- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Frontiers Media SA Shamal Shasang Kumar; Owais Ali Wani; Shakeel Ahmad Mir; Subhash Babu; Vikas Sharma; Majeed Ul Hassan Chesti; Zahoor Ahmad Baba; Parvaze A. Sofi; Fehim Jeelani Wani; Shahnawaz Rasool Dar; Raghavendra Singh; Devideen Yadav;Food security and environmental health are directly linked with soil carbon (C). Soil C plays a crucial role in securing food and livelihood security for the Himalayan population besides maintaining the ecological balance in the Indian Himalayas. However, soil C is being severely depleted due to anthropogenic activities. It is well known that land use management strongly impacted the soil organic carbon (SOC) dynamics and also regulates the atmospheric C chemistry. Different types of cultivation practices, i.e., forest, plantations, and crops in the Kashmir Himalayas, India, has different abilities to conserve SOC and emit C in the form of carbon dioxide (CO2). Hence, five prominent land use systems (LUC) (e.g., natural forest, natural grassland, maize-field-converted from the forest, plantation, and paddy crop) of Kashmir Himalaya were evaluated to conserve SOC, reduce C emissions, improve soil properties and develop understanding SOC pools and its fractions variations under different land use management practices. The results revealed that at 0–20 cm and 20–40 cm profile, the soil under natural forest conserved the highest total organic carbon (TOC, 24.24 g kg−1 and 18.76 g kg−1), Walkley-black carbon (WBC, 18.23 g kg−1 and 14.10 g kg−1), very-labile-carbon (VLC, 8.65 g kg−1, and 6.30 g kg−1), labile-carbon (LC, 3.58 g kg−1 and 3.14 g kg−1), less-labile-carbon (VLC, 2.59 g kg−1, and 2.00 g kg−1), non-labile-carbon (NLC, 3.41 g kg−1 and 2.66 g kg-1), TOC stock (45.88 Mg ha−1 and 41.16 Mg ha−1), WBC stock (34.50 Mg ha−1 and 30.94 Mg ha−1), active carbon pools (AC, 23.14 Mg ha−1 and 20.66 Mg ha−1), passive carbon pools (PC, 11.40 Mg ha−1 and 10.26 Mg ha−1) and carbon management index (CMI, 100), followed by the natural grassland. However, the lowest C storage was reported in paddy cropland. The soils under natural forest and natural grassland systems had a greater amount of VLC, LC, LLC, and NLC fraction than other land uses at both depths. On the other hand, maize-field-converted-from-forest-land-use soils had a higher proportion of NLC fraction than paddy soils; nonetheless, the NLC pool was maximum in natural forest soil. LUS based on forest crops maintains more SOC, while agricultural crops, such as paddy and maize, tend to emit more C in the Himalayan region. Therefore, research findings suggest that SOC under the Kashmir Himalayas can be protected by adopting suitable LUS, namely forest soil protection, and by placing some areas under plantations. The areas under the rice and maize fields emit more CO2, hence, there is a need to adopt the conservation effective measure to conserve the SOC without compromising farm productivity.
Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2022.1009660&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2022.1009660&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Frontiers Media SA Shamal Shasang Kumar; Owais Ali Wani; Shakeel Ahmad Mir; Subhash Babu; Vikas Sharma; Majeed Ul Hassan Chesti; Zahoor Ahmad Baba; Parvaze A. Sofi; Fehim Jeelani Wani; Shahnawaz Rasool Dar; Raghavendra Singh; Devideen Yadav;Food security and environmental health are directly linked with soil carbon (C). Soil C plays a crucial role in securing food and livelihood security for the Himalayan population besides maintaining the ecological balance in the Indian Himalayas. However, soil C is being severely depleted due to anthropogenic activities. It is well known that land use management strongly impacted the soil organic carbon (SOC) dynamics and also regulates the atmospheric C chemistry. Different types of cultivation practices, i.e., forest, plantations, and crops in the Kashmir Himalayas, India, has different abilities to conserve SOC and emit C in the form of carbon dioxide (CO2). Hence, five prominent land use systems (LUC) (e.g., natural forest, natural grassland, maize-field-converted from the forest, plantation, and paddy crop) of Kashmir Himalaya were evaluated to conserve SOC, reduce C emissions, improve soil properties and develop understanding SOC pools and its fractions variations under different land use management practices. The results revealed that at 0–20 cm and 20–40 cm profile, the soil under natural forest conserved the highest total organic carbon (TOC, 24.24 g kg−1 and 18.76 g kg−1), Walkley-black carbon (WBC, 18.23 g kg−1 and 14.10 g kg−1), very-labile-carbon (VLC, 8.65 g kg−1, and 6.30 g kg−1), labile-carbon (LC, 3.58 g kg−1 and 3.14 g kg−1), less-labile-carbon (VLC, 2.59 g kg−1, and 2.00 g kg−1), non-labile-carbon (NLC, 3.41 g kg−1 and 2.66 g kg-1), TOC stock (45.88 Mg ha−1 and 41.16 Mg ha−1), WBC stock (34.50 Mg ha−1 and 30.94 Mg ha−1), active carbon pools (AC, 23.14 Mg ha−1 and 20.66 Mg ha−1), passive carbon pools (PC, 11.40 Mg ha−1 and 10.26 Mg ha−1) and carbon management index (CMI, 100), followed by the natural grassland. However, the lowest C storage was reported in paddy cropland. The soils under natural forest and natural grassland systems had a greater amount of VLC, LC, LLC, and NLC fraction than other land uses at both depths. On the other hand, maize-field-converted-from-forest-land-use soils had a higher proportion of NLC fraction than paddy soils; nonetheless, the NLC pool was maximum in natural forest soil. LUS based on forest crops maintains more SOC, while agricultural crops, such as paddy and maize, tend to emit more C in the Himalayan region. Therefore, research findings suggest that SOC under the Kashmir Himalayas can be protected by adopting suitable LUS, namely forest soil protection, and by placing some areas under plantations. The areas under the rice and maize fields emit more CO2, hence, there is a need to adopt the conservation effective measure to conserve the SOC without compromising farm productivity.
Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2022.1009660&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2022.1009660&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu