- home
- Advanced Search
Filters
Clear AllYear range
-chevron_right GO
- Energy Research
- 2. Zero hunger
- Energy Research
- 2. Zero hunger
description Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Authors: Hugo Goldsztein; John A. Mathews;Abstract Although Argentina came late to the biofuels revolution, a series of measures taken recently at federal and provincial government level have created new opportunities. New federal laws on biofuels promotion have sparked an investment boom. The main activity has been in the biodiesel sector—partly because diesel is the dominant fuel sector in Argentina, and partly because the country had already engineered a soy revolution over the past 15 years, becoming the world's largest exporter of soy oil and soy meal. Biodiesel allows this revolution to be extended—from soy as foodstuff to soy as fuelstock. The biodiesel revolution now underway promises to extend Argentina's latecomer advantages by combining greater scale and lower costs with introduced technical innovations such as genetically modified crops and no-till farming. In this way, Argentina can be seen to be demonstrating the superiority of biofuel production in countries of the South over the conditions obtaining in countries of the North—including superior resources availability, superior energetics and lower costs. Whereas Brazil has demonstrated its superiority in sugarcane-based ethanol, Argentina is about to demonstrate its superiority in soy-based biodiesel.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2008.07.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2008.07.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Wiley Authors: Mathews, John A.; Tan, Hao;doi: 10.1002/bbb.147
AbstractWhile debate on biofuels and bioenergy generally has sparked controversy over claimed greenhouse gas emissions benefits available with a switch to biomass, these claims have generally not taken into account indirect land use changes. Carbon emissions from land that is newly planted with biocrops, after land use changes such as deforestation, are certainly real – but efforts to measure them have been presented subject to severe qualifi cations. No such qualifications accompanied the paper by Searchinger et al. published in Science in February 2008, where the claim was made that a spike of ethanol consumption in the USA up to the year 2016 would divert corn grown in the USA and lead to new plantings of grain crops around the world to make up the shortfall, resulting in land use changes covering 10.8 million hectares and leading to the release of 3.8 billion tons of greenhouse gas emissions in terms of CO2 equivalent. These emissions, the paper argued, would more than offset any savings in emissions by growing biofuels in the first place; in fact they would create a ‘carbon debt’ that would take 160 years to repay. Such criticism would be devastating, if it were valid. The aim of this perspective is to probe the assumptions and models used in the Searchinger et al. paper, to evaluate their validity and plausibility, and contrast them with other approaches taken or available to be taken. It is argued that indirect land use change effects are too diffuse and subject to too many arbitrary assumptions to be useful for rule‐making, and that the use of direct and controllable measures, such as building statements of origin of biofuels into the contracts that regulate the sale of such commodities, would secure better results. © 2009 Society of Chemical Industry and John Wiley & Sons, Ltd
Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.147&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 88 citations 88 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.147&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Wiley Authors: John A. Mathews;doi: 10.1002/bbb.59
AbstractThere has been much hyperbole voiced against biofuels of late. At the end of October the United Nations special rapporteur on the right to food, Jean Ziegler, stated at a press conference in New York that it was ‘a crime against humanity to divert arable land to the production of crops which are then burned for fuel’. These sentiments were then echoed by George Monbiot, in The Guardian, when he claimed, amongst other things, that ‘biofuels could kill more people than the Iraq war’.The oil lobby must be rubbing its hands with glee. Never in over a century of destructive use of fossil fuels have such charges been leveled against the internal combustion engine and the fossil fuels burnt that are actually creating the problem of global warming. Instead it is the potentially clean substitutes that are attracting all the opprobrium. © 2008 Society of Chemical Industry and John Wiley & Sons, Ltd
Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.59&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.59&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Mathews, John A.; Tan, Hao (R16143); Moore, Michael J.; Bell, Geoff;Abstract It has been argued by some that the substitution of biofuels for gasoline could increase greenhouse gas (GHG) emissions, rather than reduce them. The increase is attributed to the indirect land use change effects of planting new grain and corn crops around the world to replace those progressively being devoted to ethanol production. In this paper, indirect effects are minimised by allowing land to be used for both food and fuel, rather than for one or the other. We present a sugarcane ‘feed+fuel’ biorefinery, which produces bioethanol and yeast biomass, a source of single-cell protein (SCP), that can be used as a high-protein animal feed supplement. The yeast SCP can partially substitute for grass in the feed of cattle grazing on pasture and thereby potentially release land for increased sugarcane production, with minimal land use change effects. Applying the concept conservatively to the Brazilian ethanol and livestock industry our model demonstrates that it would be technically feasible to raise ethanol production threefold from the current level of 27 GL to over 92 GL. The extra ethanol would meet biofuel market mandates in the US without bringing any extra land into agricultural or pastoral use. The analysis demonstrates a viable way to increase biofuel and food production by linking two value chains as called for by industrial ecology studies.
Energy Policy arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2011.06.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Policy arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2011.06.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Wiley Authors: John A. Mathews;doi: 10.1002/bbb.181
AbstractProduction of biomass for bioenergy generation, and in particular production of biologically derived liquid fuels, is attracting great interest as an alternative to the fossil fuel economy. Biofuels represent as yet only 1% of world agricultural output, but this small extension has triggered widespread fears, many now shown to be groundless, such as the fear that it was biofuels that drove up food prices in 2008. This perspective reviews the literature on the extent to which biofuel production can be integrated into agricultural production, taking a global view of the potential for land, water and other resources to be extended beyond current food, feed and fi ber applications. As opposed to the focus on negative impacts, there are benefi cial practices in biofuels that could be expected to propagate to agriculture more generally and have a positive impact on yields and practices. These include (1) promoting a shift from wasteful annual crops to perennials, particularly low‐input high‐diversity (LIHD) crops; (2) sequestering carbon in soil both organically and as biochar; (3) improving conservative water management practices; and (4) recycling resources. The possibilities of encouraging biofuel production (and biomass for bioenergy generally) in the tropical South, for consumption in the temperate North, based on certifi cation of such sustainable practices in the South, could be expanded if global trade in biofuels were liberalized. Copyright © 2009 Society of Chemical Industry and John Wiley & Sons, Ltd
Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.181&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.181&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Authors: Hugo Goldsztein; John A. Mathews;Abstract Although Argentina came late to the biofuels revolution, a series of measures taken recently at federal and provincial government level have created new opportunities. New federal laws on biofuels promotion have sparked an investment boom. The main activity has been in the biodiesel sector—partly because diesel is the dominant fuel sector in Argentina, and partly because the country had already engineered a soy revolution over the past 15 years, becoming the world's largest exporter of soy oil and soy meal. Biodiesel allows this revolution to be extended—from soy as foodstuff to soy as fuelstock. The biodiesel revolution now underway promises to extend Argentina's latecomer advantages by combining greater scale and lower costs with introduced technical innovations such as genetically modified crops and no-till farming. In this way, Argentina can be seen to be demonstrating the superiority of biofuel production in countries of the South over the conditions obtaining in countries of the North—including superior resources availability, superior energetics and lower costs. Whereas Brazil has demonstrated its superiority in sugarcane-based ethanol, Argentina is about to demonstrate its superiority in soy-based biodiesel.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2008.07.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2008.07.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Wiley Authors: Mathews, John A.; Tan, Hao;doi: 10.1002/bbb.147
AbstractWhile debate on biofuels and bioenergy generally has sparked controversy over claimed greenhouse gas emissions benefits available with a switch to biomass, these claims have generally not taken into account indirect land use changes. Carbon emissions from land that is newly planted with biocrops, after land use changes such as deforestation, are certainly real – but efforts to measure them have been presented subject to severe qualifi cations. No such qualifications accompanied the paper by Searchinger et al. published in Science in February 2008, where the claim was made that a spike of ethanol consumption in the USA up to the year 2016 would divert corn grown in the USA and lead to new plantings of grain crops around the world to make up the shortfall, resulting in land use changes covering 10.8 million hectares and leading to the release of 3.8 billion tons of greenhouse gas emissions in terms of CO2 equivalent. These emissions, the paper argued, would more than offset any savings in emissions by growing biofuels in the first place; in fact they would create a ‘carbon debt’ that would take 160 years to repay. Such criticism would be devastating, if it were valid. The aim of this perspective is to probe the assumptions and models used in the Searchinger et al. paper, to evaluate their validity and plausibility, and contrast them with other approaches taken or available to be taken. It is argued that indirect land use change effects are too diffuse and subject to too many arbitrary assumptions to be useful for rule‐making, and that the use of direct and controllable measures, such as building statements of origin of biofuels into the contracts that regulate the sale of such commodities, would secure better results. © 2009 Society of Chemical Industry and John Wiley & Sons, Ltd
Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.147&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 88 citations 88 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.147&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Wiley Authors: John A. Mathews;doi: 10.1002/bbb.59
AbstractThere has been much hyperbole voiced against biofuels of late. At the end of October the United Nations special rapporteur on the right to food, Jean Ziegler, stated at a press conference in New York that it was ‘a crime against humanity to divert arable land to the production of crops which are then burned for fuel’. These sentiments were then echoed by George Monbiot, in The Guardian, when he claimed, amongst other things, that ‘biofuels could kill more people than the Iraq war’.The oil lobby must be rubbing its hands with glee. Never in over a century of destructive use of fossil fuels have such charges been leveled against the internal combustion engine and the fossil fuels burnt that are actually creating the problem of global warming. Instead it is the potentially clean substitutes that are attracting all the opprobrium. © 2008 Society of Chemical Industry and John Wiley & Sons, Ltd
Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.59&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.59&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Mathews, John A.; Tan, Hao (R16143); Moore, Michael J.; Bell, Geoff;Abstract It has been argued by some that the substitution of biofuels for gasoline could increase greenhouse gas (GHG) emissions, rather than reduce them. The increase is attributed to the indirect land use change effects of planting new grain and corn crops around the world to replace those progressively being devoted to ethanol production. In this paper, indirect effects are minimised by allowing land to be used for both food and fuel, rather than for one or the other. We present a sugarcane ‘feed+fuel’ biorefinery, which produces bioethanol and yeast biomass, a source of single-cell protein (SCP), that can be used as a high-protein animal feed supplement. The yeast SCP can partially substitute for grass in the feed of cattle grazing on pasture and thereby potentially release land for increased sugarcane production, with minimal land use change effects. Applying the concept conservatively to the Brazilian ethanol and livestock industry our model demonstrates that it would be technically feasible to raise ethanol production threefold from the current level of 27 GL to over 92 GL. The extra ethanol would meet biofuel market mandates in the US without bringing any extra land into agricultural or pastoral use. The analysis demonstrates a viable way to increase biofuel and food production by linking two value chains as called for by industrial ecology studies.
Energy Policy arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2011.06.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Policy arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2011.06.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Wiley Authors: John A. Mathews;doi: 10.1002/bbb.181
AbstractProduction of biomass for bioenergy generation, and in particular production of biologically derived liquid fuels, is attracting great interest as an alternative to the fossil fuel economy. Biofuels represent as yet only 1% of world agricultural output, but this small extension has triggered widespread fears, many now shown to be groundless, such as the fear that it was biofuels that drove up food prices in 2008. This perspective reviews the literature on the extent to which biofuel production can be integrated into agricultural production, taking a global view of the potential for land, water and other resources to be extended beyond current food, feed and fi ber applications. As opposed to the focus on negative impacts, there are benefi cial practices in biofuels that could be expected to propagate to agriculture more generally and have a positive impact on yields and practices. These include (1) promoting a shift from wasteful annual crops to perennials, particularly low‐input high‐diversity (LIHD) crops; (2) sequestering carbon in soil both organically and as biochar; (3) improving conservative water management practices; and (4) recycling resources. The possibilities of encouraging biofuel production (and biomass for bioenergy generally) in the tropical South, for consumption in the temperate North, based on certifi cation of such sustainable practices in the South, could be expanded if global trade in biofuels were liberalized. Copyright © 2009 Society of Chemical Industry and John Wiley & Sons, Ltd
Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.181&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.181&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu