC Alonso González-Cabello; Carine D. Lefèvre; David R. Bellwood; Andrew H. Baird; Martial Depczynski; Martial Depczynski; Jennifer K. Tanner; Andrew S. Hoey; Andrew S. Hoey;The dynamic nature of coral reefs offers a rare opportunity to examine the response of ecosystems to disruption due to climate change. In 1998, the Great Barrier Reef experienced widespread coral bleaching and mortality. As a result, cryptobenthic fish assemblages underwent a dramatic phase-shift. Thirteen years, and up to 96 fish generations later, the cryptobenthic fish assemblage has not returned to its pre-bleach configuration. This is despite coral abundances returning to, or exceeding, pre-bleach values. The post-bleach fish assemblage exhibits no evidence of recovery. If these short-lived fish species are a model for their longer-lived counterparts, they suggest that (1) the full effects of the 1998 bleaching event on long-lived fish populations have yet to be seen, (2) it may take decades, or more, before recovery or regeneration of these long-lived species will begin, and (3) fish assemblages may not recover to their previous composition despite the return of corals.
Oecologia arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-012-2306-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Oecologia arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-012-2306-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Australia, Australia, United StatesPublisher:Elsevier BV Rita Bento; Andrew S. Hoey; Andrew G. Bauman; David A. Feary; John A. Burt;pmid: 26478453
Determining how coral ecosystems are structured within extreme environments may provide insights into how coral reefs are impacted by future climate change. Benthic community structure was examined within the Persian Gulf, and adjacent Musandam and northern Oman regions across a 3-year period (2008-2011) in which all regions were exposed to major disturbances. Although there was evidence of temporal switching in coral composition within regions, communities predominantly reflected local environmental conditions and the disturbance history of each region. Gulf reefs showed little change in coral composition, being dominated by stress-tolerant Faviidae and Poritidae across the 3 years. In comparison, Musandam and Oman coral communities were comprised of stress-sensitive Acroporidae and Pocilloporidae; Oman communities showed substantial declines in such taxa and increased cover of stress-tolerant communities. Our results suggest that coral communities may persist within an increasingly disturbed future environment, albeit in a much more structurally simple configuration.
Marine Pollution Bul... arrow_drop_down Marine Pollution BulletinArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Nova Southeastern University: NSU WorksArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpolbul.2015.10.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Marine Pollution Bul... arrow_drop_down Marine Pollution BulletinArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Nova Southeastern University: NSU WorksArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpolbul.2015.10.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu